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Anomaly Detection Based on Indicators Aggregation Tsirizo Rabenoro

Automatic anomaly detection is a major issue in various areas. Beyond mere detection, the identification of the source of the problem that produced the anomaly is also essential. This is particularly the case in aircraft engine health monitoring where detecting early signs of failure (anomalies) and helping the engine owner to implement efficiently the adapted maintenance operations (fixing the source of the anomaly) are of crucial importance to reduce the costs attached to unscheduled maintenance.

This paper introduces a general methodology that aims at classifying monitoring signals into normal ones and several classes of abnormal ones. The main idea is to leverage expert knowledge by generating a very large number of binary indicators. Each indicator corresponds to a fully parametrized anomaly detector built from parametric anomaly scores designed by experts. A feature selection method is used to keep only the most discriminant indicators which are used at inputs of a Naive Bayes classifier. This give an interpretable classifier based on interpretable anomaly detectors whose parameters have been optimized indirectly by the selection process. The proposed methodology is evaluated on simulated data designed to reproduce some of the anomaly types observed in real world engines.

actual data distribution. While this is obvious for parametric tests, it also applies to non parametric ones as, in general, they are not as efficient as parametric ones when the data distribution is known. In addition, statistical methods rely on meta-parameters, such as the length of the time window on which a change is looked for, that have to be tuned to give maximal efficiency.

This article proposes to combine a (supervised) classification approach to statistical techniques in order to obtain an automated anomaly detection system that leverages both expert knowledge and labelled data sets. The main idea consists in building from expert knowledge a large number of binary indicators that correspond to anomaly detection decisions taken by statistical tests suggested by the experts, with varying (meta)-parameters. Then a feature selection method is applied to the high dimensional binary vectors to select the most discriminative ones, using a labeled data set. Finally, a classifier is trained on the reduced binary vectors to provide automatic detection for future samples.

This approach has numerous advantages over using classification or statistical tests only. On the classification point of view, it has been shown in e.g. [START_REF] Fleuret | Fast binary feature selection with conditional mutual information[END_REF] that selecting relevant binary features among a large number of simple features can lead to very high classification accuracy in complex tasks. In addition, using features designed by experts allows one to at least partially interpret the way the classifier is making decisions as none of the features will be off a black box nature. This is particularly important in our application context (see Section II). The indicators play also a homogenisation role by hiding the complexity of the signals in which anomalies are looked for (in a way similar to the one used in [START_REF] Hegedus | Methodology for behavioral-based malware analysis and detection using random projections and k-nearest neighbors classifiers[END_REF], for instance). On the statistical point of view, the proposed approach brings a form of automated tuning: a test recommended by an expert can be included in numerous variants, with a different set of meta-parameters per variant. The feature selection process keep then the most adapted parameters.

This methodology can be applied in various areas. This article focuses on aircraft engine health monitoring which aims at detecting early signs of failure to prevent from the occurrence of operational events (such as air turn back). This detection is done through the analysis of data originating from sensors embedded in the engine. For example, messages on the Aircraft Communications Addressing and Reporting System (ACARS 2 ) give an overview of engines status, and provide useful measurements at specific moments that have been deemed important by experts. Flight after flight, measurements, such as exhausted gas temperature (EGT) and high pressure (HP) core speed (N2) (see Figure 1) form a time series on which anomaly detection may be applied to detect early signs of failure. As aircraft engines are extremely reliable, labelled data including early signs of failure are very scarce and not in a sufficient quantity to build reliable fully automated detection systems. The methodology proposed in this paper is therefore evaluated on simulated data in order to demonstrate its efficiency and to justify the very costly collection of labelled data.

The rest of the paper is organized as follows. Section II describes in more details Snecma's engine health monitoring context which motivates this study. Section III presents in more details the proposed methodology. Section IV presents the results obtained on simulated data.

II. APPLICATION CONTEXT

A. Introduction and Objectives

The very high reliability of aircraft engines is obtained by regular and scheduled maintenance operations but also via engine health monitoring. This process consists in ground based monitoring of numerous measurements made on the engine and its environment during the aircraft operation. One of the goal of this monitoring it to detect abnormal behavior of the engine that are early signs of potential failures.

