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Anomaly Detection Based on Indicators Aggregation

Tsirizo Rabenoro Jérôme Lacaille Marie Cottrell Fabrice Rossi

Abstract— Automatic anomaly detection is a major issue
in various areas. Beyond mere detection, the identification of
the source of the problem that produced the anomaly is also
essential. This is particularly the case in aircraft engine health
monitoring where detecting early signs of failure (anomalies)
and helping the engine owner to implement efficiently the
adapted maintenance operations (fixing the source of the
anomaly) are of crucial importance to reduce the costs attached
to unscheduled maintenance.

This paper introduces a general methodology that aims at
classifying monitoring signals into normal ones and several
classes of abnormal ones. The main idea is to leverage expert
knowledge by generating a very large number of binary
indicators. Each indicator corresponds to a fully parametrized
anomaly detector built from parametric anomaly scores de-
signed by experts. A feature selection method is used to keep
only the most discriminant indicators which are used at inputs
of a Naive Bayes classifier. This give an interpretable classifier
based on interpretable anomaly detectors whose parameters
have been optimized indirectly by the selection process. The
proposed methodology is evaluated on simulated data designed
to reproduce some of the anomaly types observed in real world
engines.
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I. INTRODUCTION

A
UTOMATIC anomaly detection is a major issue in

numerous areas and has generated a vast scientific

literature [1]. Among the possible choices, statistical tech-

niques for anomaly detection are appealing because they

can leverage expert knowledge about the expected normal

behavior of the studied system in order to compensate for the

limited availability of faulty observations (or more generally

of labelled observations). Those techniques are generally

based on a stationarity hypothesis: if for instance the studied

system is monitored via a series of real valued observations

X1, . . . , Xn, then the Xi are assumed to be identically

distributed under normal conditions. Detecting an anomaly

amounts to detecting a change in the probability distribution

of the Xi, at some point k, for example a change in the

mean value from µ1 for X1, . . . , Xk to µ2 for Xk+1, . . . , Xn.

Numerous parametric and nonparametric methods have been

proposed to achieve this goal [2].

However, statistical tests efficiency is highly dependent to

the adequacy between the assumed data distribution and the
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actual data distribution. While this is obvious for parametric

tests, it also applies to non parametric ones as, in general,

they are not as efficient as parametric ones when the data

distribution is known. In addition, statistical methods rely on

meta-parameters, such as the length of the time window on

which a change is looked for, that have to be tuned to give

maximal efficiency.

This article proposes to combine a (supervised) classifi-

cation approach to statistical techniques in order to obtain

an automated anomaly detection system that leverages both

expert knowledge and labelled data sets. The main idea

consists in building from expert knowledge a large number

of binary indicators that correspond to anomaly detection

decisions taken by statistical tests suggested by the experts,

with varying (meta)-parameters. Then a feature selection

method is applied to the high dimensional binary vectors

to select the most discriminative ones, using a labeled data

set. Finally, a classifier is trained on the reduced binary vectors

to provide automatic detection for future samples.

This approach has numerous advantages over using clas-

sification or statistical tests only. On the classification point

of view, it has been shown in e.g. [3] that selecting relevant

binary features among a large number of simple features

can lead to very high classification accuracy in complex

tasks. In addition, using features designed by experts allows

one to at least partially interpret the way the classifier

is making decisions as none of the features will be off

a black box nature. This is particularly important in our

application context (see Section II). The indicators play also

a homogenisation role by hiding the complexity of the signals

in which anomalies are looked for (in a way similar to the

one used in [4], for instance). On the statistical point of view,

the proposed approach brings a form of automated tuning: a

test recommended by an expert can be included in numerous

variants, with a different set of meta-parameters per variant.

The feature selection process keep then the most adapted

parameters.

This methodology can be applied in various areas. This

article focuses on aircraft engine health monitoring which

aims at detecting early signs of failure to prevent from the

occurrence of operational events (such as air turn back). This

detection is done through the analysis of data originating

from sensors embedded in the engine. For example, messages

on the Aircraft Communications Addressing and Reporting

System (ACARS2) give an overview of engines status,

and provide useful measurements at specific moments that

have been deemed important by experts. Flight after flight,

2The ACARS is a standard system used to transmit messages between an
aircraft and ground stations, see http://en.wikipedia.org/wiki/
ACARS for details.



measurements, such as exhausted gas temperature (EGT) and

high pressure (HP) core speed (N2) (see Figure 1) form a

time series on which anomaly detection may be applied to

detect early signs of failure.

