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 23 
Abstract 24 

 25 

RAD-tag sequencing is a promising method for conducting genome-wide evolutionary 26 

studies. However, to date, only a handful of studies empirically tested its applicability 27 

above the species level. In this communication, we use RAD-tags to contribute to the 28 

delimitation of species within a diverse genus of deep-sea octocorals, Chrysogorgia, for 29 

which few classical genetic markers have proved informative. Previous studies have 30 

hypothesized that single mitochondrial haplotypes can be used to delimit 31 

Chrysogorgia species. Based on two lanes of Illumina sequencing, we inferred 32 

phylogenetic relationships among twelve putative species that were delimited using 33 

mitochondrial data, comparing two RAD analysis pipelines (Stacks and pyRAD). The 34 

number of homologous RAD loci decreased dramatically with increasing divergence, 35 

as >70% of loci are lost when comparing specimens separated by two mutations on 36 

the 700 nt long mitochondrial phylogeny. Species delimitation hypotheses based on 37 

the mitochondrial mtMutS gene are largely supported, as six out of nine putative 38 

species represented by more than one colony were recovered as discrete, well-39 

supported clades. Significant genetic structure (correlating with geography) was 40 

detected within one putative species, suggesting that individuals characterized by the 41 

same mtMutS haplotype may belong to distinct species. Conversely, three mtMutS 42 

haplotypes formed one well-supported clade within which no population structure 43 

was detected, also suggesting that intra-specific variation exists at mtMutS in 44 

Chrysogorgia. Despite an impressive decrease in the number of homologous loci 45 

across clades, RAD data helped us to fine-tune our interpretations of classical 46 

mitochondrial markers used in octocoral species delimitation, and discover previously 47 

undetected diversity. 48 

49 
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Introduction 51 

The advent of next-generation sequencing tools has permitted significant advances in 52 

our understanding of evolutionary processes such as speciation (e.g. Ekblom and 53 

Galindo 2011), but some other practical applications of genomic data have been less 54 

explored, including phylogenomics and species delimitation. Among genomic 55 

approaches that are applicable to these fields, the usefulness of restriction-site-56 

associated DNA tag (RAD-tag; Baird et al., 2008) sequencing has been investigated in 57 

few studies to date. This methodology typically provides short sequences (~ 100-150 58 

bp) flanking the cut sites of a restriction enzyme (or several enzymes), generally 59 

yielding thousands of loci distributed throughout the genome. This approach does not 60 

require a reference genome, and can therefore be applied to non-model organisms. 61 

However, some technical difficulties remain for groups where very little genomic 62 

knowledge is available (see Davey et al., 2011). For instance, the choice of restriction 63 

enzyme(s) and methodology (single-digest versus double-digest RAD) is key to 64 

estimating the number of expected cut sites and coverage, but relies on prior 65 

knowledge of genome size and GC content. 66 

Despite these difficulties, RAD-tag sequencing constitutes one of the reduced 67 

genomic approaches that are suitable for investigating inter-specific evolutionary 68 

questions. Published RAD-tag sequencing research beyond the species level 69 

includes in silico studies (Drosophila, mammals, and yeasts in Rubin et al., 2012; 70 

Drosophila in Cariou et al., 2013) and empirical work (e.g. Restionaceae flowering 71 

plants in Lexer et al., 2013; cetaceans in Viricel et al., 2014), which both suggest this 72 

approach is promising for taxa having diverged up to 60 million years ago. For 73 
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instance, RAD-tag sequencing has proven useful in species delimitation and 74 

phylogenies within recently and rapidly diverged groups (e.g. Orobanchaceae 75 

flowering plants in Eaton and Ree 2013; swordtails in Jones et al., 2013; Heliconius 76 

butterflies in Nadeau et al., 2013; cichlids in Wagner et al., 2013; geckos in Leaché et 77 

al., 2014). Comparatively, reconstructing the phylogeny of more distantly related taxa 78 

has been the topic of a single study (Carabus beetles, Cruaud et al., 2014), to the best 79 

of our knowledge. Herein we use this approach on a group of deep-sea octocorals for 80 

which little genomic data are available. Thus, our contribution constitutes one of the 81 

first studies investigating the use of RAD-tag sequencing for practical species 82 

delimitation within a taxonomic group composed of divergent species (up to 16 83 

million years ago). 84 

Deep-sea octocorals are one of the groups for which RAD-tag sequencing can 85 

significantly advance our understanding of evolutionary patterns. As for shallow-86 

water octocorals, deep-water octocorals present significant challenges for 87 

taxonomists, with few morphological characters being available for species 88 

delimitation (e.g., McFadden et al., 2010). In addition, several studies have shown 89 

conflicting patterns of morphological and molecular data (France 2007; Dueñas and 90 

Sánchez 2009; Pante and France 2010), suggesting that an integrative approach to 91 

taxon delimitation must be applied in this group (e.g. Schlick-Steiner et al., 2010). 92 

Octocorals, as with other anthozoans (e.g. scleractinians and sea anemones), are also 93 

plagued with remarkably low levels of mitochondrial genome evolution that renders 94 

the use of classical barcoding gene regions such as cox1 of limited use (McFadden et 95 

al., 2011). Comparatively, a few studies have successfully used nuclear markers within 96 

octocoral species (e.g. Concepcion et al., 2008; Mokhtar-Jamaï et al., 2011), but these 97 

are either not widely useable across octocorals (e.g. SRP54; France and Pante 98 

unpublished observations), or not informative at multiple phylogenetic scales (e.g. 99 
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microsatellites). Multi-copy markers have been employed (e.g. Herrera et al., 2010), 100 

however their use implies that lack of concerted evolution within and across genomes 101 

will not blur the phylogenetic signal (Vollmer and Palumbi 2004; Calderón et al 2006). 102 