On the one hand, missing such an early sign can lead to operational events such as air turn back and delay and cancellation. Such operational events can cause customers disturbance but also higher maintenance costs. On the other hand, a false alarm (detecting an anomaly when the engine is behaving normally) can have costly consequences from a useless inspection operation to a useless engine removal procedure. This has a high cost both money wise and in terms of customers' disturbance.

Thus to minimize false alarm, each potential anomaly is analyzed by human operators. They are in charge of confirming the anomaly and in identifying its probable origin. This latter part allows to estimate the repair costs (when needed) and/or the immobilization time. (Note that human operators submit their recommendations to the company owing the engine.)

The long term goal of engine manufacturers is to help companies to minimize their maintenance costs by giving maintenance recommendations as accurate as possible. This means improving the detection performances of early signs of failure. However, the context makes this goal more difficult to achieve than in other situations because of two factors. Firstly, human operators have a very important role in the current industrial process: the goal is to help them reach improved decisions thanks to a grey box classifier, mainly because the complexity of the problem seems to prevent any fully automated decision making. Secondly, the reliability of current engines makes very scarce data that display abnormal behavior. In practice, the scheduled maintenance tends to prevent early signs of anomaly to manifest. In addition, the labelling of abnormal data has to be done by experts, which makes it very expensive (especially considering the scarceness just mentioned).

The methodology proposed in this paper aims at addressing the first factor by leveraging expert knowledge and relying on feature selection to keep only a small number of binary indicators. In order to justify the costs of collecting a large set of labelled data, and thus to address the second factor, the methodology is evaluated on artificial data.

B. Health monitoring

As mentioned in the Introduction, aircraft engines are equipped with multiple sensors which measure several physical quantities such as the oil pressure, high pressure and low pressure core speed, air temperature, oil temperature, etc. (See Figure 1.) Engine health monitoring is mainly based on such flight data.

Monitoring is strongly based on experts knowledge and field experience. Faults and early signs of failures are identified from suitable measurements associated to adapted computational transformations of the data. We refer the reader to e.g. [START_REF] Rabenoro | Instants extraction for aircraft engine monitoring[END_REF] for examples of the types of measurements and transformations that can be used in practice. One of the main difficulty faced by the experts consists in removing from the measurements any dependency from the flight context. (See Figure 2 for an example of such a transformation.) This normalization process is extremely important as it allows one to assume stationarity of the residual signal and therefore to leverage change detection methods. In practice, experts build some anomaly score from those stationarity hypothesis and when the score passes a limit, the corresponding early sign of failure is signalled to the human operator. See [START_REF] Côme | Aircraft engine health monitoring using self-organizing maps[END_REF], [START_REF] Flandrois | Expertise transfer and automatic failure classification for the engine start capability system[END_REF] and [START_REF] Lacaille | A maturation environment to develop and manage health monitoring algorithms[END_REF] for some examples.

One of the problems induced by this general approach is that experts are generally specialized on a particular subsystem, thus each anomaly score is mainly focused on a particular subsystem despite the need of a diagnostic of the whole system. This task is done by human operator who collects all available information about the desired engine. One of the benefits of the proposed methodology is its ability to handle binary indicators coming from all subsystems in an integrated as explained in the next section.

III. METHODOLOGY

The proposed methodology aims at combining expert knowledge to supervised classification in order to provide accurate and interpretable automatic anomaly detection in the context of complex system monitoring. It is based on the selection and combination of a large number of binary indicators. While this idea is not entirely true (see e.g., [START_REF] Fleuret | Fast binary feature selection with conditional mutual information[END_REF], [START_REF] Hegedus | Methodology for behavioral-based malware analysis and detection using random projections and k-nearest neighbors classifiers[END_REF]), the methodology proposed here has some specific aspects. Rather than relying on very basic detectors as in [START_REF] Fleuret | Fast binary feature selection with conditional mutual information[END_REF] or on fixed high level expertly designed ones as in [START_REF] Hegedus | Methodology for behavioral-based malware analysis and detection using random projections and k-nearest neighbors classifiers[END_REF], our method takes an intermediate approach: it varies the parameters of a set of expertly designed parametric indicators. In addition, it aims at providing an interpretable model. This section details the proposed procedure.

