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ABSTRACT

This study deals with pilot-aided multi-path channel estima-

tion for orthogonal frequency division multiplexing (OFDM)

systems under slow to moderate fading conditions. Some al-

gorithms exploit the channel time-domain correlation by us-

ing Kalman filters (KFs) to track the channel multi-path com-

plex amplitudes (CAs), assuming a primary acquisition of the

delays. Recently, it was shown that less complex algorithms,

based on a second-order Complex Amplitude Tracking Loop

(CATL) structure and a Least-Square (LS) pilot-aided error

signal, can also reach near optimal asymptotic mean-squared

error (MSE) performance. The LS-CATL-based algorithms

are inspired by digital Phase-Locked Loops (PLL), as well as

by the “prediction-correction” principle of the KF (in steady-

state mode). This paper sums up and extends our previous

results for the tuning and steady-state performance of the LS-

CATL algorithm: analytic formulae are given for the first-,

second-, and third-order loops, usable here for the multi-path

multi-carrier scenario, and adaptable to any Doppler spectrum

model of wide-sense stationary channels.

Index Terms— OFDM, Channel estimation, Kalman fil-

ter, Phase-locked loop

1. INTRODUCTION

Orthogonal frequency division multiplexing is an effective

technique for alleviating frequency-selective channel effects

in wireless communication systems. Reliable channel esti-

mation in OFDM systems is crucial for coherent detection of

the information symbols. Most of the conventional methods

work in a symbol-by-symbol scheme [1]. More advanced al-

gorithms exploit the time-domain correlation of the channel

by using also past symbols. Various approaches are then pos-

sible as revisited in [2]: a natural way is to use Kalman Filters

(KFs) to perform the joint estimation of the multi-path CAs.

In this perspective, a linear recursive state-space model, such

as the rth order auto-regressive (ARr) model or the rth order

integrated Random-Walk (RWr) model [3], is used to approx-

imate the channel CAs dynamic. In the literature, the most

widely used model is certainly the AR1-model combined with

a correlation-matching (CM) criterion to fix the AR1 coeffi-

cient [4]. This leads to the AR1CM -KF algorithm (see many

references and a review in [2]). Recently, the RWr-model-

based KFs [3] are proved to be more efficient, especially for

the slow to moderate fading channels (fdT ≤ 10−2). How-

ever, the complexity of the RWr-KF for the joint estimation

of the path CAs in OFDM remains high. We now focus on

a reduced complexity adaptive algorithm, named here RWr-

LS-CATL, which can be interpreted as a simplification of the

reference RWr-KF, for the same model order r = 1, 2, 3. The

RW2-LS-CATL algorithm (r = 2), was introduced in [5], the-

oretically analysed in [2], and shows almost the same asymp-

totic performance as a second-order KF algorithm. The RWr-

LS-CATL is inspired by digital PLLs and is based on a CATL

structure, and on a specific CA error signal. This error signal

is created from the LS estimate of the paths CA obtained from

the pilot sub-carriers of the current OFDM symbol. The LS-

CATL presents a linear complexity in terms of the number of

pilot-subcarriers Np versus a cubic complexity (O(N3
p )) for

the reference Kalman algorithms (see [2]-table 1).

The key ideas to interpret the RWr-LS-CATL as a sim-

plified RWr-KF stand in two main points: per-path process-

ing, and steady-state mode. First, the front-end pilot-aided LS

estimator makes it possible to convert the primary observa-

tion at pilot frequencies into a primary instantaneous estimate

of the path CAs and then to obtain separate error signals for

the paths. This preliminary estimation step allows at the out-

put a per-path processing that filters each path CA separately,

instead of a full joint processing in the RWr-KF. Secondly,

the RWr-LS-CATL acts in each branch, i.e. for each multi-

path component, as a single-path single-carrier RWr-CATL

[6], and then achieves the same asymptotic performance as a

single-path single-carrier RWr-KF, but with a reduced com-

plexity (due to the use of constant coefficients, instead of

time-varying KF coefficients which require matrix inversion

at each iteration). Indeed, [3] proves that, the RWr-KF is

equivalent in steady-state mode and slow-tracking scenario to

the RWr-CATL with fixed (analytically derived) parameters.

This point generalizes the connection (for the second-order)

between PLL and KF to the third-order.