In this group, RAD-tag genotyping may therefore offer a panel of markers to help 103 

describe patterns of population structure, delimit species, and investigate 104 

phylogenetic relationships. This technique may however be difficult to implement in 105 

this group. Indeed, the composition of the deep-sea octocoral genome is unknown 106 

(size, GC content, prevalence of cut sites for restriction enzymes, etc.); the size of 107 

known cnidarian genomes, for instance, varies between 224 Mb and 1.8 Tb (Animal 108 

Genome Size Database; Gregory, 2014). In addition, sampling of deep-sea animals can 109 

be associated with a loss of quality of genomic DNA samples, particularly when 110 

sampling in tropical waters using trawls or dredges. 111 

The genus Chrysogorgia (Calcaxonia: Chrysogorgiidae) is a noteworthy model 112 

for testing the utility of RAD sequencing for delimiting octocoral species, as it is 113 

diverse (62 nominal species described, 93% of which were based solely on 114 

morphology), widely distributed, and can be locally abundant (Watling et al., 2011). 115 

The large geographic, bathymetric, and ecological distributions of 116 

some Chrysogorgia species (Pante et al., 2012b) question whether taxa are 117 

appropriately delimited, and whether cryptic diversity is important in the group. In 118 

the northwestern Atlantic, congruence exists between morphological and genetic data, 119 

suggesting that a relatively short fragment of the mitochondrial mtMutS gene can be 120 

used to formulate “Primary Species Hypotheses” (Pante and Watling 2012). It is 121 

suspected that little to no intra-specific variation exists for this marker within the 122 

group (McFadden et al., 2011), but the null hypothesis that single mutations 123 

at mtMutS are diagnostic of species limits must be evaluated using genetic data from 124 
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markers informative within and above the species level. RAD loci allow to test 125 

whether lineages that putatively belong to different species do not exchange genes. 126 

In this communication we test the utility of RAD-tag genotyping for delimiting 127 

species in Chrysogorgia using the genealogical criterion defined by Taylor et al., 128 

(2001). More specifically, we test whether single mutations on the mitochondrial 129 

mtMutS gene can be used as a criterion for grouping Chrysogorgia colonies into 130 

separate, putative species (or, more specifically, “Primary Species Delimitation 131 

hypotheses” as in Puillandre et al., 2012). We compare the results from two analysis 132 

pipelines, Stacks (Catchen et al., 2013) and PyRAD (Eaton, 2014), which significantly 133 

differ in the method employed for detecting homologous loci. 134 

 135 

Material and methods 136 

Specimen collection and mtDNA typing 137 

Chrysogorgia specimens were collected from the SE slope of New Caledonia (NC) and 138 

adjacent seamounts of the Norfolk Ridge (82 colonies; Terrasses cruise, 2008), from 139 

Papua New Guinea (PNG; 8 colonies; BioPapua cruise, 2010), and from the 140 

northwestern Atlantic (1 colony, Extreme Coral 2010 cruise; Tables 1 and S1). Pacific 141 

specimens were retrieved from dredges and trawls (details on cruises of the Tropical 142 

Deep Sea Benthos research program: Bouchet et al., 2008; details on the BioPapua 143 

cruise: Pante et al., 2012a); the Atlantic specimen was collected using the Jason II ROV 144 

(Woods Hole Oceanographic Institution). Specimens were fixed in 80% ethanol as 145 

soon as possible after collection. Genomic DNA was extracted using a CTAB protocol 146 

according to France et al. (1996). A 700-bp fragment of the mitochondrial mtMutS 147 
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gene (identified as more informative than cox1 or 18S in chrysogorgiids, Pante et al., 148 

2012b) was amplified using the ND4L2475F – MUT3458R primer pair and sequenced 149 

using an ABI PRISM (R) 3100 or 3130xl Genetic Analyzer (primer information, PCR 150 

and sequencing conditions: Pante et al., 2012b). Sequences were checked for quality 151 

and edited in Sequencher (TM) 4.7 (Gene Codes), aligned by eye (a single, 3 bp indel 152 

was present in the alignment), and haplotypes were submitted to GenBank (Table S1). 153 

Divergence times among putative species were estimated using the molecular clock 154 

from Lepard (2003), which was calculated for the shallow-water octocoral genus 155 

Lepogorgia based on mtMutS genetic distances for clades located on either sides of the 156 

Isthmus of Panama (0.14–0.25%/million years).  157 

Library construction, RAD sequencing, and quality control 158 

Genomic DNA quality was evaluated by 1% agarose gel electrophoresis, and 159 

quantified using a Thermo Scientific Nanodrop ND-1 000 spectrophotometer. DNA 160 

was sent to Eurofins Genomics (Ebersberg, Germany) for RAD-tag library preparation 161 

and sequencing. Libraries were constructed from 1-2 µg of DNA per colony using the 162 

SbfI restriction enzyme. This enzyme was chosen because it was successfully used in 163 

RADseq experiments with marine invertebrates (sea-anemones, Reitzel et al., 2013; 164 

abalone, Gruenthal et al., 2014), and was expected to allow an acceptable compromise 165 

between prevalence of cut sites and depth of coverage, based on RADcounter (the 166 

University of Edinburgh, https://www.wiki.ed.ac.uk/display/RADSequencing/Home). 167 

As the genome size and GC content of Chrysogorgia (or other octocorals, to the best of 168 

our knowledge) are not known, we estimated the prevalence of SbfI cut sites based on 169 

a range of genome sizes and GC content, based on information from the Animal 170 

Genome Size Database (see Introduction) and with a GC content of 40% (e.g. Soza-171 

