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A Discontinuous ALE formulation (DiscALE) for the modeling of polygonal mesh (r,h)-adaptation in finite volume context
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We introduce a finite volume Discontinuous Arbitrary Lagrangian-Eulerian (DiscALE) alternative to the computation of compressible fluid dynamics. This new proposed framework take naturally into account dynamical refinement/coarsening/reconnection on a direct discretization of a new non-smooth kinematic mesh contribution. Two practical interesting properties of the method are -1-to deal with arbitrary polygonal mesh (initial or at each time step) and -2-to recover exactly Lagrangian, Eulerian or classical continuous ALE mode by omitting this non-smooth velocity. Moreover, it also appears that many meshing tools techniques can be seen as a direct discretization of this new discontinuous kinematic equation on a generic edge based patch. In this context, polygonal ALE-AMR (conformal or not) as well as edge swapping on simplices are special cases. Moreover, all underlying local mesh modification must verify a natural locality hypothesis (CFL constraint) and all associated Discrete Geometric Conservation Laws (DGCL) are exactly solved without computing any polygons/polygons intersections. The classical remapping fluxing scheme (swept or self intersection) has been extended to take into account the topological transformation of the boundary between two adjacent cells that generalize simplicial swapping to polygons.

Introduction

The aim of the paper is mainly to introduce an extension of Arbitrary-Lagrangian-Eulerian (ALE) standard continuous speed frame on unstructured polygonal 1 cells in a finite volume context. This techniques offer many advantages with respect to purely Lagrangian or Eulerian computations by trying to get using benefits of local smoothing or concentrate nodes on regions of interest (using "error estimates"). Nevertheless, it may sometimes happen that some cells need to be removed or added, for meshing community, this is often called h-adaptation (see [START_REF] Frey | Mesh generation. Application to finite elements[END_REF]). Classical hypothesis on ALE -continuous velocity-only permits to deal with r-adaptation (Cauchy-Lipschitz theorem) not with h-adaptation: refinement/coarsening and swapping are not allowed theoretically. We are naturally led to consider discontinuous mesh motion, and then introducing Discontinuous-Arbitrary-Lagrangian-Eulerian framework (DiscALE). In this context the mesh connectivity evolution may also be itself arbitrary. The weaker hypothesis on spatial regularity of the mesh velocity enable topological changes, hence previous works on ALE-AMR [START_REF] Anderson | An arbitrary lagrangianeulerian method with adaptive mesh refinement for the solution of the euler equations[END_REF][START_REF] Morrell | A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations[END_REF] are embedded in this discontinuous concept. Moreover, this new kinematic is coupled with exact local Discrete Geometrical Conservation Laws (DGCL) schemes. It turns out that the system of equations can be discretized on arbitrary unstructured polygonal and semi conformal cells. Semi-conformal polygons appear naturally as a representation of this refinement/coarsening phase, in each case, this gives raise to a different number of cells. This kind of adaptation may not be sufficient in some cases because of high mesh distortion as noticed in [START_REF] Loubère | Reale: A reconnection-based arbitrary-lagrangian-eulerian method[END_REF] [START_REF] Pino | Metric-based mesh adaptation for 2d lagrangian compressible flows[END_REF]. To circumvent this situation for general polygons, we have introduced a new concept of two adjacent cell border transformation that generalizes diagonal swapping for simplicial meshes [START_REF] Bourouchaki | Delaunay mesh generation governed by metric specifications[END_REF][START_REF] Bernard | Lagrangian method enhanced with edge swapping for the free fall and contact problem[END_REF][START_REF] Alauzet | Anisotropic mesh adaptation for cfd computations[END_REF][START_REF] Pino | Metric-based mesh adaptation for 2d lagrangian compressible flows[END_REF]] moreover it appears that our reconnection approach is more local than ReALE (ALE with reconnection) [START_REF] Loubère | Reale: A reconnection-based arbitrary-lagrangian-eulerian method[END_REF] where Voronoy mesh is employed at each time step. We emphasize that a standard ALE scheme can be recovered (specially Eulerian mode can be exactly recovered). The paper is organized as follows, in the first chapter we introduce the formal Discontinuous Arbitrary-Lagrangian-Eulerian framework, the prototype of interest systems are compressible Gaz Dynamics Euler equations. In the second step, we define some notations and introduce the central object that permits to deal with local mesh h-adaptation. We show that this framework include the ALE-AMR, refinement/coarsening, and may contain metric based approach. In a third step, we propose a new natural extension of swapping techniques to polygonal and/or semi conformal cells by a discretization of a local continuous optimization problem involving two adjacent cells. Mesh sliding is also recovered as a direct consequence. Besides this mesh modifications, two extensions of local remapper devoted to DGCL are proposed. Finally, in a fourth chapter, we show some numerical results.

Equations with Discontinuous Grid Velocity

In this section, we present the ALE framework based on the two dimensional Euler equations of gaz dynamics approximated on a domain moving at an arbitrary velocity, allowing continuous and discontinuous regularity for grid velocity. We briefly recall the basis fundamentals of ALE (smooth) framework, for a general introduction, we refer also to [START_REF] Duvaut | Mécanique des milieux continus[END_REF] [START_REF] Maire | Contribution à la modélisation numérique de la Fusion par Confinement Inertiel[END_REF], we mainly follow the approach of [START_REF] Donea | Arbitrary Lagrangian-Eulerian Methods[END_REF]. • material configuration Ω X describing physical material particles. The Lagrangian approach consists in following a material particle in his motion, especially a mesh node can always identify to the same material point. By construction such an approach is not robust enough when dealing with large shear and vortexes.

Continuous view point

• spatial configuration Ω x describing spatial points. The Eulerian approach consists in decoupling mesh nodes (fixed) from material particles adding convective terms to pde description. Difficulties may appear in following interfaces and free boundaries problems.

The Arbitrary Lagrangian-Eulerian view point is a generalization that encompasses both configurations. It plays the role of a reference configuration Ω ξ describing a new computational referential (which described mesh nodes after discretization), the bibliography on such method applied to compressible fluids flows is huge (see [START_REF] Duvaut | Mécanique des milieux continus[END_REF][24][14] [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF][32] [START_REF] Donea | Arbitrary Lagrangian-Eulerian Methods[END_REF]).

