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Abstract

We introduce a finite volume Discontinuous Arbitrary Lagrangian-

Eulerian (DiscALE) alternative to the computation of compressible fluid
dynamics. This new proposed framework take naturally into account dy-
namical refinement/coarsening/reconnection on a direct discretization of
a new non-smooth kinematic mesh contribution. Two practical inter-
esting properties of the method are -1- to deal with arbitrary polygonal
mesh (initial or at each time step) and -2- to recover exactly Lagrangian,
Eulerian or classical continuous ALE mode by omitting this non-smooth
velocity. Moreover, it also appears that many meshing tools techniques
can be seen as a direct discretization of this new discontinuous kinematic
equation on a generic edge based patch. In this context, polygonal ALE-
AMR (conformal or not) as well as edge swapping on simplices are special
cases. Moreover, all underlying local mesh modification must verify a nat-
ural locality hypothesis (CFL constraint) and all associated Discrete Ge-
ometric Conservation Laws (DGCL) are exactly solved without comput-
ing any polygons/polygons intersections. The classical remapping fluxing
scheme (swept or self intersection) has been extended to take into account
the topological transformation of the boundary between two adjacent cells
that generalize simplicial swapping to polygons.

keywords:
Discontinuous kinematic of mesh, ALE-AMR, arbitrary mesh reconnection,
(r,h)-adaptation, refinement/coarsening, boundary transformation between two
adjacent cells as generalized swapping, mesh sliding, DGCL.

1 Introduction

The aim of the paper is mainly to introduce an extension of Arbitrary-Lagrangian-
Eulerian (ALE) standard continuous speed frame on unstructured polygonal
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cells in a finite volume context. This techniques offer many advantages with
respect to purely Lagrangian or Eulerian computations by trying to get using
benefits of local smoothing or concentrate nodes on regions of interest (using “er-
ror estimates”). Nevertheless, it may sometimes happen that some cells need to
be removed or added, for meshing community, this is often called h-adaptation
(see [23]). Classical hypothesis on ALE -continuous velocity- only permits to
deal with r-adaptation (Cauchy-Lipschitz theorem) not with h-adaptation: re-
finement/coarsening and swapping are not allowed theoretically.
We are naturally led to consider discontinuous mesh motion, and then intro-
ducing Discontinuous-Arbitrary-Lagrangian-Eulerian framework (DiscALE). In
this context the mesh connectivity evolution may also be itself arbitrary. The
weaker hypothesis on spatial regularity of the mesh velocity enable topological
changes, hence previous works on ALE-AMR [4, 34] are embedded in this dis-
continuous concept. Moreover, this new kinematic is coupled with exact local
Discrete Geometrical Conservation Laws (DGCL) schemes. It turns out that
the system of equations can be discretized on arbitrary unstructured polygonal
and semi conformal cells. Semi-conformal polygons appear naturally as a rep-
resentation of this refinement/coarsening phase, in each case, this gives raise
to a different number of cells. This kind of adaptation may not be sufficient in
some cases because of high mesh distortion as noticed in [30][16]. To circumvent
this situation for general polygons, we have introduced a new concept of two
adjacent cell border transformation that generalizes diagonal swapping for sim-
plicial meshes [10, 7, 1, 16] moreover it appears that our reconnection approach
is more local than ReALE (ALE with reconnection) [30] where Voronoy mesh
is employed at each time step. We emphasize that a standard ALE scheme can
be recovered (specially Eulerian mode can be exactly recovered).
The paper is organized as follows, in the first chapter we introduce the formal
Discontinuous Arbitrary-Lagrangian-Eulerian framework, the prototype of in-
terest systems are compressible Gaz Dynamics Euler equations. In the second
step, we define some notations and introduce the central object that permits to
deal with local mesh h-adaptation. We show that this framework include the
ALE-AMR, refinement/coarsening, and may contain metric based approach. In
a third step, we propose a new natural extension of swapping techniques to
polygonal and/or semi conformal cells by a discretization of a local continuous
optimization problem involving two adjacent cells. Mesh sliding is also recov-
ered as a direct consequence. Besides this mesh modifications, two extensions
of local remapper devoted to DGCL are proposed. Finally, in a fourth chapter,
we show some numerical results.

2 Equations with Discontinuous Grid Velocity

In this section, we present the ALE framework based on the two dimensional Eu-
ler equations of gaz dynamics approximated on a domain moving at an arbitrary
velocity, allowing continuous and discontinuous regularity for grid velocity. We
briefly recall the basis fundamentals of ALE (smooth) framework, for a general
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introduction, we refer also to [19] [31], we mainly follow the approach of [18].

2.1 Continuous view point

Two classical description of non relativistic continuum mechanics are (see Fig-
ures 1 and 2):

• material configuration ΩX describing physical material particles. The La-
grangian approach consists in following a material particle in his motion,
especially a mesh node can always identify to the same material point.
By construction such an approach is not robust enough when dealing with
large shear and vortexes.

• spatial configuration Ωx describing spatial points. The Eulerian approach
consists in decoupling mesh nodes (fixed) from material particles adding
convective terms to pde description. Difficulties may appear in following
interfaces and free boundaries problems.

The Arbitrary Lagrangian-Eulerian view point is a generalization that encom-
passes both configurations. It plays the role of a reference configuration Ωξ

describing a new computational referential (which described mesh nodes after
discretization), the bibliography on such method applied to compressible fluids
flows is huge (see [19][24][14][17][32][18]).

We denote byΦ the diffeomorphic map (bijective and bi-continuous) between
initial and fixed Eulerian coordinates:

Φ : Ωs,X → Ωx, (1)

(s,X) → (t,x) = Φ(s,X).

The law of motion linking both material X and spatial x particles in time :

s = t, x = x(t,X). (2)

In ALE description, a third configuration is needed to take into account grid
points:

Ψ : Ωs′,ξ → Ωx, (3)

(s′, ξ) → (t,x) = Ψ(s′, ξ).