Ried et al., 2009). Barcodes 6-9 nucleotides long and differing by at least 2 nucleotides 172 

https://www.wiki.ed.ac.uk/display/RADSequencing/Home
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were used to differentiate multiplexed samples (Table S1). Sequencing was performed 173 

on two lanes of the Illumina (R) HiSeq (TM) 2 000 instrument (Illumina Inc., San Diego 174 

CA, USA) using the single read, 100 nucleotide configuration. Raw HiSeq output was 175 

processed using the CASAVA v1.8.2 software pipeline (Illumina Inc., San Diego CA, 176 

USA), and de-multiplexed and quality filtered using the process_radtags.pl module 177 

(default quality settings) of the Stacks v.0.99994 pipeline (Catchen et al., 2013). A 178 

single sequencing error was tolerated in the barcode. Reads were truncated to 91 179 

nucleotides. Quality (as measured by phred scores and percentage of sequence 180 

overrepresentation) was checked before and after treatment by process_radtags using 181 

FastQC v.0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 182 

Exploration of the divergence parameter space 183 

 Two main pipelines specifically designed for analysis of RADseq data are currently 184 

available. The most used to date is the Stacks pipeline. It constructs a catalog of loci for 185 

a set of samples mainly based on three parameters: the minimum stack depth 186 

parameter m (i.e. the minimum number of reads allowed per allele), the intra-187 

individual divergence parameter M (i.e. the maximum number of mutations that can 188 

be observed between stacks within a sample), and the inter-individual divergence 189 

parameter n (i.e. the maximum number of mutations that can be observed between 190 

loci across samples). 191 

PyRAD (Eaton 2014) is a more recently developed pipeline and differs from 192 

Stacks in several ways, the most important one being that it allows the presence of 193 

indels, since the clustering process of reads into loci uses alignment tools. This is 194 

anticipated to be an advantage compared to the first pipeline when considering more 195 

phylogenetically distant species. PyRAD relies on a large number of parameters used 196 

at different steps of the process. Most of them are related to reads quality control, 197 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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detection of homology and filtering of paralogs. Two main parameters are of 198 

particular importance: the minimum depth coverage Mindepth (minimum depth 199 

necessary to make a statistical base call at each position of a cluster) and the similarity 200 

threshold Wclust (similarity value to be used for the alignment during both the within 201 

and across-sample clustering). 202 

For both pipelines, these parameter settings are expected to influence greatly 203 

the number of markers available for intra- and inter-specific comparisons and it is 204 

necessary to explore which parameter combinations maximize the number of 205 

orthologous loci (Viricel et al., 2014). To explore the effect of these parameters at 206 

different phylogenetic depths, we randomly selected pairs of specimens that (1) were 207 

separated by 0 to 16 mutations at mtMutS (representing different levels of 208 

phylogenetic divergence), and (2) were characterized by 1 to 1.5 million reads (to 209 

alleviate potential effects of depth of coverage on the number of assembled loci). For 210 

each level of divergence, we used three replicate pairs of specimens. We refer to 211 

specimens with mtMutS haplotypes differing by few mutations as pairs of closely-212 

related colonies, and those with haplotypes differing by many mutations as distantly-213 

related colonies.  214 

In Stacks, m was kept to 3 (the default value); M was incremented from 1 to 215 

10 in two cases (specimens separated by 0 and 12 mutations at mtMutS), and from 1 216 

to 7 in all other cases. Similarly, n was incremented from 1 to 10 (0 and 12 mutations 217 

cases) and from 1 to 8 (all cases). All combinations of M and n were not tested: only 218 

similar values of M and n were used together (two settings were used: M=n and 219 

M+1=n), as to (1) keep maximum levels of intra- and inter-individual divergence 220 

levels close, and (2) keep the number of Stacks analyses to a reasonable number. A 221 

total of 408 Stacks catalog construction tests were therefore performed using the 222 
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denovo_map.pl script available in Stacks. Catalogs were parsed with the populations.pl 223 

script, where each sample was considered as a separate population, no missing data 224 

were allowed, and a minimum of 10 reads per SNP was set. 225 

In PyRAD v. 2.0, combinations of two values for Mindepth (3 and 6) and 3 226 

values for Wclust (0.89, 0.93 and 0.96) were tested, resulting in 156 analyses. For 227 

these analyses, the maximum number of sites per read with a quality < 20 (NQual) 228 

was set to 4, the minimum number of samples in a final locus (MinCov) was set to 1 229 

and the maximum proportion of shared polymorphic sites in a locus (MaxSH) was set 230 

to 10%. For this last parameter, which aims at detecting paralogs, preliminary tests 231 

showed that in our case, changing this value did not drastically affect the number of 232 

loci and SNPs detected. Finally, optional parameters were kept to default values. 233 

Comparison of Stacks and PyRAD   234 

To evaluate what proportion of loci was detected by both PyRAD and Stacks, a custom 235 

BLASTN search was performed (BLAST toolkit v. 2.2.25; Zhang et al., 2000). Local 236 

BLAST databases were constructed using PyRAD sequences (locus file containing 237 

consensus sequences for each individual; PyRAD parameters m=6 and Wclust=93% 238 

and 89%) for three groups of specimens with different numbers of reads (Table 2). 239 

Stacks loci for these specimens (based on the locus file produced by the populations 240 

script, for which a single allele was retained per locus; denovo_map parameters m=3, 241 

M=4, n=4, and m=3, M=10, n=12) were then compared to the PyRAD database using 242 