We denote by Φ the diffeomorphic map (bijective and bi-continuous) between initial and fixed Eulerian coordinates:

Φ : Ω s,X → Ω x , (1) 
(s, X) → (t, x) = Φ(s, X).
The law of motion linking both material X and spatial x particles in time :

s = t, x = x(t, X). (2) 
In ALE description, a third configuration is needed to take into account grid points:

Ψ : Ω s ′ ,ξ → Ω x , (3) 
(s ′ , ξ) → (t, x) = Ψ(s ′ , ξ).
The law of motion linking both mesh ξ and spatial x particles in time :

s ′ = t, x = x(t, ξ). (4) 
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The three canonical configuration for description of (non-relativistic) motion: Lagrangian, Eulerian, ALE (see Figure 2). Maps between initial coordinate systems (Lagrangian), final (Eulerian) and referential (ALE) configurations: we note by X (resp. x and ξ) the Lagrangian (resp. Eulerian and ALE) coordinates.

Each velocities can be deduced for each law of motion:

• Material velocity associated to the map acting from material (Lagrangian) onto spatial current (Eulerian) configuration (see [START_REF] Ambrosio | Transport equation and cauchy problem for bv vector fields[END_REF]):

U L,E (t, X) = ∂ ∂t x(t, X)| X (5) = U L,E (Φ -1 (t, x)) := U(t, x). (6) 
• ALE velocity associated to the map acting from grid onto spatial current configuration (see ( 4)):

U A,E (t, ξ) = ∂ ∂t x(t, ξ)| ξ (7) = U A,E (Ψ -1 (t, x)) := V(t, x). (8) 
Dealing now with the transformation from material to reference frame (see Figure 1):

ϕ -1 : Ω s,X → Ω ξ , (9) 
(s, X) → (t, ξ) = ϕ -1 (s, X).

In this case, the velocity of material particle in referential mesh is

U L,A (t, X) = ∂ ∂t ξ(t, X)| X (10) = U L,A ((ϕ • Ψ -1 )(t, x)) := W(t, x). (11) 
See for example [START_REF] Donea | Arbitrary Lagrangian-Eulerian Methods[END_REF], the relation between velocities (5)(7) [START_REF] Bourouchaki | Delaunay mesh generation governed by metric specifications[END_REF] obtained by differentiating the identity Φ = Ψ • ϕ -1 (see Figure 1) wrt (t, X) variable:

U L,E = U A,E + ∂x ∂ξ .U L,A (12) 
the difference between material and mesh velocity see (5)( 7) is (in practice) an important variable:

c := U L,E -U A,E = ∂x ∂ξ .U L,A (13) 
c := U -V = ∂x ∂ξ .W (14) 
Note that in the ambient space IR d , there are now three alternative to describe a single scalar quantity: f (t, x), f * (t, ξ), f * * (t, X) depending on the configuration: spatial, referential or material domain. We give now a brief description of useful relationship between time evolution of such quantities.

Time derivative of punctual values

We give some relation between different time derivatives:

1. Spatial f (t, x) and material f * * (t, X), thanks to (1), we have f * * (t, X) = f (Φ(t, X)), so that by differentiating in (t, X) variable and using (5):

∂ ∂t f * * | X = ∂ ∂t f | x + ∂ ∂t x.∇ x f (t, x) = ∂ ∂t f | x + U(t, x).∇ x f (t, x) ∂ ∂t (J xX f * * )| X = J xX ∂ ∂t f | x + ∇ x .(f (t, x)U(t, x)) , J xX := det ∂x ∂X . (15) 
First equation in ( 15) is nothing but the total time derivative (material) ( d dt (.) := ∂ ∂t (.)| X ). 2. Referential f * (t, ξ) and material f * * (t, X), thanks to (9), we have f * * (t, X) = f * (ϕ -1 (t, X)), so that by differentiating in (t, X) variable and using (10) (13) (14) :

∂ ∂t f * * | X = ∂ ∂t f * | ξ + ∂ ∂t ξ.∇ ξ f * (t, ξ) = ∂ ∂t f * | ξ + W(t, x). ∂x ∂ξ ∇ x f (t, x) = ∂ ∂t f * | ξ + c(t, x).∇ x f (t, x) ∂ ∂t (J ξX f * * )| X = J ξX ∂ ∂t f * | ξ + ∇ x .(f (t, x)c(t, x)) , J ξX := det ∂ξ ∂X . (16) 
3. Spatial f (t, x) and referential f * (t, ξ), thanks to (3), we have f * (t, ξ) = f (Ψ(t, ξ)), so that by differentiating in (t, ξ) variable and using [START_REF] Bernard | Lagrangian method enhanced with edge swapping for the free fall and contact problem[END_REF]: particle motion Duplication as well as merging of nodes in mesh update step can be seen as a discretization of a discontinuous ALE kinematic framework (see Figure 4)

∂ ∂t f * | ξ = ∂ ∂t f | x + ∂ ∂t ξ.∇ x f (t, x) = ∂ ∂t f | x + V(t, x).∇ x f (t, x) ∂ ∂t (J xξ f * )| ξ = J xξ ∂ ∂t f | x + ∇ x .(f (t, x)V(t, x)) , J xξ := det ∂x ∂ξ . (17) 
We resume the main idea of the paper (Figure 2): we make an analogy that mesh generation result in discretization of computational domain and mesh h-adaptation result in discretization of discontinuous ALE framework.