Fig. 1. Localization of some sensors embedded in an engine.

As aircraft engines are extremely reliable, labelled data

including early signs of failure are very scarce and not in a

sufficient quantity to build reliable fully automated detection

systems. The methodology proposed in this paper is therefore

evaluated on simulated data in order to demonstrate its

efficiency and to justify the very costly collection of labelled

data.

The rest of the paper is organized as follows. Section II

describes in more details Snecma’s engine health monitoring

context which motivates this study. Section III presents in

more details the proposed methodology. Section IV presents

the results obtained on simulated data.

II. APPLICATION CONTEXT

A. Introduction and Objectives

The very high reliability of aircraft engines is obtained by

regular and scheduled maintenance operations but also via

engine health monitoring. This process consists in ground

based monitoring of numerous measurements made on the

engine and its environment during the aircraft operation. One

of the goal of this monitoring it to detect abnormal behavior

of the engine that are early signs of potential failures.

On the one hand, missing such an early sign can lead

to operational events such as air turn back and delay and

cancellation. Such operational events can cause customers

disturbance but also higher maintenance costs. On the other

hand, a false alarm (detecting an anomaly when the engine

is behaving normally) can have costly consequences from

a useless inspection operation to a useless engine removal

procedure. This has a high cost both money wise and in terms

of customers’ disturbance.

Thus to minimize false alarm, each potential anomaly

is analyzed by human operators. They are in charge of

confirming the anomaly and in identifying its probable origin.

This latter part allows to estimate the repair costs (when

needed) and/or the immobilization time. (Note that human

operators submit their recommendations to the company

owing the engine.)

The long term goal of engine manufacturers is to help

companies to minimize their maintenance costs by giving

maintenance recommendations as accurate as possible. This

means improving the detection performances of early signs of

failure. However, the context makes this goal more difficult

to achieve than in other situations because of two factors.

Firstly, human operators have a very important role in the

current industrial process: the goal is to help them reach

improved decisions thanks to a grey box classifier, mainly

because the complexity of the problem seems to prevent any

fully automated decision making. Secondly, the reliability of

current engines makes very scarce data that display abnormal

behavior. In practice, the scheduled maintenance tends to

prevent early signs of anomaly to manifest. In addition, the

labelling of abnormal data has to be done by experts, which

makes it very expensive (especially considering the scarceness

just mentioned).

The methodology proposed in this paper aims at addressing

the first factor by leveraging expert knowledge and relying

on feature selection to keep only a small number of binary

indicators. In order to justify the costs of collecting a large

set of labelled data, and thus to address the second factor,

the methodology is evaluated on artificial data.

B. Health monitoring

As mentioned in the Introduction, aircraft engines are

equipped with multiple sensors which measure several phys-

ical quantities such as the oil pressure, high pressure and

low pressure core speed, air temperature, oil temperature, etc.

(See Figure 1.) Engine health monitoring is mainly based on

such flight data.

Monitoring is strongly based on experts knowledge and

field experience. Faults and early signs of failures are

identified from suitable measurements associated to adapted

computational transformations of the data. We refer the reader

to e.g. [5] for examples of the types of measurements and

transformations that can be used in practice.

Fig. 2. Examples of results after preprocessing computation use to remove
flight context dependency.

One of the main difficulty faced by the experts consists



in removing from the measurements any dependency from

the flight context. (See Figure 2 for an example of such

a transformation.) This normalization process is extremely

important as it allows one to assume stationarity of the residual

signal and therefore to leverage change detection methods.

In practice, experts build some anomaly score from those

stationarity hypothesis and when the score passes a limit, the

corresponding early sign of failure is signalled to the human

operator. See [6], [7] and [8] for some examples.

One of the problems induced by this general approach

is that experts are generally specialized on a particular

subsystem, thus each anomaly score is mainly focused on

a particular subsystem despite the need of a diagnostic of

the whole system. This task is done by human operator who

collects all available information about the desired engine.

One of the benefits of the proposed methodology is its ability

to handle binary indicators coming from all subsystems in

an integrated way, as explained in the next section.

III. METHODOLOGY

The proposed methodology aims at combining expert

knowledge to supervised classification in order to provide

accurate and interpretable automatic anomaly detection in

the context of complex system monitoring. It is based on

the selection and combination of a large number of binary

indicators. While this idea is not entirely true (see e.g., [3],

[4]), the methodology proposed here has some specific aspects.