The contribution of this paper is multi-fold as an ex-

tension of our previous studies that were restricted either

to the second-order loops and the Rayleigh channel with

Jakes’ Doppler spectrum, or to the single-carrier single-path

scenario. Here, we extend the RW-LS-CATL to the third

order, and provide a synthesis about analytic formulae for the

tuning and steady-state performance of the RWr-LS-CATL

(r = 1, 2, 3), usable for the multi-path multi-carrier scenario

and adaptable to any Doppler spectrum model of a wide-sense

stationary channel. It is noteworthy that the RWr-LS-CATL

refers to the multi-path multi-carrier context whereas the

RWr-CATL refers to the single-path single-carrier context.

This paper is organised as follows: section 2 presents the

model. Then in section 3, we explain the RWr-LS-CATL,

and give the tables containing analytic formulae for the tun-

ing and its optimized performance. Finally, section 4 presents

some simulation results and the conclusion.

Notations: [x]k denotes the kth entry of the vector x, and

[X]m,n denotes the [m,n]th entry of the matrix X (indices be-

gin from 1). The notation diag{x} is a diagonal matrix with

x on its main diagonal. IN is an N ×N identity matrix. The

symbols of {·}T and {·}H stand for the transpose and Hermi-

tian operators respectively.

2. OFDM SYSTEM

Let us consider an OFDM system with N subcarriers, and a

cyclic prefix length Ng . The duration of an OFDM symbol is

T = NTTs, where Ts is the sampling time and NT = N +
Ng . Let x(k) be the sequence of transmitted elementary sym-

bols of the kth OFDM symbol. The nth element [x(k)]n (n =
1, . . . , N) is phase modulated (M -PSK) or quadrature ampli-

tude modulation (M -QAM) symbol that modulates the sub-

carrier with index n − 1 − N
2 . The sequence of transmitted

symbols is assumed to be zero-mean and stationary with nor-

malized variance: E
{

∣

∣[x(k)]n
∣

∣

2
}

= 1. After transmission

over a slowly time-varying (the channel is considered to be

invariant during one OFDM symbol time T ) multi-path chan-

nel and fast Fourier transform demodulation, the kth received

OFDM symbol y(k) is given by:

y(k) = H(k)x(k) + w(k), (1)

where w(k) is an N×1 zero-mean complex circular Gaussian

noise vector with covariance matrix σ2
wIN , and H(k) is an N×

N diagonal matrix with its diagonal elements given by:

[H(k)]n,n =
1

N

L
∑

l=1

[

α
(l)
(k) · e

−j2π(n−1
N

− 1
2 )τ

(l)
]

, (2)

where L is the total number of propagation paths, α
(l)
(k) is the

CA of the l-th path at kth OFDM symbol, and τ (l) ×Ts is the

l-th delay (τ (l) is not necessarily an integer, but τ (l) < Ng).

The variable α
(l)
(k) is supposed to be a narrow-band stationary

process, with a Power Spectrum Density (PSD) Γα(f) with

a support limited within ±fd. The L individual elements of

{α
(l)
(k)} (l = 1, . . . , L) are uncorrelated with respect to one

another , with global variance σ2
α =

∑L

l=1 σ
2
α(l) . Using (2),

the observation model of (1) can be re-written [7] as:

y(k) = diag{x(k)}F α(k) + w(k), (3)

where α(k) = [α
(1)
(k) ... α

(L)
(k) ]

T and F is an N ×L Fourier ma-

trix depending on the delay distribution, with elements given

by: [F]k,l = e−j2π( k−1
N

− 1
2 )τ

(l)

.

The Np pilot sub-carriers are evenly inserted into the N
sub-carriers at the positions P = {np|np = (p − 1)Lf +
1, p = 1, ..., Np} with Lf as the distance between two ad-

jacent pilots. The received pilot sub-carriers can be written

as:
yp(k) = X(k)α(k) + wp(k) (4)

with X(k) = diag{xp(k)}Fp. The Np × 1 vectors xp, yp and

wp correspond respectively to the sent data symbol, the re-

ceived data symbol and the channel noise on the pilot sub-

carriers. The Np × L matrix Fp is the Fourier matrix for

the pilot sub-carriers, with elements given by: [Fp]np,l =

e−j2π(
np−1

N
− 1

2 )τ
(l)

, where np ∈ P .