The law of motion linking both mesh ξ and spatial x particles in time :

s′ = t, x = x(t, ξ). (4)
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Figure 1: The three canonical configuration for description of (non-relativistic)
motion: Lagrangian, Eulerian, ALE (see Figure 2). Maps between initial coor-
dinate systems (Lagrangian), final (Eulerian) and referential (ALE) configura-
tions: we note by X (resp. x and ξ) the Lagrangian (resp. Eulerian and ALE)
coordinates.

Each velocities can be deduced for each law of motion:

• Material velocity associated to the map acting from material (Lagrangian)
onto spatial current (Eulerian) configuration (see (2)):

UL,E(t,X) =
∂

∂t
x(t,X)|X (5)

= UL,E(Φ−1(t,x)) := U(t,x). (6)

• ALE velocity associated to the map acting from grid onto spatial current
configuration (see (4)):

UA,E(t, ξ) =
∂

∂t
x(t, ξ)|ξ (7)

= UA,E(Ψ−1(t,x)) := V(t,x). (8)
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Dealing now with the transformation from material to reference frame (see Fig-
ure 1):

ϕ
−1 : Ωs,X → Ωξ, (9)

(s,X) → (t, ξ) = ϕ
−1(s,X).

In this case, the velocity of material particle in referential mesh is

UL,A(t,X) =
∂

∂t
ξ(t,X)|X (10)

= UL,A((ϕ ◦Ψ−1)(t,x)) := W(t,x). (11)

See for example [18], the relation between velocities (5)(7) (10) obtained by
differentiating the identity Φ = Ψ ◦ϕ−1 (see Figure 1) wrt (t,X) variable:

UL,E = UA,E +
∂x

∂ξ
.UL,A (12)

the difference between material and mesh velocity see (5)(7) is (in practice) an
important variable:

c := UL,E −UA,E =
∂x

∂ξ
.UL,A (13)

c := U−V =
∂x

∂ξ
.W (14)

Note that in the ambient space IRd, there are now three alternative to describe a
single scalar quantity: f(t,x), f∗(t, ξ), f∗∗(t,X) depending on the configuration:
spatial, referential or material domain. We give now a brief description of useful
relationship between time evolution of such quantities.

2.2 Time derivative of punctual values

We give some relation between different time derivatives:

1. Spatial f(t,x) and material f∗∗(t,X), thanks to (1), we have f∗∗(t,X) =
f(Φ(t,X)), so that by differentiating in (t,X) variable and using (5):

∂
∂t
f∗∗|X = ∂

∂t
f |x + ∂

∂t
x.∇xf(t,x) =

∂
∂t
f |x +U(t,x).∇xf(t,x)

∂
∂t
(JxXf∗∗)|X = JxX

(

∂
∂t
f |x +∇x.(f(t,x)U(t,x))

)

, JxX := det ∂x
∂X

.
(15)

First equation in (15) is nothing but the total time derivative (material)
( d
dt
(.) := ∂

∂t
(.)|X).

2. Referential f∗(t, ξ) and material f∗∗(t,X), thanks to (9), we have f∗∗(t,X) =
f∗(ϕ−1(t,X)), so that by differentiating in (t,X) variable and using (10)
(13) (14) :

∂
∂t
f∗∗|X = ∂

∂t
f∗|ξ +

∂
∂t
ξ.∇ξf

∗(t, ξ)
= ∂

∂t
f∗|ξ +W(t,x).∂x

∂ξ
∇xf(t,x)

= ∂
∂t
f∗|ξ + c(t,x).∇xf(t,x)

∂
∂t
(JξXf∗∗)|X = JξX

(

∂
∂t
f∗|ξ +∇x.(f(t,x)c(t,x))

)

, JξX := det ∂ξ
∂X

.

(16)
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3. Spatial f(t,x) and referential f∗(t, ξ), thanks to (3), we have f∗(t, ξ) =
f(Ψ(t, ξ)), so that by differentiating in (t, ξ) variable and using (7):

∂
∂t
f∗|ξ = ∂

∂t
f |x + ∂

∂t
ξ.∇xf(t,x) =

∂
∂t
f |x +V(t,x).∇xf(t,x)

∂
∂t
(Jxξf

∗)|ξ = Jxξ
(

∂
∂t
f |x +∇x.(f(t,x)V(t,x))

)

, Jxξ := det∂x
∂ξ

.
(17)

All ’∗’ indices are omitted thereafter.

t

Lagrangian (material) view point

t

Eulerian view point

t

ALE view point

t

discontinuous ALE  view point

Figure 2: Different descriptions Lagrange, Euler, ALE and associated kinematic
© Mesh node mesh motion
△ Material point particle motion

Duplication as well as merging of nodes in mesh update step can be seen as a
discretization of a discontinuous ALE kinematic framework (see Figure 4)

We resume the main idea of the paper (Figure 2): we make an analogy that
mesh generation result in discretization of computational domain and

mesh h-adaptation result in discretization of discontinuous ALE framework.

2.3 Time derivative of integral spatial quantity

In this case, we essentially recall the Reynolds transport theorem, the control
volume evolution for a spatial eulerian quantity f(t,x) over a cell whose bound-
ary points are moving with different velocity depending on description see Figure
3.

