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A framework for endowing an interactive robot

with reasoning capabilities

about perspective-taking and belief management

Gregoire Milliez1,2, Matthieu Warnier1,2, Aurelie Clodic1,2, Rachid Alami1,2

Abstract— In daily human interactions, spatial reasoning
occupies an important place. In this paper we present a
situation assessment reasoner that generates relevant symbolic
information from the geometry of the environment with respect
to relations between objects and human capabilities. The role
of SPARK (SPAtial Reasoning and Knowledge) component is to
permanently maintain a state of the world in order to provide
a basis for the robot to plan, to act, to react and to interact.
More precisely, we describe here the way the system manages
the hypotheses to be able to handle such knowledge in a flexible
manner. Equipped with such capabilities, a robot that will
interact with humans should be able to extract, compute or
infer these relations and capabilities in order to communicate
and interact efficiently in a natural way. To illustrate our work,
we will explain how the robot is able to manage and update
agents beliefs and pass Sally-Anne test. This work is part of a
broader effort to develop a complete decisional framework for
human-robot interactive task achievement.

I. INTRODUCTION

Since the beginning of robotics, one key quality needed by

a robot has been to reason about its environment. Equipped

with perception abilities, the robot must be able to extract

information that would help it to achieve its task. It is the

well-known perception-action loop.

With the recent advances in robotics, robots have begun

to appear in our daily lives. The world of a robot is now

populated with humans with whom it needs to interact. An

important challenge for researchers is to adapt the robot’s

reasoning capabilities to this new world, which is by default

shaped for humans. Human-robot interaction requires to

equip the robot with explicit reasoning on the human and

on its own capacities to achieve its tasks in a collaborative

way with a human partner.

In our concrete context, a robot and one or several hu-

man(s) share a physical environment, typically a workshop

or a domestic environment. The environment is composed of

static walls and furnitures. What is dynamic is the fact that

humans and robot move and manipulate objects.

The role of SPARK (SPAtial Reasoning and Knowledge)

component described here in the robot control architecture

is to permanently maintain a state of the world in order to

provide a basis for the robot to plan, to act, to react and to

interact. In addition, SPARK has been designed in order to

take into account the following considerations.
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First, the robot must be able to exhibit knowledge in a

human-understandable manner. The robot must be able to

handle spatial reasoning and anchoring where ”anchoring is

the process to establish and maintain in time the correspon-

dence between symbolic knowledge and sensory data”[1].

Secondly, it must be able to gain explicit reasoning on the

human it interacts with. It means that not only the knowledge

must be grounded between the robot and its interactor but

also that the robot must be able to maintain an explicit

representation of the knowledge of its interactor apart of its

own knowledge. That will allow the robot to compare its own

beliefs with the one of the human and to infer similarities

as well as differences and ambiguities. Thus, the robot must

be able to handle a kind of ”theory of mind” 1.

Equipped with such capabilities, a robot who will interact

with humans should be able to extract, compute or infer

these relations and capabilities in order to communicate and

interact efficiently in a natural way.

To achieve this we identified 3 main ingredients. First,

the consideration of perspective-taking, i.e. the ability of

the robot not only to build a model of the world for

itself but also to estimate what its human partners perceive.

Secondly, the ability to compute efficiently affordances for

itself and to estimate the affordances of its human partners in

a given situation Finally, the ability to maintain a history of

beliefs based on presence and focus of attention of humans

which will enable reasoning on divergent beliefs. We will

present how these features are implemented in SPARK as a

permanent activity based on inter-related processes.

This work is part of a broader effort to develop a decisional

framework for human-robot interactive task achievement,

embedded in a cognitive architecture, involving a knowledge

base, a task planner, a motion planner and a supervisor.

In addition, the approach introduced in this work not only

facilitates the interaction between robots and humans, but

also bridges the gap between high level tasks and low level

movement actions [2].

Section II reviews related works and give the context of

our contribution. Section III explains how our system man-

age perception raw data to exhibit meaningful information.