Rather than relying on very basic detectors as in [3] or on

fixed high level expertly designed ones as in [4], our method

takes an intermediate approach: it varies the parameters of a

set of expertly designed parametric indicators. In addition, it

aims at providing an interpretable model. This section details

the proposed procedure.

A. Expert knowledge

As explained in the introduction, this article focuses on

change detection based on statistical techniques [2]. In many

contexts, experts can generally describe more or less explicitly

the type of change they are expecting for some specific (early

signs of) anomalies. In the proposed application context, one

can observe for instance mean shift as in Figure 4 or variance

shift as in Figure 3.

More generally, experts can described aggregation and

transformation techniques of raw signals that lead to quan-

tities which should behave in a “reasonable manner” under

normal circumstances. This can in general be summarized by

computing a distance between the actual quantities and there

expected values.

B. Exploring parameter space

In practice however, experts can seldom provide detailed

parameter settings for the aggregation and transformation

techniques they recommend. Fixing the threshold above which

a distance from the “reasonable values” becomes critical is

also difficult.

Let us consider for illustration purpose that the expert

recommends to look for shifts in mean of a certain quantity

Fig. 3. Variance shift in a real world time series extracted from ACARS
messages.

Fig. 4. Mean shift in a real world time series extracted from ACARS
messages.

as early signs of a specific anomaly (as in Figure 4). If the

expert believes the quantity to be normally distributed with a

fixed variance, then a natural test would be Student’s t-test. If

the expert has no strong priors on the distribution, a natural

test would be the MannWhitney U test.

Then, in both cases, one has to assess the scale of the shift.

Indeed, those tests work by comparing summary statistics of

two populations, before and after a possible change point. To

define the populations, the expert has to specify the length of

the time windows to consider before and after the possible

change point: this is the expected scale at which the shift

will appear. In most cases, the experts can only give a rough

idea of the scale.

Given the choice of the test, of its scale and of a change

point, one can construct a statistic, whose value can be

turned into a p-value based on its distribution under the

null hypothesis (which would be stationarity in this case).

To take a decision, one has to choose a level to which the

p-value will be compared.

So all in one, looking for a shift in mean can be done by

choosing at least three parameters: the type of the test, the

scale at which the shift can occur and the level of the test. For

all these parameters, experts can give only rough guidelines, in

general. The proposed methodology consists in considering (a

subset of) all possible combinations of parameters compatible

with expert knowledge to generate binary indicators. In the



present example, this means choosing a finite set of scales

and a finite set of levels, and computing the decision of

the tests obtained by applying both solutions (t-test and U

test) for all the combinations of levels and scales. This is a

form of indirect grid search procedures for meta-parameter

optimisation.

C. Confirmatory indicators

Finally, as pointed out before, aircraft engines are extremely

reliable, a fact that increases the difficulty in balancing

sensibility and specificity of anomaly detectors. In order

to alleviate this difficulty, high level confirmatory indicators

are built from low level tests. For instance, if we monitor

the evolution of a quantity on a long period compared to the

expected time scale of anomalies, we can compare the number

of times the null hypothesis of a test has been rejected on

the long period with the number of times it was not rejected,

and turn this into a binary indicator with a majority rule.

D. Decision

To summarize, we construct parametric anomaly scores

from expert knowledge, together with acceptable parameter

ranges. By exploring those ranges, we generate numerous

(possible hundreds of) binary indicators. Each indicator can

be linked to an expertly designed score with a specific set

of parameters and thus is supposedly easy to interpret by

operators. Notice that while we focused in this presentation

on temporal data, this framework can be applied to any data

source.

The final decision step consists in classifying these high

dimensional binary vectors in order to further discriminate

between seriousness of anomalies and/or sources (in terms of

subsystems of the engine, for instance). For this, a labelled

data set is obviously needed.

In the considered context, black box modelling is not

acceptable, so while numerous classification algorithms are

available (see e.g. [9]), we shall focus on interpretable ones.

Random Forests [10] are chosen as the reference method

as they are very adapted to binary indicators and to high

dimensional data. They are also known to be robust and to

provide state-of-the-art classification performances at a very

small computational cost. While they are not as interpretable

as their ancestors CART [11], they provide at least variable

importance measures that can be used to identify the most

important indicators.