6



X

x

dS

ds

N

n

dL

dl

ξ

Lagrangian

Eulerian

Ale

dv

dV

η
ν
dσd

dς

Figure 3: Notation for geometrical information for different configurations

1. material speed (5):

d
dt

∫

CMAT (t)
f(t,x)dx =

∫

CMAT (t)
∂
∂t
f(t,x)dx+

∫

∂CMAT (t)
f(t,x)U(t,x).nds (18)

2. referential ALE speed (7):

∂
∂t
|ξ
∫

CALE(t)
f(t,x)dx =

∫

CALE(t)
∂
∂t
f(t,x)dx+

∫

∂CALE(t)
f(t,x)V(t,x).nds (19)

2.4 System of governing equations

Written over a frame moving with an arbitrary velocity V, integrals forms on
a generic cell C(t) of Euler system of gaz dynamics of density ρ, velocity U
and specific total energy E on spatial Eulerian configuration (also called ALE
updated form) (see [19][24][14][17][32][18]):

1) Conservation laws in integral forms in ALE configuration for t ∈ [t1, t2]:



































∂
∂t
|ξ
∫

C(t)
1dx−

∫

∂C(t)
V.nds = 0, (volume)

∂
∂t
|ξ
∫

C(t)
ρdx+

∫

∂C(t)
ρ(U−V).nds = 0, (mass)

∂
∂t
|ξ
∫

C(t)
ρUdx+

∫

∂C(t)
((ρU⊗ (U−V))n+ Pn)ds = 0, (momentum)

∂
∂t
|ξ
∫

C(t)
ρEdx+

∫

∂C(t)
(ρE(U−V) + PU).nds = 0, (total energy)

where pressure P (ρ, ǫ), ǫ internal energy,
ǫ = E − 1

2 |U|2 + Entropy.

(20)
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2) Kinematic equation for ALE configuration (see (7)(8)) in ponctual trajec-
tory form:

{

d
dt
x = V(t,x)

x(t = t1) = x∗ given
(21)

x∗ (seen as a label) is defined on boundary cell in practice because of flux
are defined on ∂C(t) in (20).

Remark 1 • The system (20) is expressed with Eulerian variable coordi-
nate. This also called update ALE form (U-ALE see [6] [5]).

• In the following, we adopt an operator splitting strategy. Practically, the
velocity V is decomposed in physical fluid speed and a (relative) grid speed:
V = U−VGrid, and the resulting system is solved by a splitting separat-
ing fluids and grid contributions (S-U-ALE see also [5]).

In a first purely hydrodynamical step V = U, only pressure appears in physical
thermodynamical flux. If we note by CMAT (t), the moving material cell associ-
ated to kinematic equation (5)(6), the evolution of individual point is given by
an approximate multi-dimensional Riemann solver associated to the hydrody-
namic part. In the context of centered finite volume scheme see [17, 12, 32, 13]:



















∂
∂t

∫

CMAT (t)
1dx−

∫

∂CMAT (t)
U.nds = 0,

∂
∂t

∫

CMAT (t)
ρdx = 0,

∂
∂t

∫

CMAT (t)
ρUdx+

∫

∂CMAT (t)
Pnds = 0,

∂
∂t

∫

CMAT (t)
ρEdx+

∫

∂CMAT (t)
PU.nds = 0.

(22)

We recall that (22) is the updated-Lagrangian form of Gaz Dynamics Euler
system, where the spatial quantities are written with Eulerian coordinates like
(20), it correspond to local differential operator at point (t,x) (x Eulerian coor-
dinate) see (15). The second part of the splitting V = −VGrid gives a system
of conservative advection equations. Here, the moving cell is noted CADV (t):



















∂
∂t

∫

CADV (t)
1dx+

∫

∂CADV (t)
1VGrid.nds = 0, ( GCL)

∂
∂t

∫

CADV (t)
ρdx+

∫

∂CADV (t)
ρVGrid.nds = 0,

∂
∂t

∫

CADV (t)
ρUdx+

∫

∂CADV (t)
(ρU)VGrid.nds = 0,

∂
∂t

∫

CADV (t)
ρEdx+

∫

∂CADV (t)
ρEVGrid.nds = 0.

(23)

As a consequence of the splitting, the kinematic equation (21) of Lagrangian
hydrodynamic part (22) in (20) is:

d

dt
x = U(t,x) (24)

while kinematic equation (21) for advection part (23) of (20) is :

d

dt
x = −VGrid(t,x). (25)
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In the following, we discuss about the smoothness of the arbitrary mesh veloc-
ity (25) while looking at exact discretisation of Geometrical Conservation Law
(GCL equation see (23)).

3 On existence of discontinuous mesh velocity

for the modeling of h-adaptation and recon-

nection

We emphasize that is not the purpose of this article to have a rigorous math-
ematical framework. However, it is striking similarities with concepts of func-
tional analysis: BV space to model fields with reasonable discontinuities and
Hodge decomposition for the effects related to the physics of rotation and trans-
lation. This section is essentially devoted to give some kind of justification of
a discontinuous frame to deal with some mesh adaptation with reconnection.
More precisely, we are interested only on the existence of such discontinuous
behavior.

For the definition of functional space see for example [11, 9, 36, 29, 3]

3.1 Functional space for transport equation

3.1.1 Definition and basics

We consider that Ω is an open, bounded, connected Lipschitz domain.

• C1
0 (Ω): the space of C1 function with compact support in Ω.

• BUC(Ω): the space of bounded and uniformly continuous functions on Ω.

• f is k-Lipschitz on Ω:

∀x,y ∈ Ω, ‖f(x)− f(y)‖ ≤ k‖x− y‖ (26)

• Lp(Ω): the Lebesgue space of function : dx is the Lebesgue measure,
f in Lp(Ω) if

a) 1 ≤ p < ∞

|f |p :=

(
∫

Ω

|f |pdx

)
1
p

< +∞ (27)

b) p = ∞

|f |∞ := inf
{

K ∈ IR+ ; |f | ≤ K a.e.
}

< +∞ (28)
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• W 1,p(Ω): the Sobolev space of function: f inW 1,p(Ω) if f inLp(Ω) and all
distributional partial derivatives ∂f

∂xi
are still in Lp(Ω).