BLASTN (percent identity set to 93% and 89%, word size 80 and 84 nt, ungapped 243 

alignments). The XML output of BLASTN searches was then parsed in bash using grep.  244 

Phylogenetic reconstruction and species delimitation 245 

RAxML v. 8.0.9 (Stamatakis 2006; Stamatakis et al., 2008) was used on the 246 
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CIPRES Portal (Miller et al., 2010) to infer phylogenetic relationships among 247 

Chrysogorgia colonies, based on mitochondrial and nuclear sequences, using the 248 

GTRCATI model and automating boot-stopping. The mitochondrial phylogeny was 249 

inferred from the first 700 nt of the mtMutS gene (see above); the nuclear phylogeny 250 

was inferred using concatenated RAD loci obtained based on two parameter sets in 251 

Stacks, and one parameter set in PyRAD. The first Stacks set (“m3M4n4”, denovo_map 252 

parameters m=3, M=4, n=4; populations script parameters m=6, p=2, r=0.5) 253 

corresponds to parameters that maximize the total number of loci detected while 254 

minimizing divergence parameters (see “Exploration of the divergence parameter 255 

space” section above). For this analysis, each mtMutS haplotype was considered as a 256 

separate population. The Stacks populations script parameters that were used signify 257 

that 50% missing data were allowed within each population, a locus had to be present 258 

in at least two populations to be included in the output and a minimum of 6 reads per 259 

SNP was required. The second Stacks set (“m3M10n12”, Stacks script denovo_map 260 

parameters m=3, M=10, n=12; populations script parameters m=6, p=2, r=0.5) 261 

allowed more divergence between loci. The PyRAD dataset (“m6s93”) was 262 

constructed with m=6 and Wclust=93% (details above). In all analyses, the Atlantic 263 

colony JAC1018 was used as the outgroup.  264 

Once clades were delimited with RAxML, a Discriminant Analysis on 265 

Principal Components (DAPC, Jombart et al., 2010) was used to explore genetic 266 

structure within three clades represented by 18 to 31 colonies (see below). This 267 

method takes into account the multilocus genotype of each individual and forms 268 

clusters based on genetic similarity without considering a model of evolution. We also 269 

used TESS (Durand et al., 2009) to investigate population structure using the 270 

conditional auto-correlative (CAR) admixture model with a spatially explicit, Bayesian 271 

framework. In TESS, the Deviance Information Criterion (DIC) was used to compare 272 
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population structure in the presence of different numbers of clusters (the maximum 273 

number of cluster K was set to the total number of individual in the tested clade; for 274 

example, K was set from 2 to 18 for clade 1). Five replicate runs were used per K, with 275 

1 200 MCMC steps and a 200-step burnin. The best K was determined by minimizing 276 

DIC and its variance; once the best K determined, a longer analysis with 12 000 steps 277 

and a 2 000-step burnin was run to obtain reliable individual assignments. The 278 

populations script in Stacks was re-run to keep only one SNP per locus, in order to 279 

minimize the probability of co-analyzing linked markers. The Stacks m3M4n4 dataset 280 

was chosen for these analyses for two reasons: (1) the DAPC and TESS analyses are 281 

run within clades at shallow phylogenetic depths, and (2) as only one SNP / locus is 282 

retained, divergence level should be kept minimal to prevent the inclusion of non-283 

homologous loci. The DAPC analysis was run using adegenet in R (Jombart 2008; R 284 

Development Core Team 2014). 285 

 286 

Results 287 

 288 

Mitochondrial typing and RAD-tag sequencing 289 

 290 

A total of 12 mtMutS haplotypes were detected among the 91 colonies investigated, 10 291 

of which were from NC, 3 from PNG, 1 from the northwestern Atlantic, and 2 being 292 

shared between NC and PNG. The biogeography of these mitochondrial haplotypes at 293 

these locations is further discussed in Pante et al. (2012ab). A total of 236 million raw 294 

reads, corresponding to 35 463 Mbp were produced on two HiSeq2000 lanes. The 295 

number of quality-filtered reads (in millions) per colony varied between 0.04 296 

(TER11108) and 5.82 (TER2044), with a median of 1.6. There was a significant 297 

correlation between the number of quality-filtered reads per colony and haplotypes 298 



 13 

(Kruskal-Wallis chi-squared = 25.11, df = 13, p-value = 0.02), haplotypes 6 and 10, for 299 

instance, yielded fewer reads than other haplotypes (haplotype 10 colonies were 300 

sampled from depths down to 880 m, and haplotype 6 colonies had remarkably small 301 

polyps that may have been particularly sensitive to prolonged times to preservation).  302 

 303 

Loci, SNPs, and indel cataloguing using Stacks and PyRAD 304 

 305 

Results from both pipelines (Stacks and PyRAD) show variations in the number of loci 306 

and SNPs depending on the set of parameters used (Figure 1a-e, 1g-k), as well as the 307 

mitochondrial genetic distance between samples (Figure 1f). For Stacks, as the 308 

mitochondrial genetic distance among included samples decreases, both the total 309 

number of loci and the number of polymorphic loci increases (Figure 1ab). The former 310 

ranges from a few loci to more than 2 000, whereas the latter ranges from a few loci to 311 

~1 000, depending on the set of parameters used. When related to time of divergence 312 

(in MY, based on mtDNA), the total number of loci obtained decreases exponentially 313 