A. Expert knowledge

As explained in the introduction, this article focuses on change detection based on statistical techniques [START_REF] Basseville | Detection of abrupt changes: theory and applications[END_REF]. In many contexts, experts can generally describe more or less explicitly the type of change they are expecting for some specific (early signs of) anomalies. In the proposed application context, one can observe for instance mean shift as in Figure 4 or variance shift as in Figure 3.

More generally, experts can described aggregation and transformation techniques of raw signals that lead to quantities which should behave in a "reasonable manner" under normal circumstances. This can in general be summarized by computing a distance between the actual quantities and there expected values.

B. Exploring parameter space

In practice however, experts can seldom provide detailed parameter settings for the aggregation and transformation techniques they recommend. Fixing the threshold above which a distance from the "reasonable values" becomes critical is also difficult.

Let us consider for illustration purpose that the expert recommends to look for shifts in mean of a certain quantity as early signs of a specific anomaly (as in Figure 4). If the expert believes the quantity to be normally distributed with a fixed variance, then a natural test would be Student's t-test. If the expert has no strong priors on the distribution, a natural test would be the MannWhitney U test.

Then, in both cases, one has to assess the scale of the shift. Indeed, those tests work by comparing summary statistics of two populations, before and after a possible change point. To define the populations, the expert has to specify the length of the time windows to consider before and after the possible change point: this is the expected scale at which the shift will appear. In most cases, the experts can only give a rough idea of the scale.

Given the choice of the test, of its scale and of a change point, one can construct a statistic, whose value can be turned into a p-value based on its distribution under the null hypothesis (which would be stationarity in this case). To take a decision, one has to choose a level to which the p-value will be compared. So all in one, looking for a shift in mean can be done by choosing at least three parameters: the type of the test, the scale at which the shift can occur and the level of the test. For all these parameters, experts can give only rough guidelines, in general. The proposed methodology consists in considering (a subset of) all possible combinations of parameters compatible with expert knowledge to generate binary indicators. In the present example, this means choosing a finite set of scales and a finite set of levels, and computing the decision of the tests obtained by applying both solutions (t-test and U test) for all the combinations of levels and scales. This is a form of indirect grid search procedures for meta-parameter optimisation.

C. Confirmatory indicators

Finally, as pointed out before, aircraft engines are extremely reliable, a fact that increases the difficulty in balancing sensibility and specificity of anomaly detectors. In order to alleviate this difficulty, high level confirmatory indicators are built from low level tests. For instance, if we monitor the evolution of a quantity on a long period compared to the expected time scale of anomalies, we can compare the number of times the null hypothesis of a test has been rejected on the long period with the number of times it was not rejected, and turn this into a binary indicator with a majority rule.

D. Decision

To summarize, we construct parametric anomaly scores from expert knowledge, together with acceptable parameter ranges. By exploring those ranges, we generate numerous (possible hundreds of) binary indicators. Each indicator can be linked to an expertly designed score with a specific set of parameters and thus is supposedly easy to interpret by operators. Notice that while we focused in this presentation on temporal data, this framework can be applied to any data source.

The final decision step consists in classifying these high dimensional binary vectors in order to further discriminate between seriousness of anomalies and/or sources (in terms of subsystems of the engine, for instance). For this, a labelled data set is obviously needed.

In the considered context, black box modelling is not acceptable, so while numerous classification algorithms are available (see e.g. [START_REF] Kotsiantis | Supervised machine learning: A review of classification techniques[END_REF]), we shall focus on interpretable ones. Random Forests [START_REF] Breiman | Random forests[END_REF] are chosen as the reference method as they are very adapted to binary indicators and to high dimensional data. They are also known to be robust and to provide state-of-the-art classification performances at a very small computational cost. While they are not as interpretable as their ancestors CART [START_REF] Breiman | Classification and regression trees[END_REF], they provide at least variable importance measures that can be used to identify the most important indicators.

Another classification algorithms used in this paper is naive Bayes classifier [START_REF] Koller | Probabilistic graphical models: principles and techniques[END_REF] which is also appropriate for high dimensional data. They are known to provide good results despite the strong assumption of the independence of features given the class. In addition, decisions taken by a naive Bayes classifier are very ease to understand thanks to the estimation of the conditional probabilities of the feature in each class. Those quantities can be shown to the human operator as references.