W 1,∞(Ω) is the space of function f in L∞(Ω) such that ∃K > 0

|f(x)− f(y)| ≤ K|x− y|, a.e. x, y ∈ Ω. (29)

• BV (Ω): the space of function f in L1(Ω) such that:

TV (f) := sup

{
∫

Ω

f∇.gdx ; g in (C1
0 (Ω))

d; |g|∞ ≤ 1

}

< +∞ (30)

The analog to vectorial function : f in(BV (Ω))d is such that f in (L1(Ω))d

and:

TV (f) := sup







∑

j=1,d

∫

Ω

fj∇.gjdx ; gj in (C1
0 (Ω))

d; |gj|∞ ≤ 1







< +∞

(31)

3.1.2 Some properties / Characterization

For the modelization of discontinuous field, Sobolev space are too restrictive
(see e.g. [2]) because they do not accept indicator/Heaviside functions, Lp(Ω)
contains discontinuities that are too pathological, beside BV space contains
function having discontinuity along or across curves, moreover it posses many
practical useful characterizations.

• Let K be smooth compact, K ⊂ Ω, and χK the associated characteristic
function, then χK /∈ W 1,1(Ω) but χK inBV (Ω).

• f inBV (Ω), the distributional gradient Df is a finite measure, more pre-
cisely, Ambrosio see [2][3]:

– the distributional gradient of function f in (BV (Ω))d is decomposed
in regular and singular part:

Df = Daf +Dsf = ∇f + (Jf +Cf ) (32)

1. ∇f in(L1(Ω))d is the Radon-Nikodym derivative of f with respect
to Lebesgue measure dx.

2. Jf = (f+ − f−) ⊗ nfH
d−1
|Sf

the jump part, with Hd−1 the (d-1)-

dimensional Hausdorff measure, Sf is the complementary set of
Lebesgue points.

3. Cf the Cantor part of the measure.

SBV (Ω) space is defined by function f inBV (Ω) with Cf = ∅.

– the distributional divergence of a vectorial function f in (BV (Ω))d:

D.f =
∑

i

Da
i fi +DSf (33)
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3.2 From continuous to discontinuous kinematic speed

In this part, we give some formal concepts that permit to take into account some
mesh connectivity modification in advection part of ALE equations (22)(24)
(23)(25).

Figure 4: Modeling of duplication (left) and collapse (right) of nodes using
discontinuous kinematic velocity

We recall a general theorem of continuum mechanics:

Theorem 1 Cauchy-Lipschitz
If the speed VGrid(t,x) in (25) is (BUC([0, T ]; Ω))d (or Lipschitz), then ALE
framework (21)(20) (23) (25) discretize a homeomorphic map (bijective and
bi-continuous).

Remark 2 Lagrangian sliding for (22) is not permitted here because of tangen-
tial discontinuity in velocity (unless piecewise regularity is replaced by uniform
regularity).

Focusing on advection kinematic equation (25), a direct consequence of these
two properties are the two following drawbacks:

• Refinement by

vertex duplication (34)

is not allowed due to injection of the mapping.

• Coarsening by

vertices collapsing (35)

is not permitted due to continuity of the mapping.

Hence, the regularity of VGrid(t,x) impose that mesh connectivity can not
change. As a corollary, we have:

Remark 3 The mesh adaptation within the meaning of (34) (35) cannot be
modelized by continuous kinematic speed.
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Lemma 1
A necessary condition to obtain (34) (35) is that the kinematic speed must be
discontinuous in space.

Remark 4 We are only interested in the existence of such discontinuous vec-
tor field, we do not look for uniqueness. Indeed a strategy to build an optimal
“arbitrary discontinuous field” is unreachable, even the (arbitrary) continuous
framework is always an open problem. ALE strategy is still highly problem de-
pendent in practice.

We assume now that the velocity for kinematic advection part can be splitted
into a regular (continuous) and non regular (discontinuous) part :

VGrid := VC,Grid +VD,Grid. (36)

The discontinuous part VD,Grid of velocity will enable us to take into account
mesh connectivity modification (h-adaptation). The continuous part VC,Grid

only deal with mesh modifications keeping the same connectivity (r-adaptation).
We consider the equations (20) on an open bounded domain Ω ⊂ IRd with
Lipschitz boundary. In a finite volume context, we will ask to our extended
discontinuous kinematic equation to fulfill the following properties:

1. extension of existing ALE frame for mesh (r,h)-adaptation. The exist-
ing Lagrange and rezone/remap phase is naturally enhanced (see [27]) by
dynamical topological mesh modification:















• mesh refinement
• mesh coarsening
• generalization of edge swapping to polygons
• mesh sliding

(37)

2. mathematical link for local (r,h)-adaptation on arbitrary polygonal meshes,
the h-adaption part must deal with theses hypothesis:

• Locality
Find a local generic patch that fulfill any of (37) operation:

VD,Grid(t, .) in (L∞(Ω))d (38)

⇒ this CFL gives an automatic locality constraint on remeshing
tools.

• Physically relevant
We look at general flows consistency constituted by translational

and rotational effects:

VD,Grid(t, .) = VD,Grid,Tra(t, .) +VD,Grid,Rot(t, .) (39)

12



• Generic connectivity
Cell topology and mesh connectivity are unknown, and must be able
to adapt itself on local flows (CFL+convexity), here:

no -a priory- connectivity is imposed to the mesh. (40)

To adopt a different strategy see ReALE [30] for Voronoy kind of
polygonal meshes and a dual approach [10, 1, 7, 16] that impose
Delaunay simplicial meshes.

3. We must keep in mind that any new local (r,h)-adaptation must be done
under the constraint to exactly solve the DGCL (Discrete Geometric Con-
servation Laws, first equation of (23) integrated in time):

• exact DGCL : Let K be a cell or an union of cell Ci see Figure 11
and 12:

∫

Kn+1

1dx =

∫

Kn

1dx+

∫ tn+1

tn

(
∫

∂Kq

VGrid(t, x).n(t, x)ds

)

dt. (41)

• Robust and fast
No exact polygon/polygon mesh intersection (unless multi-material
interface is present).

In the following, we assume the hypothesis:

• Set regularity: Ω is an open bounded set with Lipschitz boundary.