(Figure 1f). Inversely, the percentage of polymorphic loci is lower for more closely-314 

related colonies (~40%) than for distantly related-colonies (~90%; Figure 1c). These 315 

three measures (number of loci, number of polymorphic loci and percentage of 316 

polymorphic loci) show the same response to an increase in divergence parameters M 317 

and n, namely a rapid increase followed by a plateau. This plateau is reached for the 318 

m3M4n4 set of parameters. Conversely, the number of SNPs increases drastically 319 

without reaching a plateau, from a few SNPs for the most stringent set of parameters 320 

and the most distantly-related colonies to around 3 000 for the most closely-related 321 

colonies and the most relaxed set of parameters (Figure 1d). Thus, the effect of 322 

increasing mitochondrial genetic distance among samples or decreasing stringency of 323 
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parameters is to increase SNPs densities, from one SNP every 250 bp to one SNP every 324 

20 bp (Figure 1e). 325 

 326 

Results of the PyRAD analyses follow the general trends observed for the Stacks 327 

pipeline. These trends are an increase in total number of loci and polymorphic loci 328 

(Figure 1gh) for more relaxed parameters sets, as well as for more closely-related 329 

colonies. As for Stacks, more distantly-related specimen pairs have fewer loci than for 330 

closely-related ones, but a larger proportion of those is polymorphic (Figure 1i). While 331 

the percentage of polymorphic loci shows similar ranges of values for Stacks and 332 

PyRAD, the total number of loci as well as the number of polymorphic loci are almost 333 

doubled (from 2 000 to almost 4 000 and from 1 000 to almost 2 000, respectively). 334 

The same pattern is observed for the number of SNPs and SNP densities (Figure 1jk): 335 

PyRAD output differs from Stacks output by a factor of almost two, resulting in SNPs 336 

densities twice as high (from one SNP every 130 bp to one SNP every 20bp). Finally, 337 

unlike Stacks, PyRAD allows for indels within loci. The percentage of loci containing 338 

indels increases with less stringent sets of parameters (Figure 1l). Depending on the 339 

pair of samples considered, this measure varies from a few percent to almost 40 %. 340 

For PyRAD, the number of catalogued loci decreased rapidly with the number of 341 

specimens included in the analysis (with significant drops corresponding to the 342 

number of individuals in the haplotype clades revealed by the phylogenetic 343 

reconstruction, see below) (Figure 2). Most loci bore <3 SNPs even when 10 344 

polymorphisms were allowed on a single RAD locus (Figure 2).   345 

We measured the proportion of loci catalogued by Stacks that was also 346 

detected by PyRAD using custom BLASTN database searches. Overall, 0.6 to 42.7% of 347 

loci detected by Stacks were present in the PyRAD catalog. This pattern is partly 348 

explained by the proportion of PyRAD loci with indels (see above), but might also be 349 
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influenced by the differential detection of repeated regions (i.e. deleveraging 350 

algorithm in Stacks), or the number of reads per individual (the proportion of loci in 351 

common between Stacks and PyRAD was lower for individuals with fewer reads; 352 

Table 2). 353 

 354 

Phylogenetic reconstruction and species delimitation 355 

 356 

The automatic boot-stopping method implemented in RAxML yielded 1 000 bootstrap 357 

replicates for the mitochondrial phylogeny (91 taxa x 700 nt), 500 replicates for the 358 

Stacks RAD phylogenies (91 taxa x 1 080 352 nt, 11 872 loci for the first dataset, and 1 359 

146 054 nt, 12 594 loci for the second dataset), and 200 replicates for the PyRAD 360 

phylogeny (91 taxa x 6 120 523 nt, 69 851 loci). The proportion of gaps and 361 

undetermined characters ranged between 83 and 84% for Stacks and was 92% for 362 

PyRAD. The three RAD phylogenies were similar but not identical, the second Stacks 363 

dataset being better resolved than the first, and the PyRAD dataset being better 364 

resolved than the Stacks sets (nodes with bootstrap >70%: 19% for m3M4n4, 29% for 365 

m3M10n12, 40% for m6s93; Figure 3). Divergence levels were much higher in the 366 

RAD phylogenies compared to the mitochondrial phylogeny. For instance, the groups 367 

composed of haplotypes 9 and 10 were separated by a distance of 0.001 368 

substitution/site on the mtMutS tree, while these clades were separated by 0.27 and 369 

0.25 substitutions/sites on the m3M4n4 and m3M10n12 RAD phylogenies, 370 

respectively (Figure 3).  371 

Out of nine mitochondrial haplotypes represented by more than one 372 

individual, six formed well-supported monophyletic groups on the RAD phylogenies, 373 

for all datasets. One of these clades (corresponding to haplotype 10) contained 374 

specimens from both NC and PNG. The group formed by mitochondrial haplotype 7 375 
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was polyphyletic on the RAD phylogenies, with specimens grouping in two well-376 

supported clades on the PyRAD phylogeny: one composed of five closely-related NC 377 

specimens and one composed of three more divergent PNG colonies (this clade was 378 

split in two on the Stacks phylogenies). Specimens characterized by mtMutS haplotype 379 

7 may therefore belong to at least three distinct species. On the other hand, specimens 380 

characterized by three distinct mitochondrial haplotypes (2, 8, 13) clustered into a 381 

single, well-supported clade (with the exception of one individual, TER13034, 382 

haplotype 8, which clusters well outside this clade). These three haplotypes, which 383 

form a paraphyletic group on the mitochondrial phylogeny and are one to two 384 

mutations different from each other, would therefore be considered as one 385 

evolutionary unit based on the RAD phylogenies (and population clustering analyses 386 

with DAPC and TESS failed to detect structure within this clade; see below). Finally, 387 

out of three singleton haplotypes (J, 13, 14), two (J, 14) sit on long branches and are 388 

clearly differentiated from other haplotypes using RAD-tag data.  389 

We ran a DAPC on the three clades that contained the most colonies (clade 1: 390 

18 colonies of haplotype 9; clade 2: 20 colonies of haplotype 4; clade 3: 31 colonies of 391 

haplotypes 2, 8, 13). Within these clades, 3 685, 1 470 and 8 201 loci were retained 392 