Section IV exposes how our system is able to update its

knowledge and to use it in interaction context.

1http://en.wikipedia.org/wiki/Theory_of_mind

http://en.wikipedia.org/wiki/Theory_of_mind


II. RELATED WORK

Building and updating an intermediate 3D geometric

model is common in robotic architecture, however our sys-

tem is used as a hub for both sensor fusion and geometric

reasoning and uses a rich 3D model extracted from the

Move3D environment [3]. SPARK can be compared to the

Grounded Situation Model (GSM) introduced by Mavridis

and Roy [4] in the sense that they both provide an amodal

physical representation of the world used as a mediator

between the sensor space and symbolic models. [5] presents

a survey of such symbol grounding systems in robotics. [6],

[7] present examples of the use of such system.

Applications of spatial reasoning [8] are multiple. It has

been used for instance for natural language processing for ap-

plications such as direction recognition [9], [10] or language

grounding [11]. [12] presented a spatial reasoner integrated

in a robot which computes symbolic positions of objects

We use perspective taking and some elements of theory

of mind techniques to efficiently compute perspective-aware

models of the world.

Perspective Taking is a human ability which allows one to

see things from other’s point of view. Studied in psychology

literature [13], [14], this ability is crucial when interacting

with people by allowing one to reason on others’ under-

standing of the world in terms of visual perception, spatial

descriptions, affordances and beliefs, etc. Therefore, in the

last years it has been gradually employed in Human-Robot

Interaction. [15] presents a learning algorithm that takes into

account information about a teacher’s visual perspective in

order to learn a task. [16] apply visual perspective taking for

action recognition between two robots. [17] use both visual

and spatial perspective taking for finding out the referent

indicated by a human partner.

In psychology, Theory of mind (ToM) is defined as an

understanding of other peoples mental states (their thoughts,

feelings, desires, motivations, intentions). It includes per-

spective taking ability. Visual perspective taking is one of

the most significant ToM precursor. ToM encompasses a

wide range of skills from instantaneous visual perspective

skill to complex interpretation of other agent intents, plans,

feelings occurring on a long time period. Increased ToM

skills directly lead to increased performance when interacting

with other agent in a collaborative as well as a competitive

context. Being able to attribute false belief (to recognize that

someone else has different beliefs about the physical world)

has been considered as a milestone in ToM development.

In psychology literature the false belief task was formulated

in [18]. Breazal in [19] proposed one of the first human

robot implementation and proposed some more advanced

goal recognition skills relying on this false belief detection.

This paper will present an evolution of the previous work

[20] [21] [22] with a refined management of divergent

beliefs, temporal reasonning on data and improved inferring

capabilities. These improvements allow the robot to pass

Sally and Anne test [23] (see Section IV B), to make infer-

ences not only on position properties but also on dialogue,

and other human actions.

III. SPARK

SPARK is a component responsible for 3D environment

management and spatial reasoning. The goal of SPARK is

to get the geometric position of each entity and to generate

symbolic facts from this geometric data. With the symbolic

facts and geometric data we can then create collaborative

plans, generate efficient dialog and interact with the world.

A. Data Gathering

To understand its environment a robot needs first to

perceive it. Figure 1 presents an example of a scene as

it is represented in SPARK.

Fig. 1. Rendering of an environment as it is build and maintain by the
system using SPARK data for furnitures, objects, humans and robot.

To obtain this rendering, it needs to collect data from its

environment by using sensors. In SPARK, we need to collect

data concerning 3 entities: human, objects and robot itself.

This data will be used together to reason on the environment

and build symbolic facts.

Concerning humans, we need to get not only the position

of each human but also the position of their hands, head

and shoulders. We also need an identifier to recognize each

human. To put humans at the right place in the model,

we make a projection in SPARK using the capture device

position. To recognize a human that has already been seen,

we compare its input identifier with the ones that are already

in the current database.

The robot posture and position are collected directly from

the robot internal sensors.

At last, we need to get the objects position and identifier.