Time derivative of integral spatial quantity

In this case, we essentially recall the Reynolds transport theorem, the control volume evolution for a spatial eulerian quantity f (t, x) over a cell whose boundary points are moving with different velocity depending on description see Figure 3. 

d dt C M AT (t) f (t, x)dx = C M AT (t) ∂ ∂t f (t, x)dx + ∂C M AT (t) f (t, x)U(t, x).nds (18)
2. referential ALE speed [START_REF] Bernard | Lagrangian method enhanced with edge swapping for the free fall and contact problem[END_REF]:

∂ ∂t | ξ C ALE (t) f (t, x)dx = C ALE (t) ∂ ∂t f (t, x)dx + ∂C ALE (t) f (t, x)V(t, x).nds (19)

System of governing equations

Written over a frame moving with an arbitrary velocity V, integrals forms on a generic cell C(t) of Euler system of gaz dynamics of density ρ, velocity U and specific total energy E on spatial Eulerian configuration (also called ALE updated form) (see [START_REF] Duvaut | Mécanique des milieux continus[END_REF] 

                 ∂ ∂t | ξ C(t) 1dx -∂C(t) V.nds = 0, (volume) ∂ ∂t | ξ C(t) ρdx + ∂C(t) ρ(U -V).nds = 0, (mass) ∂ ∂t | ξ C(t) ρUdx + ∂C(t) ((ρU ⊗ (U -V))n + P n)ds = 0, (momentum) ∂ ∂t | ξ C(t) ρEdx + ∂C(t) (ρE(U -V) + P U)
.nds = 0, (total energy) where pressure P (ρ, ǫ), ǫ internal energy,

ǫ = E -1 2 |U| 2 + Entropy. (20) 
2) Kinematic equation for ALE configuration (see [START_REF] Bernard | Lagrangian method enhanced with edge swapping for the free fall and contact problem[END_REF] [START_REF] Bouchut | One-dimensional transport equations with discontinuous coefficients[END_REF]) in ponctual trajectory form:

d dt x = V(t, x) x(t = t 1 ) = x * given (21) 
x * (seen as a label) is defined on boundary cell in practice because of flux are defined on ∂C(t) in [START_REF] Escobar | Simultaneous untangling and smoothing of tetrahedral meshes[END_REF].

Remark 1

• The system (20) is expressed with Eulerian variable coordinate. This also called update ALE form (U-ALE see [START_REF] Baaijems | An u-ale formulation of 3-d unsteady viscoelastic flow[END_REF] [START_REF] Askes | An ale formulation based on spatial and material settings of continuum mechanics. part 2: Classification and applications[END_REF]).

• In the following, we adopt an operator splitting strategy. Practically, the velocity V is decomposed in physical fluid speed and a (relative) grid speed: V = U -V Grid , and the resulting system is solved by a splitting separating fluids and grid contributions (S-U-ALE see also [START_REF] Askes | An ale formulation based on spatial and material settings of continuum mechanics. part 2: Classification and applications[END_REF]).

In a first purely hydrodynamical step V = U, only pressure appears in physical thermodynamical flux. If we note by C M AT (t), the moving material cell associated to kinematic equation ( 5)( 6), the evolution of individual point is given by an approximate multi-dimensional Riemann solver associated to the hydrodynamic part. In the context of centered finite volume scheme see [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF][START_REF] Carre | A cell-centered lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Maire | A cell-centered lagrangian scheme for two-dimensional compressible flow problems[END_REF][START_REF] Cheng | A third order conservative lagrangian type scheme on curvilinear meshes for the compressible euler equations[END_REF]:

         ∂ ∂t C M AT (t) 1dx -∂C M AT (t) U.nds = 0, ∂ ∂t C M AT (t) ρdx = 0, ∂ ∂t C M AT (t) ρUdx + ∂C M AT (t) P nds = 0, ∂ ∂t C M AT (t) ρEdx + ∂C M AT (t) P U.nds = 0. ( 22 
)
We recall that ( 22) is the updated-Lagrangian form of Gaz Dynamics Euler system, where the spatial quantities are written with Eulerian coordinates like [START_REF] Escobar | Simultaneous untangling and smoothing of tetrahedral meshes[END_REF], it correspond to local differential operator at point (t,x) (x Eulerian coordinate) see [START_REF] Claisse | A new exceptional points method with application to cell-centered lagrangian schemes and curved meshes[END_REF]. The second part of the splitting V = -V Grid gives a system of conservative advection equations. Here, the moving cell is noted C ADV (t):

         ∂ ∂t C ADV (t) 1dx + ∂C ADV (t) 1V Grid .nds = 0, ( GCL) ∂ ∂t C ADV (t) ρdx + ∂C ADV (t) ρV Grid .nds = 0, ∂ ∂t C ADV (t) ρUdx + ∂C ADV (t) (ρU)V Grid .nds = 0, ∂ ∂t C ADV (t) ρEdx + ∂C ADV (t) ρEV Grid .nds = 0. ( 23 
)
As a consequence of the splitting, the kinematic equation ( 21) of Lagrangian hydrodynamic part [START_REF] Faugeras | Using the vector distance functions to evolve manifolds of arbitrary codimension[END_REF] in ( 20) is:

d dt x = U(t, x) (24) 
while kinematic equation ( 21) for advection part ( 23) of ( 20) is :

d dt x = -V Grid (t, x). (25) 
In the following, we discuss about the smoothness of the arbitrary mesh velocity ( 25) while looking at exact discretisation of Geometrical Conservation Law (GCL equation see ( 23)).

On existence of discontinuous mesh velocity for the modeling of h-adaptation and reconnection

We emphasize that is not the purpose of this article to have a rigorous mathematical framework. However, it is striking similarities with concepts of functional analysis: BV space to model fields with reasonable discontinuities and Hodge decomposition for the effects related to the physics of rotation and translation. This section is essentially devoted to give some kind of justification of a discontinuous frame to deal with some mesh adaptation with reconnection.

More precisely, we are interested only on the existence of such discontinuous behavior.

For the definition of functional space see for example [START_REF] Brezis | Analyse Fonctionnelle[END_REF][START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided lipschitz coefficients[END_REF][START_REF] Rascle | Measure solutions to the linear multidimensional transport equation with non smooth coefficients[END_REF][START_REF] Lions | Ordinary differential equations, transport theory and sobolev spaces[END_REF][START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] 3.1 Functional space for transport equation

Definition and basics

We consider that Ω is an open, bounded, connected Lipschitz domain.

• C 1 0 (Ω): the space of C 1 function with compact support in Ω.

• BU C(Ω): the space of bounded and uniformly continuous functions on Ω.