(with 25, 42 and 55% missing data, respectively). In all three cases, DAPC failed to 393 

detect intra-clade genetic structure, as the most likely number of group (based on BIC, 394 

discounting the scenario in which each sample belongs to its own group), in each case, 395 

was one (Figure S1). The spatially-explicit admixture model implemented in TESS also 396 

failed to detect genetic structure within clades 1 and 3, but suggested the presence of 397 

three clusters in clade 2, these clusters being composed of colonies sampled (1) on the 398 

slope of New Caledonia, (2) Munida Seamount (Norfolk Ridge), and (3) Jumeaux Ouest 399 

Seamount (Norfolk Ridge; Figure S1). The population genetics of Chrysogorgia will be 400 

further discussed in a separate study. 401 
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 402 

Detection of environmental contaminants 403 

 404 

 As octocoral DNA was extracted from whole polyps rather than dissected, 405 

internal tissue, some loci may come from environmental contaminants such as 406 

bacteria. To evaluate the prevalence of such loci, we blasted all the loci that were 407 

catalogued for the m3M4n4 Stacks dataset from individual JAC1018 (n = 1 202). The 408 

BLASTN algorithm (Altschul et al., 1997) was used to match RAD loci to the non-409 

redundant NCBI nucleotide database, using 10-3 as a statistical significance threshold 410 

(e-value). Most sequences (92.6%) could not be assigned to a match in the nucleotide 411 

database and 4.5% of loci were similar to bacterial sequences (78-100% similarity 412 

between match and query). A single locus matched human mitochondrial DNA (84% 413 

similarity); other matches (n = 34) included other invertebrates and plant sequences. 414 

Given (1) the small prevalence of potential contaminants, (2) our inability to 415 

determine whether these loci really belong to contaminant DNA or correspond to 416 

coral sequences which closest matches are non-cnidarian taxa, and (3) the large 417 

number of Stacks analyses performed (>400), we decided to run our analyses without 418 

trying to filter loci from exogenous DNA sources.  419 

 420 

 421 

Discussion 422 

 423 

A critical decision in RAD analyses is the way the sequencing data are filtered to get to 424 

the final SNP dataset. This process goes through several steps to ensure that the final 425 

loci will correspond to homologous sequences. The main filters involve several quality 426 

filters (sequencing quality, sequencing depth) as well as several similarity thresholds 427 
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aimed at identifying the different allelic states of homologous loci. Finally, for each 428 

sample, an algorithm is used to tell apart sequencing errors from real mutations in 429 

order to conduct the final SNP calling. Even though the overall process is quite similar 430 

for Stacks and PyRAD analyses pipelines, a strict comparison of their results is not 431 

straightforward since they use sets of parameters that differ to some extent. A main 432 

difference between these two pipelines is in the assessment of similarity of loci: Stacks 433 

uses a strict similarity criterion (maximum number of mutations) in order to cluster 434 

reads into loci, whereas PyRAD uses an overall similarity criterion, after an alignment 435 

step, allowing for the presence of indels within clusters. This should be a critical 436 

difference when comparing genetically more-distant samples as indels are more likely 437 

to occur, and would thus result in sequences being assigned to different loci using 438 

Stacks (which will then be excluded from the final catalog since not present in both 439 

individuals) while PyRAD would theoretically allow these reads to be considered as 440 

homologous loci.  441 

 442 

Our results show that more loci are recovered using the PyRAD pipeline. 443 

Despite these differences, general trends are similar using both pipelines. First, fewer 444 

loci and SNPs are recovered when comparing more genetically distant samples. This 445 

result is expected and has been anticipated through simulation (Cariou et al. 2013) 446 

and observed empirically (Cruaud et al. 2014). Our data show an exponential decay of 447 

the number of loci recovered as a function of divergence time of samples. Second, the 448 

stringency of the filtering process has a significant effect on the number of loci and 449 

SNPs identified. Indeed, higher minimum depth of sequencing thresholds and higher 450 

similarity threshold lead to fewer loci being identified. This trend is observed 451 

regardless of the level of genetic divergence between samples, but it seems to be 452 

accentuated when samples are more closely related.  453 
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 454 

Despite the similarities in general trends, quantitative and qualitative 455 

differences are observed in the outputs of each pipeline. Indeed, whatever the set of 456 

parameters used, almost twice as many loci are identified using PyRAD compared to 457 

Stacks. This difference cannot be solely attributed to the management of indels since 458 

our results show that the percentage of loci containing indels is usually around 5-20% 459 

and never reaches 40% whatever the genetic distance between samples and the 460 

parameters set. Another interesting result is that PyRAD is not simply adding extra 461 

loci to the total loci identified by Stacks: only half of the loci identified using Stacks are 462 

also present in the PyRAD loci catalogs. It is thus necessary to invoke other filtering 463 

processes and differences in algorithm to explain these differences in output. More 464 

thorough analyses would be needed in order to identify precisely what are the main 465 

sources of divergence in the processing of raw data, in addition to the treatment of 466 

indels. 467 

 468 

One major result is the remarkable loss of homologous loci with increasing 469 

divergence among specimens with different mitochondrial haplotypes. For instance, 470 

compared to specimens sharing the same haplotype, specimens two mutations apart 471 

at mtMutS (estimated divergence of 1-2 My) had on average 70% fewer homologous 472 

loci (Stacks analysis at m3M7n8). Within the genus, specimens from mitochondrial 473 

clades 16 mutations apart (i.e. the highest divergence level included in our study, 474 

estimated between 9 and 16 My) share 97% fewer loci. This rate of loss of 475 

homologous RAD-tags is far greater than what has been observed in cetaceans (Viricel 476 

et al., 2014), for which 66% of homologous loci were retained at the inter-familial 477 

level (short-beaked common dolphins, Delphinus delphis, vs. harbour porpoise, 478 