Another classification algorithms used in this paper is

naive Bayes classifier [12] which is also appropriate for high

dimensional data. They are known to provide good results

despite the strong assumption of the independence of features

given the class. In addition, decisions taken by a naive Bayes

classifier are very ease to understand thanks to the estimation

of the conditional probabilities of the feature in each class.

Those quantities can be shown to the human operator as

references.

Finally, while including hundreds of indicators is important

to give a broad coverage of the parameter spaces of the

expert scores and thus to maximize the probability of detecting

anomalies, it seems obvious that some redundancy will appear.

Unlike [4] who choose features by random projection, the

proposed methodology favors interpretable solutions, even

at the expense of the classification accuracy: the goal is to

help the human operator, not to replace her/him. Thus feature

selection [13] is more appropriate. The reduction of number of

features will ease the interpretation by limiting the quantity of

information transmitted to the operators in case of a detection

by the classifier. Among the possible solutions, we choose

to use the Mutual information based technique Minimum

Redundancy Maximum Relevance (mRMR, [14]) which was

reported to give excellent results on high dimensional data

(see also [3] for another possible choice).

IV. EXPERIMENTS

As pointed out in the introduction, labelling a sufficiently

large data set in the context of engine health monitoring will

be a very costly task, mainly because of the strong reliability

of those engines. The proposed methodology is therefore

evaluated on simulated data which have been modelled based

on real world data such as the ones shown on Figures 3 and

4.

A. Simulated data

We consider univariate time series of variable length in

which three types of shifts can happen: the mean and variance

shifts described in Section III-A, together with a trend shift

described below. Two data sets are generated, A and B.

In both cases, it is assumed that expert based normalization

has been performed. Therefore when no shift in the data

distribution occurs, we observe a stationary random noise

modeled by the standard Gaussian distribution, that is n

random variables X1, . . . , Xn independent and identically

distributed according to N (µ = 0, σ2 = 1). Signals have a

length chosen uniformly at random between 100 and 200

observations (each signal has a specific length).

The three types of shift are:

1) a variance shift: in this case, observations are distributed

according to N (µ = 0, σ2) with σ2 = 1 before the

change point and σ chosen uniformly at random in

[1.01, 5] after the change point;

2) a mean shift: in this case, observations are distributed

according to N (µ, σ2 = 1) with µ = 0 before the

change point and µ chosen uniformly at random in

[1.01, 5] after the change point in set A. Set B is more

difficult on this aspect as µ after the change point is

chosen uniformly at random in [0.505, 2.5];
3) a trend shift: in this case, observations are distributed

according to N (µ, σ2 = 1) with µ = 0 before the

change point and µ increasing linearly from 0 from

the change point with a slope of chosen uniformly at

random in [0.02, 3].

Assume that the signal contains n observations, then the

change point is chosen uniformly at random between the
2n

10
-th observation and the 8n

10
-th observation.

We generate according to this procedure two balanced data

set with 6000 observations corresponding to 3000 observations



with no anomaly, and 1000 observations for each of the three

types of anomalies. The only difference between data set A

and data set B is the amplitude of the mean shift which is

smaller in B, making the classification harder.

B. Indicators

As explained in Section III, binary indicators are con-

structed from expert knowledge by varying parameters,

including scale and position parameters. In the present context,

sliding windows are used: for each position of the window,

a classical statistical test is conducted to decide whether a

shift in the signal occurs at the center of the window.

The “expert” designed tests are here:

1) the MannWhitneyWilcoxon U test (non parametric test

for shift in mean);

2) the two sample Kolmogorov-Smirnov test (non para-

metric test for differences in distributions);

3) the F-test for equality of variance (parametric test based

on a Gaussian hypothesis).

The direct parameters of those tests are the size of the window

which defines the two samples (30, 50, and min(n− 2, 100)
where n is the signal length) and the level of significance of

the test (0.005, 0.1 and 0.5). Notice that those tests do not

include a slope shift detection.

Then, confirmatory indicators are generated, as explained

in Section III-C:

1) for each underlying test, the derived binary indicator

takes the value one if on β×m windows out of m, the

test detects a change. Parameters are the test itself with

its parameters, the value of β (we considered 0.1, 0.3

and 0.5) and the number of observations in common

between two consecutive windows (the length of the

window minus 1, 5 or 10);

2) for each underlying test, the derived binary indicator

takes the value one if on β ×m consecutive windows

out of m, the test detects a change (same parameters);

3) for each underlying test, the derived binary indicator

takes the value one if there are 5 consecutive windows

such that the test detects a change on at least k of these

5 consecutive windows (similar parameters where β is

replaced by k).