3. RW-LS-CATL AND ASYMPTOTIC MSE

Inspired by a PLL structure, the RWr-CATL is a r-th order

loop used for tracking the CAs of a single-path (flat-fading)

channel in a single carrier system. The derivation of the

CATL structure from the KF was carried out in [6] for the

single-path single-carrier context. In the case of multi-path

channel in a multi-carrier system, it can be extended to a

vector-structured loop by employing an LS estimator at the

front-end of the main loop [2]. The equations of the global

LS-CATL algorithm are given below:

LS estimate:

α̂LS(k) = G(k)yp(k), (5)

with G(k) =
(

XH
(k)X(k)

)−1

XH
(k) the LS operator.

Error signal: v
ǫ(k) = α̂LS(k)−α̂(k|k−1), (6)

Loop filter:

vLag1(k) = vLag1(k−1) + v
ǫ(k), (7)

vLag2(k) = vLag2(k−1) + vLag1(k), (8)

vc(k) = µ1vǫ(k) + µ2vLag1(k) + µ3vLag2(k−1), (9)

Numeric command generator:

α̂(k+1|k) = α̂(k|k−1) + vc(k), (10)

Final estimation: α̂(k|k) = α̂(k|k−1) + µ1vǫ(k). (11)

The RWr-LS-CATL is in fact controlled by the loop filter co-

efficients (µ1, · · · , µr). As a PLL-structured loop, the CATL

can also be characterized by the physical parameters used for



RW1 RW2 RW3

m = 3.19

Sub-optimal fcT =
(

2Sα

πσ2
LS

) 1
3 ζ = 0.5

ζ = 0.39

parameters fnT =
(

2Sα

πσ2
LS

) 1
5

fnT =
(

SαQ

4πσ2
LS

) 1
7

Sα

∫ + 1
2T

−

1
2T

Γα(f) · (fT )2df
∫ + 1

2T

−

1
2T

Γα(f) · (fT )4df
∫ + 1

2T

−

1
2T

Γα(f) · (fT )6df

σ2
ǫα

Sα

(fcT )2
Sα

(fnT )4
Sα

(mζ)2(fnT )6

σ2
ǫw πfcTσ

2
LS 2πfnT · (ζ + 1

4ζ
)σ2

LS 2πfnT · Bσ2
LS

C 3
4
(4π)

2
3 5

4
(2
√
2π)

4
5 (2π)

6
7

[

1
(mζ)2

· ( 2
Q
)
6
7 + B · (Q

2
)
1
7

]

σ2
ǫ min C(σ2

LS)
2
3 (Sα)

1
3 C(σ2

LS)
4
5 (Sα)

1
5 C(σ2

LS)
6
7 (Sα)

1
7

Table 1. Asymptotic expressions for the RWr-LS-CATL (under the assumption fdT << 1 )

the PLLs of the same order. For RW3, the links between (µ1,

µ2, µ3) and the capacitance ratio m, the damping factor ζ and

the natural frequency fn were found in [6]; for RW2, µ3 = 0,

the relations between (µ1, µ2) and (ζ, fn) are given in [2]; for

RW1, µ2 = µ3 = 0, the relation between µ1 and the cut-off

frequency fc could also be found in [2].

By using (4) and the definition of G(k), we have:

α̂LS(k) = α(k) + wLS(k), (12)

with wLS(k) the input noise of the loop:

wLS(k) = G(k)wp(k). (13)

The covariance matrix of wLS(k) is: E
{

wLS(k) · wH
LS(k)

}

=

σ2
w ·

(

FH
p Fp

)−1
. The average variance per-path can then be

calculated as:

σ2
LS
=

1

L
· σ2

w · Trace
{

(

FH
p Fp

)−1
}

. (14)

Note that, FH
p Fp is in general not a diagonal matrix, except

for the special case where the path delays of channel τ (l)Ts

are multiples of the sampling time Ts, i.e., if τ (l) are integers.

According to (6), the error signal v
ǫ(k) is actually the dif-

ference between a noisy observation of the CA vector α̂LS(k)

(see (12)) and last prediction α(k|k−1). The role of LS es-

timator is to produce a preliminary estimate of α from the

pilot sub-carriers of the current OFDM symbol. Such an er-

ror signal remains co-linear with the prediction error α(k) −
α̂(k|k−1), and is free from inter-path interference. Thus the

RWr-LS-CATL can be interpreted as a parallel structure that

is in fact a combination of L single-path single-carrier RWr-

CATLs (in (6)-(11)), with the LS estimate of CA to the input

of the loop. Consequently, the analysis of the RWr-LS-CATL

can be done directly by exploiting the results of the corre-

sponding RWr-CATL. In the single-path single-carrier sce-

narios, the asymptotic expressions of the RW3-CATL were

given in our previous work [6], these results can be applied

to every branch (each one corresponds to a single path) of the

RW3-LS-CATL by using the loop noise variance σ2
LS

instead

of the observation noise variance σ2
w. This was also deduced

for the lower-order loops (r = 1, 2) in [2].