Phocoena phocoena; estimated divergence of 14-19 My) compared to the intra-specific 479 
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level (within Delphinus delphis). Comparisons within cetaceans were performed using 480 

the same custom pipeline as used in the present study, using Stacks parameters 481 

m3M3n3 (the results for corals were similar when comparing m3m3n3 to m3M7n8).  482 

 483 

The differences observed between our study and that of Viricel et al. (2014) 484 

may be explained by various factors. For example, the choice of restriction enzyme 485 

was different (Sbf1 here, Not1 for Viricel et al.), and differences in genome 486 

composition (most importantly GC content and size) are unknown. While both studies 487 

were conducted with two lanes of Illumina HiSeq2000 sequencing (conducted by 488 

Eurofins Genomics in both cases), throughput may have been influenced by the quality 489 

of genomic DNA (trawled deep-sea samples here, stranded animals for Viricel et al.). 490 

These various factors may have significantly influenced the number of cut sites. Our 491 

comparisons might also be significantly affected by the precision of the molecular 492 

clocks available. Divergence times between cetacean families were inferred based on 493 

fossil evidence (see references in Viricel et al., 2014), while no such fossil-calibrated 494 

molecular clock exists, to the best of our knowledge, for octocorals. The mtMutS 495 

divergence rates estimated by Lepard (2003) are based on a group of shallow-water 496 

octocorals that may evolve faster than the deep-sea Chrysogorgia (a long standing 497 

question in deep-sea biology is whether evolutionary process take longer in deeper 498 

water, compared to shallower waters; e.g. Wilson and Hessler 1987), and rely on a 499 

geological event (rising of the Isthmus of Panama), which can introduce further bias.  500 

 501 

The exploration of divergence parameter space, as outlined above, was made 502 

using pairs of specimens, and not allowing any missing data. Stacks and PyRAD can 503 

build catalogs with loci shared by a set proportion of individuals within pre-defined 504 

groups. Hence, our phylogenetic matrix based on over 12K loci (Stacks parameters 505 
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m3M10n12) resolved most deeper nodes of the tree despite 83 to 84% of missing 506 

data. Similarly, Cruaud et al. (2014) constructed a phylogeny of 18 species of the 507 

beetle genus Carabus, and found that the deepest node of the tree (17 My divergence 508 

between species) was characterized by 67% of missing data but strong statistical 509 

support. Jones et al. (2013) reconstructed phylogenetic relationships among 510 

congeneric species of swordtail and platyfish (Xiphophorus sp.) that diverged <3 My, 511 

and estimated up to 70% missing data (ingroup data; their Table S2). They noted, 512 

however, that missing data had little effect on tree topology and branch support. The 513 

rate of loss of homologous loci observed in swordtail and platyfish is more on par with 514 

what we observed for Chrysogorgia than what was reported for cetaceans and Carabus 515 

beetles, and further emphasizes that (1) the utility of RAD sequencing for phylogenetic 516 

reconstruction may be taxon-dependent, and (2) molecular clocks must be critically 517 

interpreted. It must be underlined, however, that notable differences in tree 518 

topologies were observed between the three inferred RAD phylogenies, such as deep 519 

but well-supported nodes (e.g. relative positions of clade 3 and haplotypes 6, 7 and 8). 520 

 521 

RAD-tag sequencing has also proven very useful in testing the criterion used 522 

for our primary species delimitation hypotheses, namely that single mitochondrial 523 

mtMutS haplotypes discriminate species that fit within the General Lineage Concept of 524 

species as defined by de Queiroz (1998). Indeed, a large numbers of variable loci could 525 

be catalogued within and among closely-related colonies (sharing the same mtMutS 526 

haplotype, and therefore putatively belonging to the same species) and more 527 

distantly-related colonies (separated by 1-16 mutations at mtMutS, putatively 528 

belonging to different species), allowing us (1) to plot our primary delimitation 529 

hypotheses onto well-supported phylogenies, and (2) to explore the spatial structure 530 

of populations. Three patterns were evidenced from the data: (1) in the majority of 531 
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cases we noted a complete congruence between mtMutS haplotypes and RAD clades 532 

(6/9 non-singleton haplotypes and 2/3 singleton haplotypes); (2) in one case 533 

incomplete congruence was noted (with PyRAD, haplotype 7 corresponding to two 534 

RAD clades (one NC, one PNG) that did not form a monophyletic group; (3) in one case 535 

a single RAD clade included specimens with different (but closely-related) haplotypes. 536 

This result is significant for octocoral taxonomy and systematics, as mtMutS has been 537 

widely used to assist species delimitation across a large number of families (e.g. 538 

review of McFadden et al., 2010). While morphological, mitochondrial (Pante and 539 

Watling, 2012) and genomic data (this study) all point to the utility of mtMutS for 540 

delimiting Chrysogorgia species, its resolution should be interpreted in two ways. 541 

First, as we did not find 100% congruence between RAD clades and mtMutS 542 

haplotypes, and tested only a restricted set of putative species, mtMutS should still be 543 

considered as one of the first steps in an integrative taxonomic loop incorporating 544 

more variable markers (e.g. Schlick-Steiner et al., 2010; Kekkonen and Hebert 2014). 545 