• Functional space: VD,Grid(t, .) in L1(Ω) ∩ L∞(Ω) ∩ SBV (Ω)

• Growing condition:

∇.VD,Grid(t, .) in L∞(Ω) (42)

meaning that patch volume of K in (41) stay bounded at each time step.

Theorem 2 Hodge Decomposition
It exists a potential vector A and a potential scalar f such that:

VD,Grid = rotA−∇f. (43)

Remark 5 The vectorial decomposition (43) give a natural modeling of each
required properties in (39).

• rotA for rotational aspect of the flow.

• ∇f for translational effects.

As a corollary, it exists a potential vector and a matrix M ∈ IRd×d such that,
assume that VD,Grid(t, .) in L1(Ω) ∩ L∞(Ω) ∩ SBV (Ω)

13



Lemma 2
VD,Grid = rotA+∇.M (44)

Remark 6 the special structure of matrix M enable to take into account

• isotropic translational effects when M = f I (diagonal matrix for scalar
f) see (43).

• anisotropic translational effects when M is a full matrix or

(

a 0
0 b

)

, a 6= b (45)

• we recall that we are only interested on existence for (43)(44).

• the regularity of potentials functions in (43) depends on the boundary con-
dition for VD,Grid(t, .) because of the pde constrain:

pde −∆f = ∇.VD,Grid in Ω,
boundary condition f = ? on ∂Ω.

(46)

Where the (continuous) unspecified boundary condition (46) depends on the
(discretized) atomic mesh operation we consider (refinement/coarsening or swap-
ping, see paragraph (3.3.3)). In terms of PDE, the flow acting on VD,Grid corre-
sponds to a linear multi-dimensional advection with discontinuous coefficients.
These kind of equations have been studied:

Theorem 3 [8, 9, 36] If the velocity a(t,x) in L1
loc((0,+∞);L∞(IRd))d,

∂tu+ a(t,x).∇u = 0. (47)

is well posed if the sufficient condition OSLC (uniqueness of Filipov character-
istics).

(a(t,x)− a(t,y),x− y) ≤ α(t)|x− y|2, α(t) ≥ 0, α in L1(0,+∞). (48)

As a consequence compressives discontinuities are well posed while rarefaction
corresponds to non uniqueness.

Moreover, we recall (see [9]) that in the case of piecewise regular velocity across
a smooth hypersurface S, the directional jump depends upon hypothesis on a:

• Tangential to S, it corresponds to absolute continuity of divergence veloc-
ity (∇.a absolutely continuous cf [9]).

• Normal to S corresponds to OSLC (48).
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Remark 7 We recall that evolution by level-sets to change the co-dimension
of a manifold gives raise naturally to this kind of discontinuous PDE see [22, 21],
and Figure 5.

M N M N

u(t,.) a(t,.)

t=0

t>0

Figure 5: Evolving co-dimension of geometrical objects see [22, 21]. If u0 is a
distance to the origin (up Left) and the initial velocity field a (up right) then
solution of ut + a.∇u = 0 at time t is the distance to the edge defined by
[M(t), N(t)].

To summarize this part, we have introduce a discontinuous framework that
give a natural way to modelize (34) (35). Comparing to Cauchy-Lipschitz, our
assumption of weaker regularity on mesh velocity appears to be necessary to
take into account dynamical topological mesh change also called h-adaptation.

mesh refinement

CC 1 2

i jx ji
c

x
c

ij

Cell  C

  Compression Rarefaction

Cell   C  
1

Cell   C  
2

i j k

mesh derefinement

Figure 6: Mesh modification seen as discontinuous grid velocity. Refinement
(Left) corresponds to node colliding and transversal reconnection. Coarsening
(Right) corresponds to node duplication and opposite reconnection. At first
sight this corresponds exactly to the opposite situation of the Figure 4 but this
is due to the opposite sign in (25).
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3.3 Local mesh patch for discretization of discontinuous

kinematic and DGCL

3.3.1 Notations

r

C

r+1

Figure 7: Notation for cell item

• Cell items. Let N(C) the set of nodes belonging to polygonal cell C, we
note:

NbNode(C) = card(N(C)) the number of nodes in cell C. (49)

3.3.2 Description of semi conformal object

In [26], we have proposed a preliminary way to recover and extend the philosophy
for quadrangle cells toward arbitrary polygons of ALE-AMR (quad-tree based)
developed in [4, 34, 35, 28]. It turns out that in our framework, semi-conformity
of the mesh is very natural and is a central tool to describe anisotropic adap-
tation for non simplicial meshes, consider as an example the layer h-adaptation
in Figure 6 or in numerical section 4.
Description of local semi-conformity for polygonal cells:
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1 2

S

mmm
1 2 3

n1(S)
s s

n2(S)

master cell M

classical   case

n2(S)

n1(S)

Degenerate  case..

Figure 8: A welding line S of size two, the master cell M, master nodes
(n1(S),n2(S)), semi-slaves nodes (S1,S2) and cells (m1,m2,m3)

Definition 1 welding line
The topology of a welding line S is an union of straight edges, and it is one-sided
non conforming (semi conforming).

1. Two master nodes n1(S), n2(S), semi-slaves nodes Si.

2. The master cell M and semi slaves cells mi.

3. It’s level defined by : l(S)=min(l(n1(S)),l(n2(S))) (computed recursively).

4. Geometrical constraint: We accept it only if master/secondary cells are
convex between n1(S), n2(S) (locally flat is permitted) see Figure 8,
hence semi conformity is a relaxed form of non conformity (but contains
it).

5. A boolean flag that take into account this semi-conformal representation
(if not activated, the node are free and the mesh is locally polygonal and
unstructured).

The depth of the mesh M is then defined by: minS∈M l(S).
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Figure 9: The level of nodes and different imbricated welding lines

There are some practical aspects:

1. arbitrary nested levels are possible,

2. no octree point of view,

3. data structure is an hybrid representation of unstructured meshes and
semi-conformity (see Definition 1 above), this kind of storage is useful
when dealing with continuous rezoning and remapping.