In addition, based on expert recommendation, all those

indicators are applied both to the original signal and to

a smoothed signal (using a simple moving average of 5

observations).

More than 50 different configurations are used for each

indicator, leading to a total number of 810 binary indicators

(it should be noted that only a subset of all possible

configurations is included into this indicator vector).

C. Performance analysis

Each data set is split in a balanced way into a learning set

with 1000 signals and a test set with 5000 signals. We report

the global classification accuracy (the classification accuracy

is the percentage of correct predictions, regardless of the

class) on the learning set to monitor possible over fitting.

Data set Training set acc. OOB acc. Test set average acc.

A 0.9770 0.9228 0.9352 (0.0100)
B 0.9709 0.9118 0.9226 (0.0108)

TABLE I

CLASSIFICATION ACCURACY OF THE RANDOM FOREST USING THE 810

BINARY INDICATORS. FOR THE TEST SET, WE REPORT THE AVERAGE

CLASSIFICATION ACCURACY AND ITS STANDARD DEVIATION BETWEEN

PARENTHESIS.

The performances of the methodology are evaluated on 10

balanced subsets of size 500 from the 5000 signals’ test set.

This allows to evaluate both the average performances and

their variability. For the Random Forest, we also report the

out-of-bag (oob) estimate of the classification accuracy (this

is a byproduct of the bootstrap procedure used to construct

the forest, see [10]). Finally, we use confusion matrices and

class specific accuracy to gain more insights on the results

when needed.

D. Performances with all indicators

As indicators are expertly designed and should cover the

useful parameter range of the tests, it is assumed that the best

classification performances should be obtained when using

all of them, up to the effects of the curse of dimensionality.

Table I reports the global classification accuracy of the

Random Forest, using all the indicators. As expected, Random

Forests suffer neither from the curse of dimensionality nor

from strong over fitting (the test set performances are close to

the learning set ones). Table II reports the same performance

indicator for the Naive Bayes classifier. Those performances

are significantly lower than the one obtained by the Random

Forest. As shown by the confusion matrix on Table III, the

classification errors are not concentrated on one class (even if

the errors are not perfectly balanced). This tends to confirm

that the indicators are adequate to the task (this was already

obvious from the Random Forest).

Data set Training set accuracy Test set average accuracy

A 0.7856 0.7718 (0.0173)
B 0.7545 0.7381 (0.0178)

TABLE II

CLASSIFICATION ACCURACY OF THE NAIVE BAYES CLASSIFIER USING

THE 810 BINARY INDICATORS. FOR THE TEST SET, WE REPORT THE

AVERAGE CLASSIFICATION ACCURACY AND ITS STANDARD DEVIATION

BETWEEN PARENTHESIS.

E. Feature selection

While the Random Forest give very satisfactory results, it

would be unacceptable for human operators as it operates in a

black box way. While the indicators have simple interpretation,

it would be unrealistic to ask to an operator to review 810

binary values to understand why the classifier favors one

class other the others. In addition, the performances of the

Naive Bayes classifier are significantly lower than those of



0 1 2 3 total

0 1759 667 45 29 2500
1 64 712 50 3 829
2 7 2 783 37 829
3 32 7 195 595 829

TABLE III

DATA SET A: CONFUSION MATRIX WITH ALL INDICATORS FOR NAIVE

BAYES CLASSIFIER ON THE FULL TEST SET.

the Random Forest one. Both drawbacks favor the use of a

feature selection procedure.

As explained in Section III-D, the feature selection relies on

the mRMR ranking procedure. A forward approach is used to

evaluate how many indicators are needed to achieve acceptable

predictive performances. Notice that in the forward approach,

indicators are added in the order given by mRMR and then

never removed. As mRMR takes into account redundancy

between the indicators, this should not be a major issue. Then

for each number of indicators, a Random Forest and a Naive

Bayes classifier are constructed and evaluated.
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Fig. 5. Data set A Random Forest: classification accuracy on learning
set (circle) as a function of the number of indicators. A boxplot gives
the classification accuracies on the test subsets, summarized by its median
(black dot inside a white circle). The estimation of those accuracies by the
out-of-bag (oob) bootstrap estimate is shown by the crosses.