This is usually done using object recognition algorithm based

on vision. Once we get the relative position of the objects,

we send it to SPARK. To put objects at the right place in the

model, we make a projection in SPARK using the robot’s

vision position device.

B. Object Position Hypotheses

When humans lead activities at home, they usually involve

object manipulation (cooking, cleaning, etc). As robots are

made to help humans, they should be able to manipulate

objects as well as track them to collaborate with them. Our



goal is not to explain perception aquisition but how reasoning

on perception data can improve object detection and tracking.

Tracking an object is not a simple task. Indeed, it can be

quite small so they frequently get occluded or may go out of

vision field. Humans are able to know an object’s location

even without direct perception. Humans constantly make

position hypotheses on objects they can’t see and perform

reasoning on these hypotheses. To work with humans robot

should be able to perform this kind of reasoning as well.

To implement the ability of reasoning on the robot we

added several position hypotheses that the robot makes when

an object is not visible.

As a basic hypothesis, when the robot can’t see an object

(object is out of the vision field or occluded), it assumes that

the object is at the same place and orientation where it was

perceived the last time. That is why in fig. 1, even if the

robot can’t see the blue book anymore (occluded by pink

box) SPARK maintain its position. This hypothesis is used

as default hypothesis, i.e. if we have another hypothesis of

an object’s position we will choose this last hypothesis over

the default one.

The other position hypotheses are generated according to

robot and human actions. If the robot grabs an object, the

object will most probably be hidden by its own hand, but we

know where it is (in the robot’s hand). We have the same

kind of hypotheses for human, using a monitoring sphere

to know when human picks up an object. This is basically

just a sphere positioned around the objects. If a human puts

his hand inside the sphere, we assume that he picked up

the object, unless we still see it on table. Finally, we also

implemented a hypothesis on containing the objects. If an

agent drops an object in another one, even if we will not be

able to perceive the object anymore, we know roughly its

position (center of the containing object).

To sum up, the robot uses first the perception, then if it’s

not available it uses position hypothesis. If none of these

are available for the current object, it uses the last perceived

position as shown in fig. 2. The position hypotheses have to

be managed and updated in real time to keep a consistent

model of the world. If an object has an hypothesis and

is perceived then we compare the position perceived from

the one given by the hypothesis. If they are too far from

each other, the hypothesis is deleted as it is considered as

impossible. If an object should be seen and is not seen, then

we delete the default hypothesis that the object is at the last

perceived position and set it as unknown.

These hypotheses concerning objects’ position allow the

robot to have a more efficient tracking of objects, specially

when they are occluded or not perceived.

C. Perspective Taking and Belief Management

As explained in the previous section, humans also make

hypotheses concerning objects. What comes with every hy-

pothesis is the possibility of making mistakes. In the field

of HRI, the robot has to understand the human. That is why

we think, knowing what humans believe and when they have

wrong information is key for interacting with them.

Fig. 2. Schema of SPARK reasoning to manage object position. The
hypothesis on object position can come from occlusion due to hiding the
object, object in container or object grasped by agent.

The first step in knowing what a human thinks is to be

aware of the information he gets. There are two ways a

human can get information about his environment: either

he gets it directly (or can infer) from his perception or

from dialog. As humans we constantly use what psychologist

call ”perspective taking”, which means being able to put

yourself into someone else’s shoes. This helps to adapt our

dialog according to the mental state of the other participant.

To implement this behavior on a robot, we focused on

localization, perception and human robot dialog aspects to

infer what information the human can get.

In SPARK we have the position of humans (see III 1.).

We use it to calculate affordances of each human toward

elements of the scene he can interact with. To estimate what

is visible for a human, it computes which objects are present

in a cone, emerging from human’s head. If the object can

be directly linked to the human’s head with no obstacle

and if it is in the field of the view cone, then we assume

that the human sees the object and hence has knowledge of

its position. If an obstacle is occluding the object, then it

won’t be visible for the human. Concerning the reachability,

a threshold of 1 meter is used to determine if the human can

reach an object or not. Then, we have different models of

the world for each agent. One for the world as perceived by

the robot and one for each human perception (as the robot

thinks human sees it). Each of these models is independent

and logically consistent.