Finally, while including hundreds of indicators is important to give a broad coverage of the parameter spaces of the expert scores and thus to maximize the probability of detecting anomalies, it seems obvious that some redundancy will appear. Unlike [START_REF] Hegedus | Methodology for behavioral-based malware analysis and detection using random projections and k-nearest neighbors classifiers[END_REF] who choose features by random projection, the proposed methodology favors interpretable solutions, even at the expense of the classification accuracy: the goal is to help the human operator, not to replace her/him. Thus feature selection [START_REF] Guyon | An introduction to variable and feature selection[END_REF] is more appropriate. The reduction of number of features will ease the interpretation by limiting the quantity of information transmitted to the operators in case of a detection by the classifier. Among the possible solutions, we choose to use the Mutual information based technique Minimum Redundancy Maximum Relevance (mRMR, [START_REF] Peng | Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy[END_REF]) which was reported to give excellent results on high dimensional data (see also [START_REF] Fleuret | Fast binary feature selection with conditional mutual information[END_REF] for another possible choice).

IV. EXPERIMENTS

As pointed out in the introduction, labelling a sufficiently large data set in the context of engine health monitoring will be a very costly task, mainly because of the strong reliability of those engines. The proposed methodology is therefore evaluated on simulated data which have been modelled based on real world data such as the ones shown on Figures 3 and4.

A. Simulated data

We consider univariate time series of variable length in which three types of shifts can happen: the mean and variance shifts described in Section III-A, together with a trend shift described below. Two data sets are generated, A and B.

In both cases, it is assumed that expert based normalization has been performed. Therefore when no shift in the data distribution occurs, we observe a stationary random noise modeled by the standard Gaussian distribution, that is n random variables X 1 , . . . , X n independent and identically distributed according to N (µ = 0, σ 2 = 1). Signals have a length chosen uniformly at random between 100 and 200 observations (each signal has a specific length).

The three types of shift are: 1) a variance shift: in this case, observations are distributed according to N (µ = 0, σ 2 ) with σ 2 = 1 before the change point and σ chosen uniformly at random in 10 -th observation. We generate according to this procedure two balanced data set with 6000 observations corresponding to 3000 observations with no anomaly, and 1000 observations for each of the three types of anomalies. The only difference between data set A and data set B is the amplitude of the mean shift which is smaller in B, making the classification harder.

B. Indicators

As explained in Section III, binary indicators are constructed from expert knowledge by varying parameters, including scale and position parameters. In the present context, sliding windows are used: for each position of the window, a classical statistical test is conducted to decide whether a shift in the signal occurs at the center of the window.

The "expert" designed tests are here: 1) the MannWhitneyWilcoxon U test (non parametric test for shift in mean); 2) the two sample Kolmogorov-Smirnov test (non parametric test for differences in distributions); 3) the F-test for equality of variance (parametric test based on a Gaussian hypothesis). The direct parameters of those tests are the size of the window which defines the two samples (30, 50, and min(n -2, 100) where n is the signal length) and the level of significance of the test (0.005, 0.1 and 0.5). Notice that those tests do not include a slope shift detection.

Then, confirmatory indicators are generated, as explained in Section III-C:

1) for each underlying test, the derived binary indicator takes the value one if on β × m windows out of m, the test detects a change. Parameters are the test itself with its parameters, the value of β (we considered 0.1, 0.3 and 0.5) and the number of observations in common between two consecutive windows (the length of the window minus 1, 5 or 10); 2) for each underlying test, the derived binary indicator takes the value one if on β × m consecutive windows out of m, the test detects a change (same parameters); 3) for each underlying test, the derived binary indicator takes the value one if there are 5 consecutive windows such that the test detects a change on at least k of these 5 consecutive windows (similar parameters where β is replaced by k). In addition, based on expert recommendation, all those indicators are applied both to the original signal and to a smoothed signal (using a simple moving average of 5 observations).

More than 50 different configurations are used for each indicator, leading to a total number of 810 binary indicators (it should be noted that only a subset of all possible configurations is included into this indicator vector).