Figures 5, 6, 7 and 8 summarize the results for the 100

first indicators. The classification accuracy of the Random

Forest increases almost monotonously with the number of

indicators, but after roughly 25 to 30 indicators (depending

on the data set), performances on the test set tend to stagnate

(this is also the case of the out-of-bag estimate of the

performances, which shows, as expected, that the number of

indicators could be selected using this measure). In practice,

this means that the proposed procedure can be used to select

the relevant indicators implementing this way an automatic

tuning procedure for the parameters of the expertly designed

scores.

Results for the Naive Bayes classifier are slightly more

complex in the case of the second data set, but they confirm
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Fig. 6. Data set B Random Forest, see Figure 5 for details.
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Fig. 7. Data set A Naive Bayes classifier: classification accuracy on
learning set (circle) as a function of the number of indicators. A boxplot
gives the classification accuracies on the test subsets, summarized by its
median (black dot inside a white circle).
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Fig. 8. Data set B Naive Bayes classifier, see Figure 7 for details.
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Fig. 9. Data set A Naive Bayes classifier: classification error for each
class on the training set (solid lines) and on the test set (dotted lines, average
accuracies only).

that indicator selection is possible. Moreover, reducing the

number of indicators has here a very positive effect on

the classification accuracy of the Naive Bayes classifier

which reaches almost as good performances as the Random

Forest. Notice that the learning set performances of the

Naive Bayes classifier are almost identical to its test set

performances (which exhibit almost no variability over the

slices of the full test set). This is natural because the classifier

is based on the estimation of the probability of observing

a 1 value independently for each indicator, conditionally on

the class. The learning set contains at least 250 observations

for each class, leading to a very accurate estimation of those

probabilities and thus to very stable decisions. In practice

one can therefore select the optimal number of indicators

using the learning set performances, without the need of a

cross-validation procedure.

It should be noted that significant jumps in performances

can be observed in all cases. This might be an indication

that the ordering provided by the mRMR procedure is

not optimal. A possible solution to reach better indicator

subsets would be to use a wrapper approach, leveraging

the computational efficiency of both Random Forest and

Naive Bayes construction. Meanwhile Figure 9 shows in

more detail this phenomenon by displaying the classification

error class by class, as a function of the number of indicators,

in the case of data set A. The figure shows the difficulty of

discerning between mean shift and trend shift (for the latter,

no specific test have been included, on purpose). But as the

strong decrease in classification error when the 23-th indicator

is added concerns both classes (mean shift and trend shift),

the ordering provided by mRMR could be questioned.

F. Indicator selection

Based on results shown on Figures 7 and 8, one can select

an optimal number of binary indicators, while enforcing a

reasonable limit on this number to avoid flooding the human

operator with to many results. For instance Table IV gives

the classification accuracy of the Naive Bayes classifier using

the optimal number of binary indicators between 1 and 30.

Data set Training set acc. Test set average acc. # of indicators

A 0.8958 0.8911 (0.0125) 23
B 0.8828 0.8809 (0.0130) 11

TABLE IV

CLASSIFICATION ACCURACY OF THE NAIVE BAYESIAN NETWORK USING

THE OPTIMAL NUMBER BINARY INDICATORS BETWEEN 1 AND 30. FOR

THE TEST SET, WE REPORT THE AVERAGE CLASSIFICATION ACCURACY

AND ITS STANDARD DEVIATION BETWEEN PARENTHESIS.

While the performances are not as good as the ones of the

Random Forest, they are much improved compared to the ones

reported in Table II. In addition, the selected indicators can

be shown to the human operator together with the estimated

probabilities of getting a positive result from each indicator,

conditionally on each class, shown on Table V. For instance

here the first selected indicator, confu(2, 3), is a confirmation

indicator for the U test. It is positive when there are 2 windows

out of 3 consecutive ones on which a U test was positive.

The Naive Bayes classifier uses the estimated probabilities

to reach a decision: here the indicator is very unlikely to be

positive if there is no change or if the change is a variance

shift. On the contrary, it is very likely to be positive when

there is a mean or a trend shift. While the table does not

“explain” the decisions made by the Naive Bayes classifier, it

gives easily interpretable hints to the human operator.

V. CONCLUSION AND PERSPECTIVES

This paper proposes a general methodology that combines

expert knowledge with feature selection and automatic clas-

sification to design accurate anomaly detector and classifier.