In some cases human and robot models can hold different

values. It can come from different visions of the scene

(some objects properties are accessible only for the robot

so the human does not have knowledge on them). It can

come from divergent believes between the human and the

robot (human believes the object as property P when robot



believes this property is false for the object). In this second

case, perspective taking is not enough to understand human’s

wrong believes. A divergence belief management is needed.

This Management relies on data from the environment as

well as from affordances and supervisor. This way, the robot

can generate beliefs according to the task stated in correlation

with affordances as shown in fig. 3.

Fig. 3. Schema of SPARK reasoning to generate beliefs

As an example, we consider a human who leaves the

interacting area with the belief that an object A has property

P in state s1. When he will come back, even if object A

has changed it’s property to state s2, he will probably think

the property is still valid as it was before until he is able

to update his belief about the property by using dialog or

perception. To manage this kind of situation, when a human

leaves the area, we keep his beliefs outdated until he comes

back.

Here are the beliefs of agents about the object before

human comes back:

ROBOT GREG

obj_A property_P state2 obj_A property_P state1

Once he comes back, there are 3 different situations:
• First situation, human notices the object new property

state and automatically corrects his belief. We then also
update the belief vector with the last perception data.

ROBOT GREG

obj_A property_P state2 obj_A property_P state2

• 2nd situation, human notices that the object has changed
but can’t infer what is the new property state. We then
update the belief vector to remove his belief, i.e., robot
knows human knows he doesn’t know the object new
property.

ROBOT GREG

obj_A property_P state2 obj_A property_P unknown

• 3rd situation, human can’t notice that the object prop-
erty has changed. The human will then keep his wrong
belief. We assume here that if the human is able
to perceive an object property, he is then aware of
the object property state. As an example for position
property, if there is no obstacle between his eyes and
the object and the object is in the human field of view,
he is then aware of its position.

ROBOT GREG

obj_A property_P state2 obj_A property_P state1

Knowing these beliefs is a great help to the robot to under-

stand human and interact with him. The robot takes human’s

perception into account to have appropriate interpretation of

human requests, to proactively inform or warn the human

about a missing or wrong belief and also to generate a

collaborative plan. Thus, the robot has to reason on what

a human can see, reach and knows to get these skills.

IV. IMPLEMENTATION AND RESULTS

A. Implementation

SPARK can use different sensors as input. Once the data

is given to SPARK the processing is identical. We present

briefly the sensors and modules we use in the experiments.

Fig. 4. Schema of SPARK input implementation

To track the human posture, we use an Asus xtion. As

moving head is an important part of communication for the

robot to show its attention, and to avoid tracking loss, we

put the Asus xtion on a stable platform behind the robot.

The module niut manages human tracking using the OpenNI

API. It also detects the average hue of humans’ top in

order to identify them. To get the human average hue, we

extract the position of the torso and then project it in RGB

image coordinate. If available, we also use the coordinates of

shoulders and hips to define the rectangle in which the hue

will be computed, otherwise we create a rectangle around the

torso position that we scale according to the human depth. By

giving defined hues to the module we can then recognize the

humans and send their posture data to SPARK with a unique

id. This also avoid false detection issues and unregistered

human to disturb experiments. To put humans at the right

place in the model, we make a projection in SPARK using

the Asus xtion position.

We get the robot’s posture and position directly from its

internal sensor using ROS.

To get the objects position we created the Viman module.

This module uses the stereo vision of the robot to recognize

and localize objects. To do so, viman scans RTags on objects.

Once we get the relative position of the objects, we send it

to SPARK. To put objects at the right place in the model, we

make a projection in SPARK using the robot’s head position.

Fig 4 illustrates this implementation.



(a) Greg (in green) and Bob (in blue) are in front of the robot.
They know each object position.

(b) Greg puts the pink box on the white book.