• f is k-Lipschitz on Ω: ∀x, y ∈ Ω, f (x) -f (y) ≤ k x -y (26) 
• L p (Ω): the Lebesgue space of function : dx is the Lebesgue measure,

f in L p (Ω) if a) 1 ≤ p < ∞ |f | p := Ω |f | p dx 1 p < +∞ (27) b) p = ∞ |f | ∞ := inf K ∈ IR + ; |f | ≤ K a.e. < +∞ (28) 
• W 1,p (Ω): the Sobolev space of function:

f in W 1,p (Ω) if f in L p (Ω) and all distributional partial derivatives ∂f ∂xi are still in L p (Ω). W 1,∞ (Ω) is the space of function f in L ∞ (Ω) such that ∃K > 0 |f (x) -f (y)| ≤ K|x -y|, a.e. x, y ∈ Ω. ( 29 
)
• BV (Ω): the space of function f in L 1 (Ω) such that:

T V (f ) := sup Ω f ∇.gdx ; g in (C 1 0 (Ω)) d ; |g| ∞ ≤ 1 < +∞ ( 30 
)
The analog to vectorial function :

f in(BV (Ω)) d is such that f in (L 1 (Ω)) d and: T V (f ) := sup    j=1,d Ω f j ∇.g j dx ; g j in (C 1 0 (Ω)) d ; |g j | ∞ ≤ 1    < +∞ (31)

Some properties / Characterization

For the modelization of discontinuous field, Sobolev space are too restrictive (see e.g. [START_REF] Ambrosio | Transport equation and cauchy problem for bv vector fields[END_REF]) because they do not accept indicator/Heaviside functions, L p (Ω) contains discontinuities that are too pathological, beside BV space contains function having discontinuity along or across curves, moreover it posses many practical useful characterizations.

• Let K be smooth compact, K ⊂ Ω, and χ K the associated characteristic function, then χ K / ∈ W 1,1 (Ω) but χ K in BV (Ω).

• f in BV (Ω), the distributional gradient Df is a finite measure, more precisely, Ambrosio see [START_REF] Ambrosio | Transport equation and cauchy problem for bv vector fields[END_REF][3]:

-the distributional gradient of function f in (BV (Ω)) d is decomposed in regular and singular part:

Df = D a f + D s f = ∇f + (J f + C f ) (32) 1. ∇f in(L 1 (Ω)) d is the Radon-Nikodym derivative of f with respect to Lebesgue measure dx. 2. J f = (f + -f -) ⊗ n f H d-1 |S f the jump part, with H d-1 the (d-1)- dimensional Hausdorff measure, S f is the complementary set of Lebesgue points. 3. C f the Cantor part of the measure. SBV (Ω) space is defined by function f in BV (Ω) with C f = ∅. -the distributional divergence of a vectorial function f in (BV (Ω)) d : D.f = i D a i f i + D S f (33) 

From continuous to discontinuous kinematic speed

In this part, we give some formal concepts that permit to take into account some mesh connectivity modification in advection part of ALE equations ( 22)(24) (23) [START_REF] Hoch | An arbitrary lagrangian-eulerian strategy to solve compressible fluid flows[END_REF]. We recall a general theorem of continuum mechanics: 25) discretize a homeomorphic map (bijective and bi-continuous).

Theorem 1 Cauchy-Lipschitz If the speed V Grid (t, x) in (25) is (BU C([0, T ]; Ω)) d (or Lipschitz), then ALE framework (21)(20) (23) (
Remark 2 Lagrangian sliding for ( 22) is not permitted here because of tangential discontinuity in velocity (unless piecewise regularity is replaced by uniform regularity).

Focusing on advection kinematic equation ( 25), a direct consequence of these two properties are the two following drawbacks:

• Refinement by vertex duplication [START_REF] Morrell | A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations[END_REF] is not allowed due to injection of the mapping.

• Coarsening by vertices collapsing [START_REF] Morrell | A cell by cell anisotropic adaptive mesh ale method[END_REF] is not permitted due to continuity of the mapping.

Hence, the regularity of V Grid (t, x) impose that mesh connectivity can not change. As a corollary, we have:

Remark 3
The mesh adaptation within the meaning of (34) (35) cannot be modelized by continuous kinematic speed.

Lemma 1

A necessary condition to obtain (34) [START_REF] Morrell | A cell by cell anisotropic adaptive mesh ale method[END_REF] is that the kinematic speed must be discontinuous in space.

Remark 4

We are only interested in the existence of such discontinuous vector field, we do not look for uniqueness. Indeed a strategy to build an optimal "arbitrary discontinuous field" is unreachable, even the (arbitrary) continuous framework is always an open problem. ALE strategy is still highly problem dependent in practice.

We assume now that the velocity for kinematic advection part can be splitted into a regular (continuous) and non regular (discontinuous) part :

V Grid := V C,Grid + V D,Grid . (36) 
The discontinuous part V D,Grid of velocity will enable us to take into account mesh connectivity modification (h-adaptation). The continuous part V C,Grid only deal with mesh modifications keeping the same connectivity (r-adaptation).

We consider the equations ( 20) on an open bounded domain Ω ⊂ IR d with Lipschitz boundary. In a finite volume context, we will ask to our extended discontinuous kinematic equation to fulfill the following properties:

1. extension of existing ALE frame for mesh (r,h)-adaptation. The existing Lagrange and rezone/remap phase is naturally enhanced (see [START_REF] Hoch | A two-dimensional discontinuous ale(discale) finite volume framework on arbitrary unstructured conical meshes[END_REF]) by dynamical topological mesh modification:

      
• mesh refinement • mesh coarsening • generalization of edge swapping to polygons • mesh sliding (37)

2. mathematical link for local (r,h)-adaptation on arbitrary polygonal meshes, the h-adaption part must deal with theses hypothesis:

• Locality Find a local generic patch that fulfill any of (37) operation:

V D,Grid (t, .) in (L ∞ (Ω)) d (38) 
⇒ this CFL gives an automatic locality constraint on remeshing tools.