The main idea is to build from expert knowledge parametric

anomaly scores associated to range of plausible parameters.

From those scores, hundreds of binary indicators are generated

in a way that covers the parameter space as well as introduce

simple confirmation indicators. This turns anomaly detection

into a classification problem with a very high number of binary

features. Using a feature selection technique, one can reduce

the number of useful indicators to a humanly manageable

number. This allows a human operator to understand at least

partially how a decision is reached by an automatic classifier.

This is favored by the choice of the indicators which are

based on expert knowledge. A very interesting byproduct of

the methodology is that it can work on very different original

data as long as expert decision can be modeled by a set of

parametric anomaly scores. This was illustrated by working

on signals of different lengths.

The methodology has been shown sound using simulated

data. Using a reference high performance classifier, Random

Forests, the indicator generation technique covers sufficiently

the parameter space to obtain high classification rate. Then,

the feature selection mechanism (here a simple forward

technique based on mRMR) leads to a reduced number of



type of indicator no change variance mean trend

confu(2,3) 0.010333 0.011 0.971 0.939
F test 0.020667 0.83 0.742 0.779
U test 0.027333 0.03 0.977 0.952

ratef(0.1) 0.0016667 0.69 0.518 0.221
confu(4,5) 0.034333 0.03 0.986 0.959
confu(3,5) 0.0013333 0.001 0.923 0.899

U test 0.02 0.022 0.968 0.941
F test 0.042 0.853 0.793 0.813

rateu(0.1) 0.00033333 0.001 0.906 0.896
confu(4,5) 0.019 0.02 0.946 0.927
conff(3,5) 0.052333 0.721 0.54 0.121

U test 0.037667 0.038 0.983 0.951
KS test 0.016 0.294 0.972 0.936

confu(3,5) 0.049 0.043 0.988 0.963
F test 0.030667 0.841 0.77 0.801
U test 0.043 0.043 0.981 0.963

lseqf(0.3) 0.0093333 0.749 0.59 0.36
rateu(0.1) 0.001 0.002 0.896 0.895
lsequ(0.1) 0.062667 0.06 0.992 0.949
confu(3,5) 0.025667 0.021 0.963 0.936
lseqf(0.3) 0.008 0.732 0.656 0.695
KS test 0.016333 0.088 0.955 0.93

confu(3,5) 0 0 0.003 0.673

TABLE V

THE 23 BEST INDICATORS ACCORDING TO MRMR FOR DATA SET A.

CONFU(K,N) CORRESPONDS TO A POSITIVE MANNWHITNEYWILCOXON

U TEST ON K WINDOWS OUT OF N CONSECUTIVE ONES. CONFF(K,N) IS

THE SAME THING FOR THE F-TEST. RATEF(α) CORRESPONDS TO A

POSITIVE F-TEST ON α×m WINDOWS OUT OF m. LSEQF(α)

CORRESPONDS TO A POSITIVE F-TEST ON α×m CONSECUTIVE

WINDOWS OUT OF m. LSEQU(α) IS THE SAME FOR A U TEST. DETAILED

PARAMETERS OF THE INDICATORS HAVE BEEN OMITTED FOR BREVITY.

indicators (23 for one of the data set) with good predictive

performances when paired with a simpler classifier, the Naive

Bayes classifier. As shown in the experiments, the class

conditional probabilities of obtaining a positive value for

those indicators provide interesting insights on the way the

Naive Bayes classifier takes a decision.

In order to justify the costs of collecting a sufficiently large

real world labelled data set in our context (engine health

monitoring), additional experiments are needed. In particular,

multivariate data must be studied in order to simulate the case

of a complex system made of numerous sub-systems. This

will naturally lead to more complex anomaly models. We

also observed possible limitations of the feature selection

strategy used here as the performances displayed abrupt

changes during the forward procedure. More computationally

demanding solutions, namely wrapper ones, will be studied

to confirm this point.

It is also important to notice that the classification accuracy

is not the best way of evaluating the performances of a

classifier in the health monitoring context. Firstly, health

monitoring involves intrinsically a strong class imbalance [15].

Secondly, health monitoring is a cost sensitive area because

of the strong impact on airline profit of an unscheduled

maintenance. It is therefore important to take into account

specific asymmetric misclassification cost to get a proper

performance evaluation.
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