Second, the evolutionary speed of mtMutS may well vary among octocorals, and its 546 

resolving power may therefore vary from one group to another (e.g. Baco and Cairns, 547 

2012). Nevertheless, combining mitochondrial markers such as mtMutS and RAD-tag 548 

data will without doubt be of tremendous value for testing the large number of 549 

outdated species hypotheses within the Octocorallia.  550 

 551 
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Titles and Legends to Figures 727 

 728 

Figure 1. Comparison of locus detection for Stacks (a-f) and PyRAD (g-l). The number 729 

of loci, SNPs and indels detected for specimens separated by 0-16 mutations at the 730 

mitochondrial mtMutS gene are shown for the different read coverage (m 731 

parameter) and divergence levels (M and n parameters, see text). In PyRAD 732 

analyses, “s” corresponds to the “Wclust” parameter. 733 

 734 

Figure 2. Information content of the locus catalog built by PyRAD for all 91 735 

Chrysogorgia specimens. Wclust: percent divergence permitted between loci 736 

within and across specimens; in addition to the 93% Wclust level used to infer the 737 

Chrysogorgia phylogeny, the 89% Wclust level was tested here.  738 

 739 

Figure 3. Maximum likelihood phylogenetic trees inferred using RAxML for the 740 

mitochondrial mtMutS data (a), and RAD loci (b-d). Bootstrap node support (1000 741 

replicates for a, 500 replicates for b-c, 200 for d) is presented only for nodes with 742 

≥ 70% support. At the tips, colored dots, which represent mtMutS haplotype 743 

membership (each color represents a unique haplotype), are followed by 744 

specimen identifiers and haplotype numbers. Each tree was rooted to the Atlantic 745 

specimen (JAC1018, haplotype J). Genetic structure within clades 1, 2 and 3 were 746 

further investigated using a DAPC and TESS (see text and Figure S1). Scale bars: 747 

substitution / site. 748 

 749 

Figure S1. Population genetic structure within three clades of the phylogenetic 750 

analysis. a-c: Bayesian Information Criterium (BIC) values for each tested number 751 

of DAPC cluster. For each clade, the maximum number of clusters was set as the 752 
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number of individuals minus one (a: clade 1, b: clade 2,c: clade 3). d-e: Boxplots of 753 

Deviance Information Criterion (DIC) values for each value of K. g: Longer TESS 754 

analysis (12 000 MCMC steps) performed on clade 2 colonies, for K=3. g: On the 755 

left, the phylogenetic relationships between colonies within clade 2 are 756 

represented based on the PyRAD dataset, and colored squared at the tips 757 

represent geography (orange: Jumeau Ouest Seamount, green: Munida Seamount, 758 

blue: New Caledonia slope). On the right, q values (ancestry proportions inferred 759 

from the CAR admixture model) are given for each individual from clade 2.  760 

 761 

Table 1. Summary table of haplotype information (sample size, geographical spread, 762 

depth range, habitat (seamounts vs. slopes) and mtMutS vs. RAD delimitation.  NC: 763 

New Caledonia, PNG: Papua New Guinea  764 

 765 

Table 2. Results of the BLASTN alignments performed between Stacks and PyRAD 766 

sequences. The number of loci detected within nine individuals (with high, 767 

medium and low read numbers) is presented for the two analyses performed on 768 

the entire set of 91 specimens. The number of quality-filtered reads is given in 769 

million.  770 

 771 

Table S1. Excel table with information on collection (location, date, coordinates, 772 

depth), mitochondrial haplotypes (haplotype number and GenBank accession 773 

number), and number of quality-filtered reads for the 91 Chrysogorgia specimens 774 

used in this study. The 6-9 nucleotide barcodes used to distinguish specimens 775 

after Illumina sequencing are also included.  776 
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Haplotype N. colonies Geography Habitat Depth range (m)
J 1 Atlantic slope 627 - 627
2 11 NC slope 390 - 500
4 20 NC slope & seamoun 150 - 330
6 2 NC seamount 270 - 310
7 8 NC-PNG slope & seamoun 300 - 880
8 20 NC slope 390 - 500
9 18 NC slope 390 - 450
10 3 NC slope & seamoun 458 - 880
11 3 NC seamount 750 - 840
13 1 NC slope 460 - 490
14 1 NC slope 400 - 420
30 3 PNG slope 220 - 1020



Delimitation
mtMutS / RAD congruence
mtMutS / RAD incongruence
mtMutS / RAD congruence
mtMutS / RAD congruence
mtMutS / RAD incongruence
mtMutS / RAD incongruence
mtMutS / RAD congruence
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mtMutS / RAD congruence



89% divergence
Specimen Haplotype read.category N. reads (M) N. loci (pyRAD) N. loci (Stacks)
TER2044 11 high 5.82 6580 866
JAC1018 J high 5.49 3305 1851
TER7092 7 high 4.04 6867 1363
TER130424 9 median 1.61 6151 1198
TER13064 8 median 1.61 6876 4183
TER13087 9 median 1.60 5959 1131
TER11101 4 low 0.09 1046 228
TER13047 9 low 0.08 1145 396
TER11108 4 low 0.04 441 50



93% divergence
Intersect (%) N. loci (pyRAD) N. loci (Stacks) Intersect (%)
7.84 6720 607 5.54
24.57 2717 1202 21.46
13.03 6862 1246 11.40
12.73 6323 850 8.86
39.89 6584 4607 42.72
13.81 6189 821 9.26
1.15 944 138 0.64
9.96 1107 297 8.67
2.49 384 32 1.04
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