(c) Greg left and Bob removed the white book from the box. (d) Bob put the white book under the small box, then Greg comes
back. The robot is able to understand that Greg believes the tape
is under the pink box.

Fig. 5. Sally and Anne test in real (left part) and as perceived by the robot (right part). To help the understanding we explicitly show beliefs on the white
book position (with green arrow for Greg and red one for the robot). The small colored spheres in the rendered scene are used as indications about the
reachability of an object for an agent.

B. Results

We introduced above how we keep the track of distinct

beliefs for each agent. We believe this feature is helpful for

understanding human speech, action and focus of attention,

i.e. to interact with humans. As the robot knows the human

beliefs it can decide what information human needs and then

whether to speak or not according to the current situation or

plan realization. The belief management features presented

above has been used on a robot in order to test them 2.

1) Sally and Anne test: For better understanding of the

scenarios, fig. 5 and fig. 6 are images from the real

experiment with screen-shoots from the 3D model display

of the spatial reasoning module.

In the 1st scenario, in order to test our system and illustrate

the robot ability to detect False/Distinct belief on object

position we decided to run Sally and Anne test. In our

experiment, two users Greg in green and Bob in blue are

in front of the robot. the scene is composed by a white book

and 2 boxes standing on a table (fig. 5(a)). Greg puts the

white book under the pink box (fig. 5(b)). Then Greg leaves.

While Greg is away, Bob takes the white book and puts it

under the small box (fig. 5(c) 5(d)). Then when Greg comes

back, we ask the robot where Greg will look for the box.

2Videos of the experiment can be found in http://homepages.

laas.fr/gmilliez/roman2014/

We will show below some interesting symbolic facts for

Greg and for the robot corresponding to 5(d).

ROBOT GREG

PINK_BOX isVisibleBy GREG PINK_BOX isVisibleBy GREG

SMALL_BOX isVisibleBy GREG SMALL_BOX isVisibleBy GREG

W_BOOK notVisibleBy GREG W_BOOK notVisibleBy GREG

W_BOOK isIn SMALL_BOX W_BOOK isIn PINK_BOX

W_BOOK hasKnownLocation true W_BOOK hasKnownLocation true

As the robot knows that the white book is not visible

by Greg, it didn’t update his belief concerning this object

location. With the help of our system, the robot is able to

observe that, as Greg can’t see what has changed, he has a

divergent belief about the object position. If the human and

robot has to fulfill a task involving this object, the robot will

know it has to inform the human about the object location.

2) Divergent belief management: To go further and il-

lustrate the 3 different situations exposed in III C, we run

another scenario. In this second experiment, two users Greg

and Bob are in front of the robot. They have a white book,

and a white box that will be use for vision occlusion (fig.

6(a)). Once Bob left (fig. 6(b)) Greg takes the white book

and put it behind the white box so that the object is not

visible in the human perspective (fig. 6(b)). Then Greg

leaves and Bob comes back. The robot is able to understand

that, because the white book is occluded, Bob doesn’t know

where it is. However, Bob can see that the white book

http://homepages.laas.fr/gmilliez/roman2014/
http://homepages.laas.fr/gmilliez/roman2014/


(a) Greg (green) and Bob (blue) are in front of the robot. They
know each object position.

(b) Bob left, Greg put the white book behind the white box.

(c) Greg left and Bob comes back. Bob doesn’t know where the
white book is. The robot is aware of this lack of knowledge (blue
transparent sphere to show Bob’s last belief).

(d) Bob looks behind the white box (update his belief) and take
the white book.

(e) Bob left with the book, then Greg comes back. Greg still think
the white book is behind the white box. The robot is aware of
the divergent belief (opaque green sphere to show Greg’s belief).

(f) Greg looks behind the white box and is aware of his lack of
knowledge (sphere became transparent).

Fig. 6. Divergent belief scenario. in real (left part) and as perceived by the robot (right part).

is no longer where he though it would be. This lack of

knowledge is represented by a blue transparent sphere where

Bob expected the object to be (fig. 6(c)).