• continuous rezoning must take into account semi-conformal aspect of
the mesh.

• remapping only deal with the (unstructured) polygonal topology of
the mesh, each edge (conformal or semi-slave) displacement induce
his own fluxed volume.

Definition 2 Sliding edge
A sliding edge (see Figure 10) is an edge that belongs to two different adjacent
welding lines see Definition 1 (see Figure 8):

S

S
a

b

1

1

b
b

2
1

n
n

n
1

a n
a

2

local  mesh
edge  sliding

Figure 10: A mesh edge sliding is an edge that simultaneously belongs to two
welding lines.
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In the design of an exact DGCL scheme for (41), we begin to define the
central patch P(e) constituted by an edge surrounded by its neighboring cells,
there are two situations depending on the nature of the edge:

1. Case of conformal edge (see Figure 11):

1
n (e)

n (e)
2

e

1
n (e)

n (e)
2

e

Figure 11: Generic patch P(e): cell-edge stencil for conformal edge. Left: all
cell containing at least a node of edge e. Right: only the two adjacent cells.
Solid lines are pieces of boundary cells for each neighborhood.

2. Case of semi conformal edge (see Figure 12):

1
n (e)

n (e)
2

e

1
n (e)

n (e)
2

e

Figure 12: Generic patch P(e): cell-edge stencil for semi-conformal edge. Left:
all cell containing at least a node extremity or semi-slave node of edge e. Right:
only the master and semi-slaves cells. Solid lines are pieces of boundary cells
for each neighborhood.

To solve our constraints (37) and fulfill locality hypothesis (38), we need to
define two sets for each conformal or semi-conformal edge:
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1. Pe : Conformal case (see Figure 11):

Pe(e) = {C; e ⊂ C} ,
PC(e) = {C; n1(e) or n2(e) ⊂ C} .

(50)

2. Pe : Semi-conformal case (see Figure 12):

Pe(e) = {C; e ⊂ C or ∃i,Si ⊂ C} ,
PC(e) = {C; n1(e) or n2(e) ⊂ C or ∃i,Si ⊂ C} .

(51)

3. We can define the exterior boundary of each of these neighborhoods P(e):

B(P) = {x ∈ e′/e′ ∈ P(e) is an exterior edge} (52)

B(P) corresponds for each set Pe(e) (two adjacent cells) and PC(e) (all
cells containing any of two endpoints) to bold lines in Figure 11 and 12.

In the following, to satisfy the locality hypothesis (38), we assume that:

Hypothesis 1 B(P) (solid lines in Figure 11 and 12) is union of edges (globally
Lipschitz curve) supposed to be fixed with respect to generic edge e.

Local patch volume preservation,
d

dt
|P(e)| = 0. (53)

3.3.3 Refinement/Coarsening/Swapping and Reconnection

This step is constituted by two stages:

1) add, remove or transform edges or vertices.

2) perform underlying reconnections to obtain locally new cell configuration.

We consider separately the refinement and coarsening:

Refinement :
A local cell by cell approach see also [34, 35]:
We collect nodal informations (geometrical and physical) that take into
account mesh regularity and flow singularities using local gradient or hes-
sian estimates.
Loop on nodes n:

1. Geometrical criteria around n: QGEOM
n

(

minC Area(C)
max(maxC Area(C),|minC Area(C)|)

)

2. Physical criteria around n: QPHY S
n (w(x) = 1 + ||∇2ρn||

2
2).

We tag a node as “refinement” if we have both:
{

QGEOM
n > QGEOM,ref and

QPHY S
n > QPHY S,ref and all local extrema of w(x).

(54)

Loop on cells C:
We define two numbers:
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1. Nbref (C) all the nodes marked as “refinement”.

2. Nbcons(C) all of the consecutive marked nodes.

Reconnection by local topology study (short range)

1. Anisotropic refinement (1D) : For the two consecutive nodes, if the
criteria values are nearly equal,

Figure 13: We link the previous mid edge with the next mid edge.

2. Quasi one-dimensional (uni-directional) refinement (Q1D) : For the
two consecutive nodes, if the criteria values are different,

Figure 14: We link the previous mid edge with the next mid edge and then mid
point of the new edge to mid edge of current edge.

3. Isotropic refinement : If we haveNbref (C) > NbNode(C)
2 , andNbref (C) >

4, NbNode(C) > 2

Figure 15: Each mid edge is linked to a center point of cell C.

In any situation above (13), (14) and (15) the computation of new con-
servative quantities is straightforward for a first order scheme, we just put
the coarse value on each of the new sub cells.

Coarsening :
Loop on nodes n:

1. Geometrical criteria around n: QGEOM
n

(

minC Area(C)
max(maxC Area(C),|minC Area(C)|)

)

.

2. Physical criteria around n: QPHY S
n ( w(x)=1+ ||∇2ρn||

2
2 ), and Local

bad CFL.
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We mark a node coarsened if we have both QGEOM
n < QGEOM,coarse and

QPHY S
n < QPHY S,coarse.

We have two possible choice:

1. IfQPHY S
n1 andQPHY S

n2 are nearly equal : Clear edges such their two
end points are tagged “coarse”: cell aggregation (Full edge Coarsen-
ing case).

�
�
�
�

��
��
��
��

(B)

(A)

edge cleaning

edge straighten

from (A) to (B)

Fixed Patch

C
1

CC 2

Figure 16: Edge deleting: In case of convex cell enforcement, a straighten edge
approach may be used.

The new centered conservatives values are obtained by:

(a) Compute the total volume and mass of fixed patch C = C1∪C2

, and density redistribution (cte) inside the new cell.

(b) Compute intersection between welding line and the canceled edge.

(c) Compute new fluxed quantities by self intersection.

(d) The degenerate welding lines (see Figure 8) are cleared (vertex
cleaning). Note that layer by layer coarsening is recovered if flow
possess symmetries.