• Physically relevant

We look at general flows consistency constituted by translational and rotational effects:

V D,Grid (t, .) = V D,Grid,T ra (t, .) + V D,Grid,Rot (t, .) (39) 
• Generic connectivity Cell topology and mesh connectivity are unknown, and must be able to adapt itself on local flows (CFL+convexity), here:

no -a priory-connectivity is imposed to the mesh. (40)

To adopt a different strategy see ReALE [START_REF] Loubère | Reale: A reconnection-based arbitrary-lagrangian-eulerian method[END_REF] for Voronoy kind of polygonal meshes and a dual approach [10, 1, 7, 16] that impose Delaunay simplicial meshes.

3. We must keep in mind that any new local (r,h)-adaptation must be done under the constraint to exactly solve the DGCL (Discrete Geometric Conservation Laws, first equation of ( 23) integrated in time):

• exact DGCL : Let K be a cell or an union of cell C i see Figure 11 and 12:

K n+1 1dx = K n 1dx + t n+1 t n ∂K q V Grid (t, x).n(t, x)ds dt. (41) 
• Robust and fast No exact polygon/polygon mesh intersection (unless multi-material interface is present).

In the following, we assume the hypothesis:

• Set regularity: Ω is an open bounded set with Lipschitz boundary.

• Functional space:

V D,Grid (t, .) in L 1 (Ω) ∩ L ∞ (Ω) ∩ SBV (Ω)
• Growing condition:

∇.V D,Grid (t, .) in L ∞ (Ω) (42) 
meaning that patch volume of K in (41) stay bounded at each time step.

Theorem 2 Hodge Decomposition It exists a potential vector A and a potential scalar f such that:

V D,Grid = rotA -∇f. ( 43 
)
Remark 5 The vectorial decomposition (43) give a natural modeling of each required properties in (39).

• rotA for rotational aspect of the flow.

• ∇f for translational effects.

As a corollary, it exists a potential vector and a matrix M ∈ IR d×d such that, assume that V D,Grid (t, .) in

L 1 (Ω) ∩ L ∞ (Ω) ∩ SBV (Ω) Lemma 2 V D,Grid = rotA + ∇.M (44) 
Remark 6 the special structure of matrix M enable to take into account

• isotropic translational effects when M = f I (diagonal matrix for scalar f ) see (43).

• anisotropic translational effects when M is a full matrix or

a 0 0 b , a = b (45) 
• we recall that we are only interested on existence for (43)(44).

• the regularity of potentials functions in (43) depends on the boundary condition for V D,Grid (t, .) because of the pde constrain:

pde -∆f = ∇.V D,Grid in Ω, boundary condition f = ? on ∂Ω. (46) 
Where the (continuous) unspecified boundary condition (46) depends on the (discretized) atomic mesh operation we consider (refinement/coarsening or swapping, see paragraph (3.3.3)). In terms of PDE, the flow acting on V D,Grid corresponds to a linear multi-dimensional advection with discontinuous coefficients. These kind of equations have been studied:

Theorem 3 [8, 9, 36] If the velocity a(t, x) in L 1 loc ((0, +∞); L ∞ (IR d )) d , ∂ t u + a(t, x).∇u = 0. ( 47 
)
is well posed if the sufficient condition OSLC (uniqueness of Filipov characteristics).

(a(t, x) -a(t, y), x -y) ≤ α(t)|x -y| 2 , α(t) ≥ 0, α in L 1 (0, +∞). ( 48 
)
As a consequence compressives discontinuities are well posed while rarefaction corresponds to non uniqueness.

Moreover, we recall (see [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided lipschitz coefficients[END_REF]) that in the case of piecewise regular velocity across a smooth hypersurface S, the directional jump depends upon hypothesis on a:

• Tangential to S, it corresponds to absolute continuity of divergence velocity (∇.a absolutely continuous cf [START_REF] Bouchut | Uniqueness and weak stability for multidimensional transport equations with one-sided lipschitz coefficients[END_REF]).

• Normal to S corresponds to OSLC (48).

Remark 7

We recall that evolution by level-sets to change the co-dimension of a manifold gives raise naturally to this kind of discontinuous PDE see [START_REF] Faugeras | Using the vector distance functions to evolve manifolds of arbitrary codimension[END_REF][START_REF] Faugeras | Representing and evolving smooth manifolds of arbitrary dimension embedded in rn as the intersection of n hypersurfaces : The vector distance functions[END_REF], and Figure 5.

M N M N u(t,.) a(t,.) t=0 t>0
Figure 5: Evolving co-dimension of geometrical objects see [START_REF] Faugeras | Using the vector distance functions to evolve manifolds of arbitrary codimension[END_REF][START_REF] Faugeras | Representing and evolving smooth manifolds of arbitrary dimension embedded in rn as the intersection of n hypersurfaces : The vector distance functions[END_REF]. If u 0 is a distance to the origin (up Left) and the initial velocity field a (up right) then solution of u t + a.∇u = 0 at time t is the distance to the edge defined by [M (t), N (t)].

To summarize this part, we have introduce a discontinuous framework that give a natural way to modelize (34) [START_REF] Morrell | A cell by cell anisotropic adaptive mesh ale method[END_REF]. Comparing to Cauchy-Lipschitz, our assumption of weaker regularity on mesh velocity appears to be necessary to take into account dynamical topological mesh change also called h-adaptation. 

Description of semi conformal object

In [START_REF] Hoch | Semi-conformal polygonal mesh adaptation seen as discontinuous grid velocity formulation for ale simulations[END_REF], we have proposed a preliminary way to recover and extend the philosophy for quadrangle cells toward arbitrary polygons of ALE-AMR (quad-tree based) developed in [START_REF] Anderson | An arbitrary lagrangianeulerian method with adaptive mesh refinement for the solution of the euler equations[END_REF][START_REF] Morrell | A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations[END_REF][START_REF] Morrell | A cell by cell anisotropic adaptive mesh ale method[END_REF][START_REF] Hoch | Non conformal adaptation and mesh smoothing for compressible lagrangian fluid dynamics[END_REF]. It turns out that in our framework, semi-conformity of the mesh is very natural and is a central tool to describe anisotropic adaptation for non simplicial meshes, consider as an example the layer h-adaptation in Figure 6 or in numerical section 4. Description of local semi-conformity for polygonal cells: 1. Two master nodes n1(S), n2(S), semi-slaves nodes S i .