We aim to find the asymptotic MSE (mean value per path)

defined by : σ2
ǫ = 1

L
· E{(α(k) − α̂(k))

H · (α(k) − α̂(k))}.

As explained in [2], σ2
ǫ is comprised of two parts:

σ2
ǫ = σ2

ǫα + σ2
ǫw, (15)

where σ2
ǫα, the dynamic error variance, results from the high-

pass filtering of the input CA α(k) and σ2
ǫw, the static error

variance, is the low-pass filtering of the input loop noise.

The closed-form results for the RWr-LS-CATL (r =
1, 2, 3) are synthesized in table 1. In this table, the coeffi-

cients B and Q are functions of the sub-optimal parameters

m and ζ, with detailed expressions given in [6]. By us-

ing m = 3.19 and ζ = 0.39, we have B = 1.72 and

Q = 4.5. The value of Sα can be calculated for a given

channel Doppler spectrum Γα(f). Besides of the widely used

Jakes’ Doppler spectrum (used in our previous works), one

can also choose a 3D channel model with a constant Doppler

spectrum [8] for the indoor scenarios. In both cases, the

integration term Sα can be found in closed-form expression

Sα = S · (fdT )
2r ·

σ2
α

L
, where S is a constant with respect

to the chosen spectrum and loop order. As an example for

the 3D model, S = 1/(2r + 1) = 1/3, 1/5, 1/7 respectively

for r = 1, 2, 3. From the summary table, we find that the

asymptotic minimum MSE of the RWr-LS-CATL σ2
ǫ is pro-

portional to the 2r
2r+1 power of the path loop noise variance

σ2
LS

, and is also proportional to the 2r
2r+1 power of fdT , the

detailed computations can be found in [9].
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4. SIMULATION AND CONCLUSION

To validate the proposed approximate method and the analytic

results, we simulate a 4QAM-OFDM system with N = 128
sub-carriers. By default, the OFDM system has Ng = 16
samples of CP, Np = 16 pilot sub-carriers in each transmitted

OFDM symbol and the system bandwidth is 1/Ts = 2 MHz.

The GSM 6-tap outdoor Rayleigh channel model was chosen

as the simulation channel (as used in [2]).

Figure 1 shows the simulated and theoretical asymp-

totic MSE (mean value per path) of the RW-LS-CATLs, as a

function of the SNR for fdT = 10−3. Also, We plot as a ref-

erence the BCRB (Bayesian Cramer-Rao lower bound) [2],

and the simulated performance of the AR1CM -KF algorithm.

Figure 2 presents the MSE evolution as a function of fdT .

We can clearly see that the RW-LS-CATLs outperform the

AR1CM -KF. Moreover, the MSEs obtained by the simulation

approximately coincide with the theoretical values, and are

more accurate when fdT decreases (note that we have made

approximations under low fdT assumption for the analyti-

cal MSE formulae). As argued in the previous section, for

r = 1, 2, 3, the asymptotic MSE are respectively proportional

to the 2/3, 4/5, 6/7 powers of the fdT , and are inversely pro-

portional to the 2/3, 4/5, 6/7 powers of the SNR. Additionally,

we attach the simulation results of a numerically optimized

RW3-KF in figure 1 to show that the simplified RW3-LS-

CATL can almost reach the asymptotic performance of the

RW3-KF. This corroborates the results of [2] obtained for the

2nd-order loop.

In conclusion, we have considered the RWr-LS-CATL as

a per-path processing approach to track the multi-path chan-

nel CAs in a multi-carrier context. The analytic optimiza-

tion of the first three order loops are synthesized and gener-

alized for any given Doppler spectrum of the channel. Simu-

lation results validate our theoretical analysis, and show that

the RW-LS-CATL can asymptotically outperforms the AR1-

model-based Kalman filter (under CM criterion) and reach the

RW-KF performance.
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