2. If QPHY S
n1 and QPHY S

n2 are different, an edge to vertex transforma-
tion is performed:

��
��
��
��

�
�
�
�edge to vertex transformation

(codimension evolution)

Figure 17: Edge to vertex transformation
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Volume fluxing is obviously computed by classical local flux scheme
(endpoint displacement), it involves all the cells in the patch (in case
of any of initial triangular adjacent cell, his deletion is done at the
end of the remap).

Extended swapping :
In this part we introduce a discontinuous transformation of boundary of
two adjacent arbitrary cells. This is a natural extension of diagonal edge
swapping from simplices to polygonal cells.
Diagonal flipping (Figure 18) between two adjacent simplices is performed
to enhance some criteria:

– geometric: mesh quality measure (e.g. Delaunay criteria) of a cell.

– stability: local CFL, we recall that stability criteria for explicit finite
volume method is proportional to:

JCFL(C) :=
|C|

∑

e |e|
. (55)

Figure 18: Triangular swapping from old (black doted line) to new (red) con-
figurations

Proposition 1 Continuous Generic Extension of Edge Swapping
Consider a two adjacent cell patch (see (11) (12)), C1 and C2. Consider
a cell measure quality J(C) (e.g. the CFL measure (55) of a cell). We
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consider the problem of finding a new path e∗ linking two points of B(Pe)
solution of continuous optimization problem:

max
e′

min(J(C ′
1), J(C

′
2)) (56)

where C ′
i are virtual cells created by virtual movement of edge e′. For

polygonal cells, such a continuous problem is approximated by finite tests
on successive configurations (see Figure 19). Candidate path e′ is a straight
segment joining two points, each of them being either a (existing) node or
a mid-edge point.

.

.

.

.
.
.

.

.

C

C
2

1

e

e’

e’

e’

. . . .

e’

Figure 19: The problem of finding a new swapped edge. Begining with two
adjacent cells C1 and C2 owning the edge e. Virtual cells C ′

1, C
′
2 are created

by successively moving each endpoint of virtual edge e′ to a node or a mid
point edge of B(Pe). Initial edge e is (bold black) upside left versus final edge
downside right (bold red).
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We can distinguish two configurations:

– Definition 3 conformal swapping
If the two new points are existing nodes in (56), we call it conformal

swap.

Figure 20: Conformal swap : the new polygons are made up with only existing
nodes (rotating pair of vertices).

– Definition 4 semi-conformal swapping
If any of the two new points is a mid-edge point, we call it a semi-

conformal swap.

we include point on edges (mid-point edge in general)

Figure 21: Semi Conformal swap : the new polygons are made up either with
existing nodes nor mid-point edge.
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Figure 22: Example of polygonal swapping. Left: Initial mesh, Center: swapped
cell and intermediate configuration,, Right: Final mesh

Properties 1 Properties of extended swapping
For arbitrary number of extended swapping, the induces mesh modification
are that:

– the cell number is constant.

– the node and edge number may change.

Remark 8 – the underlying mathematical justification is based on tan-

gential discontinuous mesh velocity (on B(Pe)).

– local conservation is easily obtained by a slight extension of self-
intersection or basic area swept fluxing algorithm see Figure 23. For
first order scheme:

∗ Standard swept flux scheme [33]:

|CL|n+1Qn+1
L = |CL|nQn

L + δCQ∗,
|CR|n+1Qn+1

R = |CR|nQn
R − δCQ∗.

(57)

∗ Swept with self intersection flux scheme [25]:

|CL|n+1Qn+1
L = |CL|nQn

L + δC1Q
∗,1 + δC2Q

∗,2,
|CR|n+1Qn+1

R = |CR|nQn
R − δC1Q

∗,1 − δC2Q
∗,2.

(58)

In our case, each algebraic area δC in (57) (resp. δC1, δC2 in (58))
involve an arbitrary polygonal region that is not necessarily a quadri-
later (resp. two simplices). We also recall that δC1 δC2 < 0 and the
relationship between (57) and (58) : δC = δC1 + δC2.

26



– In this case, the local patch volume preservation constrain: d
dt
|P(e)| =

0, (see 53) with P(e) = CR ∪ CL

|CL|n+1 + |CR|n+1 = |CL|n + |CR|n (59)

e

e

C
L

C
R

e

e
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Figure 23: Extended self-intersection (for extended swapping): we use the remap
inside the union of two adjacent cells, it is computed by the eventual intersection
point appearing during the extended swap see Figure 19, it defines two (and only
two) subzonal polygonal regions whose volume can be computed exactly (if we
do not consider intersection we recover an extended standard swept flux).

Moreover, for polygons the extended self-intersection is exact for the
remapping phase if we use the self intersection flux scheme (58).

– Sliding mesh edge (see Definition 2) may appear naturally when swap-
ping occured:
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local sliding

Figure 24: An extended polygonal swapping edge has a sided effect to eventually
create a sliding edge.

We summarize some properties of the Discontinuous ALE framework:

Properties 2 1. V D,Grid(t, .) in L∞(IRd) ⇒ CFL gives an automatic
constraint on remeshing tools (generic local patch of surrounded cells for
an edge see Figure 11, 12).

2. Arbitrary (Convex) polygonal cells.

3. No exact polygon/polygon intersection is needed for remapping.

4. Adding/removing and reconnection of nodes is obtained with a local study.

5. This is a finite volume approach, local conservation is obtained even if
discontinuous mesh velocity is involved.

Remark 9 For h-adaptation, an anisotropic metric based approach [10, 1, 16]
can be used. All eligible edge e must verify |e|G ≃ 1 where G(x) is a strictly
positive definite matrix field, let x1 = x(n1(e)) and x2 = x(n2(e)):

|e|G = inf
γ(q);γ(0)=x1,γ(1)=x2

∫ 1

0

√

γ̇(q)G(γ(q))γ̇(q) dq. (60)

A crude approximation for γ may be γ(q) = γ(0)+ q(γ(1)− γ(0)). We advocate
this metric formalism in a future work to control number of cells using edge
length.