2. The master cell M and semi slaves cells m i .

3. It's level defined by : l(S)=min(l(n1(S)),l(n2(S))) (computed recursively).

Geometrical constraint:

We accept it only if master/secondary cells are convex between n1(S), n2(S) (locally flat is permitted) see Figure 8, hence semi conformity is a relaxed form of non conformity (but contains it).

5. A boolean flag that take into account this semi-conformal representation (if not activated, the node are free and the mesh is locally polygonal and unstructured).

The depth of the mesh M is then defined by: min S∈M l(S). There are some practical aspects:

1. arbitrary nested levels are possible, 2. no octree point of view, 3. data structure is an hybrid representation of unstructured meshes and semi-conformity (see Definition 1 above), this kind of storage is useful when dealing with continuous rezoning and remapping.

• continuous rezoning must take into account semi-conformal aspect of the mesh.

• remapping only deal with the (unstructured) polygonal topology of the mesh, each edge (conformal or semi-slave) displacement induce his own fluxed volume.

Definition 2 Sliding edge A sliding edge (see Figure 10) is an edge that belongs to two different adjacent welding lines see Definition 1 (see Figure 8): In the design of an exact DGCL scheme for (41), we begin to define the central patch P(e) constituted by an edge surrounded by its neighboring cells, there are two situations depending on the nature of the edge:

1. Case of conformal edge (see Figure 11): To solve our constraints (37) and fulfill locality hypothesis (38), we need to define two sets for each conformal or semi-conformal edge:

1. P e : Conformal case (see Figure 11 In the following, to satisfy the locality hypothesis (38), we assume that:

Hypothesis 1 B(P) (solid lines in Figure 11 and12) is union of edges (globally Lipschitz curve) supposed to be fixed with respect to generic edge e.

Local patch volume preservation,

d dt |P(e)| = 0. ( 53 
)

Refinement/Coarsening/Swapping and Reconnection

This step is constituted by two stages:

1) add, remove or transform edges or vertices.

2) perform underlying reconnections to obtain locally new cell configuration.

We consider separately the refinement and coarsening:

Refinement : A local cell by cell approach see also [START_REF] Morrell | A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations[END_REF][START_REF] Morrell | A cell by cell anisotropic adaptive mesh ale method[END_REF]:

We collect nodal informations (geometrical and physical) that take into account mesh regularity and flow singularities using local gradient or hessian estimates. Loop on nodes n:

1. Geometrical criteria around n:

Q GEOM n min C Area(C) max(max C Area(C),| min C Area(C)|)

Physical criteria around n:

Q P HY S n (w(x) = 1 + ||∇ 2 ρ n || 2 
2 ). We tag a node as "refinement" if we have both: (54)

Q GEOM n > Q GEOM,

Loop on cells C:

We define two numbers:

1. N b ref (C) all the nodes marked as "refinement".

2. N b cons (C) all of the consecutive marked nodes.

Reconnection by local topology study (short range)

1. Anisotropic refinement (1D) : For the two consecutive nodes, if the criteria values are nearly equal, In any situation above ( 13), ( 14) and ( 15) the computation of new conservative quantities is straightforward for a first order scheme, we just put the coarse value on each of the new sub cells.

Coarsening :

Loop on nodes n:

1. Geometrical criteria around n:

Q GEOM n min C Area(C) max(max C Area(C),| min C Area(C)|) . 2. Physical criteria around n: Q P HY S n ( w(x)=1+ ||∇ 2 ρ n || 2 
2 ), and Local bad CFL.

We mark a node coarsened if we have both Q GEOM n < Q GEOM,coarse and Q P HY S n < Q P HY S,coarse . We have two possible choice:

1. If Q P HY S n1 and Q P HY S n2 are nearly equal : Clear edges such their two end points are tagged "coarse": cell aggregation (Full edge Coarsening case). Extended swapping :

In this part we introduce a discontinuous transformation of boundary of two adjacent arbitrary cells. This is a natural extension of diagonal edge swapping from simplices to polygonal cells. Diagonal flipping (Figure 18) between two adjacent simplices is performed to enhance some criteria:

-geometric: mesh quality measure (e.g. Delaunay criteria) of a cell.

-stability: local CFL, we recall that stability criteria for explicit finite volume method is proportional to: 

J CF L (C) := |C| e |e| . (55) 
max e ′ min(J(C ′ 1 ), J(C ′ 2 )) (56) 
where C ′ i are virtual cells created by virtual movement of edge e ′ . For polygonal cells, such a continuous problem is approximated by finite tests on successive configurations (see Figure 19). Candidate path e ′ is a straight segment joining two points, each of them being either a (existing) node or a mid-edge point. -the cell number is constant.

-the node and edge number may change.

Remark 8 -the underlying mathematical justification is based on tangential discontinuous mesh velocity (on B(P e )).

-local conservation is easily obtained by a slight extension of selfintersection or basic area swept fluxing algorithm see Figure 23. For first order scheme: * Standard swept flux scheme [START_REF] Margolin | Second order sign preserving remapping on general grids[END_REF]:

|C L | n+1 Q n+1 L = |C L | n Q n L + δCQ * , |C R | n+1 Q n+1 R = |C R | n Q n R -δCQ * .
(57) * Swept with self intersection flux scheme [START_REF] Hoch | An arbitrary lagrangian-eulerian strategy to solve compressible fluid flows[END_REF]:

|C L | n+1 Q n+1 L = |C L | n Q n L + δC 1 Q * ,1 + δC 2 Q * ,2 , |C R | n+1 Q n+1 R = |C R | n Q n R -δC 1 Q * ,1 -δC 2 Q * ,2 .
(58)

In our case, each algebraic area δC in (57) (resp. δC 1 , δC 2 in (58)) involve an arbitrary polygonal region that is not necessarily a quadrilater (resp. two simplices). We also recall that δC 1 δC 2 < 0 and the relationship between (57) and (58) : δC = δC 1 + δC 2 .