Below are some symbolic facts for Bob and for the robot.

ROBOT BOB

WHITE_BOX isVisibleBy ROBOT WHITE_BOX isVisibleBy ROBOT

WHITE_BOX isVisibleBy BOB WHITE_BOX isVisibleBy BOB

W_BOOK notVisibleBy BOB W_BOOK notVisibleBy BOB

W_BOOK hasKnownLocation true W_BOOK hasKnownLocation false

In the next step, Bob looks behind the white box and

update his belief (fig. 6(d)). Then he leaves with the white

book. When Greg comes back, as the object was occluded

before and is still not visible, the robot is able to know that

Greg has a wrong belief on the white book position. This

wrong belief is represented by a green opaque sphere where

Greg thinks the white book is (fig. 6(e)). Then Greg looks

behind the white box. He has no longer a divergent belief

but he still ignores the white book position. As the robot saw

this, the green sphere become transparent (fig. 6(f)).

Without our algorithm, at each steps the robot would

assume that the human holds the same beliefs as itself (i.e.

the human knows the new object position).

3) Dialog disambiguation: Now we will show how dialog

could benefits from our system. At the end of the scenario

of fig 6, Bob left with the white book. The robot was able

to see this action by using the monitoring spheres. Now, let’s

assume that in addition to this setup, a black book stands on

the table but is hidden by the pink box on Bob’s side. So the



black book is not visible by Bob and is visible by the robot.

Consequently, if Bob asks the robot ”where is the book?”, as

the robot knows Bob took the white one, even if both books

are currently not visible by Bob it understands that Bob

speaks about the black book. The robot will answer: ”It is on

the table behind the pink box”. Such dialog ability is only

possible if the robot holds correct assumption concerning

human’s knowledge as done by our system. Without the

temporal reasonning on human actions, robot would have

to ask ”which book are you talking about?”.

Now, come back to the end of the scenario of fig 6

where Greg has a wrong belief about the white book’s

position (symbolized by an opaque green sphere). Seeing

Greg trying to have a look behind the white box, the robot

can infer that he’s looking for the white book. Consequently,

it can say proactively : ”The object you are looking for was

taken by Bob”. Such proactive dialog ability is possible with

the help of our system because it allows to infer human’s

intention from human’s (wrong or lack of) belief and to talk

proactively to the human to correct it.

This level of human understanding allows the robot to

interact in a more natural way with humans.

V. CONCLUSION

In this article we have presented our spatio-temporal

reasoning system SPARK. We exposed how reasoning on

objects while interacting with humans helped us to develop

the ability of making hypotheses to improve object tracking.

To make the robot understand humans while interacting

with them we have also developed perspective taking to

understand the situation of the human. And at last, to manage

human’s potentially false/distinct or lacking belief on object

position we developed a new feature based on distinct beliefs

state model management for each agent. With this feature

robot can be aware of humans’ belief states.

Experiments were carried out, revealing our robot’s capac-

ity to pass Sally and Anne test and assess human beliefs. We

show the use of this feature in dialog and task planning. It has

yielded promising first results. This is a useful improvement

of its ToM that leads to more natural interaction with the

human and more efficient dialog. In part IV, we explain

how we are able to apply this for knowledge on position.

However the algorithm could easily be extended to manage

non position-related beliefs. The robot could reason on agent

beliefs about indirectly perceivable and inferable properties

such as temperature, content, weight, ownership, etc. The

robot should be able to sense, infer or be informed about

these attributes and assess human perception or beliefs about

them. It would also be interesting to have a real time line

managing the events history with time stamp. As an example

if an object has been painted by a user A and 5 minutes

after a user B come close to it, without knowledge of the

fresh painting, the robot should be able to warn him and

tell him ”be careful, this object was painted 5 minutes ago”.

This would be useful to proactively give information but also

to learn habits of each human, his action after an event or

the order in which events happen. Robot could also give

information of what happened in a room while the human

was away.
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