3.3.4 A Strategy for finite volume Discontinuous ALE

In a practical point of view, the finite volume splitting for discontinuous ALE
take the following form:
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(A) Lagrangian step with a centered scheme and all nodes are degree of
freedom and we do not consider hanging nodes here, straightening is done
if semi-conformity looses geometrical constraint. Approach using special
treatment for this exceptional points (see [15]) could also be used.

(B) Adaptation using refinement/coarsening/extended swapping study (clear
and/or add cells) in a semi conformal way. Generalized polygonal edge
swapping is performed, only convexity for new polygonal cells is imposed
if needed.

• B1 refinement and coarse to sub-cell remap (see paragraph 3.3.3 case
Refinement).

• B2 coarsening and remap (see paragraph 3.3.3 case Coarsening).

• B3 extended swapping and remap by extension of self intersection
flux scheme (see paragraph 3.3.3 case Extended swapping).

(C) Rezoning (caution when semi-conformity see paragraph 3.3.5 below)
and Remapping (nothing is changed: polygonal mesh notion with self-
intersection flux is used), no polygon/polygon cell intersection is needed
and no dual mesh for momentum remapping is needed.

(D) Step B3 is done if rezoning step (C) is not sufficient.

3.3.5 Continuous ALE step with semi conformal cells

(a) Definition of semi conformal short/medium range :

C

short range

short range

medium range

medium range

n

S

S
i

k

Sm

long range

Figure 25: Useful extension of short/medium range [25] for semi-conformal
meshes permit to deal with nodal mesh quality control for rezoning.

(b) Sort the nodes with respect to their level : (a master node for an
edge can be a slave node of another edge).

(c) Semi-slaves nodes are not taken into account for nodal mesh
quality.

29



(d) Welding lines are straighten when Geometrical constraint is not re-
spected (at each iteration).

We emphasize that the full approach of [25] can be generalized to semi-conformal
polygons.

4 Numerical examples

In the following numerical simulation, we perform the computation with the
following :

1. Lagrange : if nothing is said, we use the first order version of GLACE
[17, 12] or EUCCLHYD [32].

2. ALE : Rezoning applied with barycentric smoother (eventually with anisotropic
weights) coupled with Escobar and al [20] with the approach of [25]. The
remapping step is done with self intersection flux.

4.1 Sod shock tube

We consider the classical Sod shock tube problem on a cartesian 50× 50 initial
cartesian mesh.
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Figure 26: Sod shock tube problem, (above) mesh and (below) density at final
time. Left: Pure Lagrangian (mesh and density), Right: Lagrangian with h-
adaptation (layer by layer)

4.2 Sedov

In this case, we solve the Sedov problem. The initial condition is given by
(ρ0, P 0,U0) = (1, 10−6,0) and γ = 1.4. The pressure in cell C containing the
origin is such that, see [31],

Pc = (γ − 1)ρC
ε0

|C|
(61)
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where ε0 = 0.244816 so that the solution consists of a diverging shock whose
front is located at radius R=1 at time t=1. We consider Lagrange with ALE
barycentric smoothing on 51×51 initial cartesian mesh. At some times we begin
our DiscALE adaptation (without swapping) see Figure 27.

−1.3×10−17 1.0×100
0

1

0.229 0.3 0.4 0.4622
0.218

0.3

0.4

0.4666

Figure 27: Sedov Test Case. Left standard ALE enhanced with DiscALE, Right
Zoom on different type of adapted cells : isotropic (blue), quasi-anisotropic
(magenta), anisotropic (orange).
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Tri-materials Lag+Adaptation+ALE. Let an initial regular cartesian grid,
with three perfect gases (with different γ) at rest in three different zones see
Figure below:
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ρ=1
P=0.1

ρ=1

(0,0) (7,0)(1,0)
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Figure 28: Tri-Materials test case. Up: different type of local cell by cell re-
finement (yellow mesh is the one before refinement) at time t=2.5, middle: the
computational adapted mesh at time t=3, and down : density at time t=3.
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Figure 29: Density and mesh at time t=10. Extended swapping on polygons
(see (56) in Figure 19) has been enabled. Note that the initial cartesian mesh
possess polygons with more than four nodes. Connectivity is truly arbitrary
throughout the calculation and is not known in advance.
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5 Conclusion and prospects

We have presented a formulation that encompass existing ALE framework (La-
grange, rezoning and remap) on arbitrary conformal or semi conformal polygonal
cells. A discontinuous mesh velocity is introduced to take into account mesh
refinement, coarsening or extended swapping, a consequence is the modeling
of h-adaptation in numerical simulations. The discontinuous frame permits to
deal with node duplication or collapsing. For a computational point of view, we
resume properties of our approach:

(1) Centered finite volume Lagrangian hydrodynamics schemes (GLACE, EU-
CCLHYD, etc), arbitrary polygonal cells can be handled, second order
space/time scheme (with double limiter on specific variable).

(2) For refinement, the local AMR-ALE is recover as a special case (Discon-
tinuous ALE with short range).

(3) Coarsening by cleaning edges is generic, edge to node transformation is
permitted.

(4) Edge swapping has been extended to polygonal/non conformal cells (sliding
edge may appear).

(5) Layer refinement and coarsening are just a consequence of the symmetry
of the flow.

(6) No exact mesh intersection is needed, only local remapper (swept area or
self intersection at most) is used (at least in case of single material).

It appears that h-adaptation with reconnection can be seen as a discretization of
(splitted) ALE version with discontinuous kinematic field (see previous prelim-
inary works [26, 27]). Future works will include sharper coupling with existing
approach (control of edge length with a prescribed metric, nodal mesh quality
with physical weights). Extension to conical meshes is theoretically possible as
well as multi-materials ALE.

The author is grateful to J.F. Babadjan, V. Millot, F. James for fruitful
discussions on the discontinuous mathematical framework.
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