-In this case, the local patch volume preservation constrain: d dt |P(e)| = 0, (see 53 

) with P(e) = C R ∪ C L |C L | n+1 + |C R | n+1 = |C L | n + |C R | n ( 
C 1 e e 2 C δ δ C 1 C 2 δ δ L L R R
Figure 23: Extended self-intersection (for extended swapping): we use the remap inside the union of two adjacent cells, it is computed by the eventual intersection point appearing during the extended swap see Figure 19, it defines two (and only two) subzonal polygonal regions whose volume can be computed exactly (if we do not consider intersection we recover an extended standard swept flux).

Moreover, for polygons the extended self-intersection is exact for the remapping phase if we use the self intersection flux scheme (58).

-Sliding mesh edge (see Definition 2) may appear naturally when swapping occured: We summarize some properties of the Discontinuous ALE framework: 5. This is a finite volume approach, local conservation is obtained even if discontinuous mesh velocity is involved.

Properties 2 1. V D,Grid (t, .
Remark 9 For h-adaptation, an anisotropic metric based approach [START_REF] Bourouchaki | Delaunay mesh generation governed by metric specifications[END_REF][START_REF] Alauzet | Anisotropic mesh adaptation for cfd computations[END_REF][START_REF] Pino | Metric-based mesh adaptation for 2d lagrangian compressible flows[END_REF] can be used. All eligible edge e must verify |e| G ≃ 1 where G(x) is a strictly positive definite matrix field, let x 1 = x(n 1 (e)) and x 2 = x(n 2 (e)):

|e| G = inf γ(q);γ(0)=x1,γ(1)=x2 1 0 γ(q)G(γ(q)) γ(q) dq. (60) 
A crude approximation for γ may be γ(q) = γ(0) + q(γ(1)γ(0)). We advocate this metric formalism in a future work to control number of cells using edge length.

A Strategy for finite volume Discontinuous ALE

In a practical point of view, the finite volume splitting for discontinuous ALE take the following form:

(A) Lagrangian step with a centered scheme and all nodes are degree of freedom and we do not consider hanging nodes here, straightening is done if semi-conformity looses geometrical constraint. Approach using special treatment for this exceptional points (see [START_REF] Claisse | A new exceptional points method with application to cell-centered lagrangian schemes and curved meshes[END_REF]) could also be used.

(B) Adaptation using refinement/coarsening/extended swapping study (clear and/or add cells) in a semi conformal way. Generalized polygonal edge swapping is performed, only convexity for new polygonal cells is imposed if needed.

• (b) Sort the nodes with respect to their level : (a master node for an edge can be a slave node of another edge).

(c) Semi-slaves nodes are not taken into account for nodal mesh quality. 

Sedov

In this case, we solve the Sedov problem. The initial condition is given by (ρ 0 , P 0 , U 0 ) = (1, 10 -6 , 0) and γ = 1.4. The pressure in cell C containing the origin is such that, see [START_REF] Maire | Contribution à la modélisation numérique de la Fusion par Confinement Inertiel[END_REF],

P c = (γ -1)ρ C ε 0 |C| ( 61 
)
where ε 0 = 0.244816 so that the solution consists of a diverging shock whose front is located at radius R=1 at time t=1. We consider Lagrange with ALE barycentric smoothing on 51×51 initial cartesian mesh. At some times we begin our DiscALE adaptation (without swapping) see Figure 27. 19) has been enabled. Note that the initial cartesian mesh possess polygons with more than four nodes. Connectivity is truly arbitrary throughout the calculation and is not known in advance.

Conclusion and prospects

We have presented a formulation that encompass existing ALE framework (Lagrange, rezoning and remap) on arbitrary conformal or semi conformal polygonal cells. A discontinuous mesh velocity is introduced to take into account mesh refinement, coarsening or extended swapping, a consequence is the modeling of h-adaptation in numerical simulations. The discontinuous frame permits to deal with node duplication or collapsing. For a computational point of view, we resume properties of our approach:

(1) Centered finite volume Lagrangian hydrodynamics schemes (GLACE, EU-CCLHYD, etc), arbitrary polygonal cells can be handled, second order space/time scheme (with double limiter on specific variable).

(2) For refinement, the local AMR-ALE is recover as a special case (Discontinuous ALE with short range).

(3) Coarsening by cleaning edges is generic, edge to node transformation is permitted.

(4) Edge swapping has been extended to polygonal/non conformal cells (sliding edge may appear).

(5) Layer refinement and coarsening are just a consequence of the symmetry of the flow. [START_REF] Baaijems | An u-ale formulation of 3-d unsteady viscoelastic flow[END_REF] No exact mesh intersection is needed, only local remapper (swept area or self intersection at most) is used (at least in case of single material).

It appears that h-adaptation with reconnection can be seen as a discretization of (splitted) ALE version with discontinuous kinematic field (see previous preliminary works [START_REF] Hoch | Semi-conformal polygonal mesh adaptation seen as discontinuous grid velocity formulation for ale simulations[END_REF][START_REF] Hoch | A two-dimensional discontinuous ale(discale) finite volume framework on arbitrary unstructured conical meshes[END_REF]). Future works will include sharper coupling with existing approach (control of edge length with a prescribed metric, nodal mesh quality with physical weights). Extension to conical meshes is theoretically possible as well as multi-materials ALE. The author is grateful to J.F. Babadjan, V. Millot, F. James for fruitful discussions on the discontinuous mathematical framework.

  Two classical description of non relativistic continuum mechanics are (see Figures 1 and 2):

Figure 2 :

 2 Figure 2: Different descriptions Lagrange, Euler, ALE and associated kinematicMesh node mesh motion △ Material point particle motion Duplication as well as merging of nodes in mesh update step can be seen as a discretization of a discontinuous ALE kinematic framework (see Figure4)

Figure 3 :

 3 Figure 3: Notation for geometrical information for different configurations

Figure 4 :

 4 Figure 4: Modeling of duplication (left) and collapse (right) of nodes using discontinuous kinematic velocity

Figure 6 :

 6 Figure 6: Mesh modification seen as discontinuous grid velocity. Refinement (Left) corresponds to node colliding and transversal reconnection. Coarsening (Right) corresponds to node duplication and opposite reconnection. At first sight this corresponds exactly to the opposite situation of the Figure 4 but this is due to the opposite sign in (25).

3. 3 Figure 7 :

 37 Figure 7: Notation for cell item

Figure 8 :

 8 Figure 8: A welding line S of size two, the master cell M, master nodes (n1(S),n2(S)), semi-slaves nodes (S 1 ,S 2 ) and cells (m 1 ,m 2 ,m 3 )

Figure 9 :

 9 Figure 9: The level of nodes and different imbricated welding lines

Figure 10 :

 10 Figure 10: A mesh edge sliding is an edge that simultaneously belongs to two welding lines.

Figure 11 :Figure 12 :

 1112 Figure 11: Generic patch P(e): cell-edge stencil for conformal edge. Left: all cell containing at least a node of edge e. Right: only the two adjacent cells. Solid lines are pieces of boundary cells for each neighborhood.

) 3 .

 3 ): P e (e) = {C; e ⊂ C} , P C (e) = {C; n 1 (e) or n 2 (e) ⊂ C} . (50) 2. P e : Semi-conformal case (see Figure 12): P e (e) = {C; e ⊂ C or ∃i, S i ⊂ C} , P C (e) = {C; n 1 (e) or n 2 (e) ⊂ C or ∃i, S i ⊂ C} . (51We can define the exterior boundary of each of these neighborhoods P(e): B(P) = {x ∈ e ′ /e ′ ∈ P(e) is an exterior edge} (52) B(P) corresponds for each set P e (e) (two adjacent cells) and P C (e) (all cells containing any of two endpoints) to bold lines in Figure 11 and 12.

  ref and Q P HY S n > Q P HY S,ref and all local extrema of w(x).

Figure 13 : 2 .Figure 14 : 3 . 2 , 2 Figure 15 :

 1321432215 Figure 13: We link the previous mid edge with the next mid edge.

Figure 16 :

 16 Figure16: Edge deleting: In case of convex cell enforcement, a straighten edge approach may be used.

Figure 17 :

 17 Figure 17: Edge to vertex transformation

Figure 18 :Proposition 1

 181 Figure 18: Triangular swapping from old (black doted line) to new (red) configurations

Figure 19 :

 19 Figure 19: The problem of finding a new swapped edge. Begining with two adjacent cells C 1 and C 2 owning the edge e. Virtual cells C ′ 1 , C ′ 2 are created by successively moving each endpoint of virtual edge e ′ to a node or a mid point edge of B(P e ). Initial edge e is (bold black) upside left versus final edge downside right (bold red).

Figure 20 :Figure 21 :

 2021 Figure 20: Conformal swap : the new polygons are made up with only existing nodes (rotating pair of vertices).

Figure 22 :

 22 Figure 22: Example of polygonal swapping. Left: Initial mesh, Center: swapped cell and intermediate configuration,, Right: Final mesh Properties 1 Properties of extended swapping For arbitrary number of extended swapping, the induces mesh modification are that:

Figure 24 :

 24 Figure 24: An extended polygonal swapping edge has a sided effect to eventually create a sliding edge.

  ) in L ∞ (IR d ) ⇒ CFL gives an automatic constraint on remeshing tools (generic local patch of surrounded cells for an edge see Figure 11, 12). 2. Arbitrary (Convex) polygonal cells. 3. No exact polygon/polygon intersection is needed for remapping. 4. Adding/removing and reconnection of nodes is obtained with a local study.

3. 3 . 5 Figure 25 :

 3525 Figure25: Useful extension of short/medium range[START_REF] Hoch | An arbitrary lagrangian-eulerian strategy to solve compressible fluid flows[END_REF] for semi-conformal meshes permit to deal with nodal mesh quality control for rezoning.

Figure 26 :

 26 Figure 26: Sod shock tube problem, (above) mesh and (below) density at final time. Left: Pure Lagrangian (mesh and density), Right: Lagrangian with hadaptation (layer by layer)

Figure 27 :

 27 Figure 27: Sedov Test Case. Left standard ALE enhanced with DiscALE, Right Zoom on different type of adapted cells : isotropic (blue), quasi-anisotropic (magenta), anisotropic (orange).

Figure 28 :

 28 Figure 28: Tri-Materials test case. Up: different type of local cell by cell refinement (yellow mesh is the one before refinement) at time t=2.5, middle: the computational adapted mesh at time t=3, and down : density at time t=3.

Figure 29 :

 29 Figure 29: Density and mesh at time t=10. Extended swapping on polygons (see (56) in Figure19) has been enabled. Note that the initial cartesian mesh possess polygons with more than four nodes. Connectivity is truly arbitrary throughout the calculation and is not known in advance.

  B 1 refinement and coarse to sub-cell remap (see paragraph 3.3.3 case Refinement). • B 2 coarsening and remap (see paragraph 3.3.3 case Coarsening). • B 3 extended swapping and remap by extension of self intersection flux scheme (see paragraph 3.3.3 case Extended swapping).

(C) Rezoning (caution when semi-conformity see paragraph 3.3.5 below)

and Remapping (nothing is changed: polygonal mesh notion with selfintersection flux is used), no polygon/polygon cell intersection is needed and no dual mesh for momentum remapping is needed.

(D) Step B 3 is done if rezoning step (C) is not sufficient.

(d) Welding lines are straighten when Geometrical constraint is not respected (at each iteration).

We emphasize that the full approach of [START_REF] Hoch | An arbitrary lagrangian-eulerian strategy to solve compressible fluid flows[END_REF] can be generalized to semi-conformal polygons.

Numerical examples

In the following numerical simulation, we perform the computation with the following :

1. Lagrange : if nothing is said, we use the first order version of GLACE [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF][START_REF] Carre | A cell-centered lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] or EUCCLHYD [START_REF] Maire | A cell-centered lagrangian scheme for two-dimensional compressible flow problems[END_REF].

2. ALE : Rezoning applied with barycentric smoother (eventually with anisotropic weights) coupled with Escobar and al [START_REF] Escobar | Simultaneous untangling and smoothing of tetrahedral meshes[END_REF] with the approach of [START_REF] Hoch | An arbitrary lagrangian-eulerian strategy to solve compressible fluid flows[END_REF]. The remapping step is done with self intersection flux.

Sod shock tube

We consider the classical Sod shock tube problem on a cartesian 50× 50 initial cartesian mesh.