C. Performance analysis

Each data set is split in a balanced way into a learning set with 1000 signals and a test set with 5000 signals. We report the global classification accuracy (the classification accuracy is the percentage of correct predictions, regardless of the class) on the learning set to monitor possible over fitting. The performances of the methodology are evaluated on 10 balanced subsets of size 500 from the 5000 signals' test set. This allows to evaluate both the average performances and their variability. For the Random Forest, we also report the out-of-bag (oob) estimate of the classification accuracy (this is a byproduct of the bootstrap procedure used to construct the forest, see [START_REF] Breiman | Random forests[END_REF]). Finally, we use confusion matrices and class specific accuracy to gain more insights on the results when needed.

D. Performances with all indicators

As indicators are expertly designed and should cover the useful parameter range of the tests, it is assumed that the best classification performances should be obtained when using all of them, up to the effects of the curse of dimensionality.

Table I reports the global classification accuracy of the Random Forest, using all the indicators. As expected, Random Forests suffer neither from the curse of dimensionality nor from strong over fitting (the test set performances are close to the learning set ones). Table II 

E. Feature selection

While the Random Forest give very satisfactory results, it would be unacceptable for human operators as it operates in a black box way. While the indicators have simple interpretation, it would be unrealistic to ask to an operator to review 810 binary values to understand why the classifier favors one class other the others. In addition, the performances of the Naive Bayes classifier are significantly lower than those of the Random Forest one. Both drawbacks favor the use of a feature selection procedure.

As explained in Section III-D, the feature selection relies on the mRMR ranking procedure. A forward approach is used to evaluate how many indicators are needed to achieve acceptable predictive performances. Notice that in the forward approach, indicators are added in the order given by mRMR and then never removed. As mRMR takes into account redundancy between the indicators, this should not be a major issue. Then for each number of indicators, a Random Forest and a Naive Bayes classifier are constructed and evaluated. , performances on the test set tend to stagnate (this is also the case of the out-of-bag estimate of the performances, which shows, as expected, that the number of indicators could be selected using this measure). In practice, this means that the proposed procedure can be used to select the relevant indicators implementing this way an automatic tuning procedure for the parameters of the expertly designed scores.

Results for the Naive Bayes classifier are slightly more complex in the case of the second data set, but they confirm that indicator selection is possible. Moreover, reducing the number of indicators has here a very positive effect on the classification accuracy of the Naive Bayes classifier which reaches almost as good performances as the Random Forest. Notice that the learning set performances of the Naive Bayes classifier are almost identical to its test set performances (which exhibit almost no variability over the slices of the full test set). This is natural because the classifier is based on the estimation of the probability of observing a 1 value independently for each indicator, conditionally on the class. The learning set contains at least 250 observations for each class, leading to a very accurate estimation of those probabilities and thus to very stable decisions. In practice one can therefore select the optimal number of indicators using the learning set performances, without the need of a cross-validation procedure.

It should be noted that significant jumps in performances can be observed in all cases. This might be an indication that the ordering provided by the mRMR procedure is not optimal. A possible solution to reach better indicator subsets would be to use a wrapper approach, leveraging the computational efficiency of both Random Forest and Naive Bayes construction. Meanwhile Figure 9 shows in more detail this phenomenon by displaying the classification error class by class, as a function of the number of indicators, in the case of data set A. The figure shows the difficulty of discerning between mean shift and trend shift (for the latter, no specific test have been included, on purpose). But as the strong decrease in classification error when the 23-th indicator is added concerns both classes (mean shift and trend shift), the ordering provided by mRMR could be questioned.

F. Indicator selection

Based on results shown on Figures 7 and8, one can select an optimal number of binary indicators, while enforcing a reasonable limit on this number to avoid flooding the human operator with to many results. For instance Table IV gives the classification accuracy of the Naive Bayes classifier using the optimal number of binary indicators between 1 and 30. While the performances are not as good as the ones of the Random Forest, they are much improved compared to the ones reported in Table II. In addition, the selected indicators can be shown to the human operator together with the estimated probabilities of getting a positive result from each indicator, conditionally on each class, shown on Table V. For instance here the first selected indicator, conf u(2, 3), is a confirmation indicator for the U test. It is positive when there are 2 windows out of 3 consecutive ones on which a U test was positive. The Naive Bayes classifier uses the estimated probabilities to reach a decision: here the indicator is very unlikely to be positive if there is no change or if the change is a variance shift. On the contrary, it is very likely to be positive when there is a mean or a trend shift. While the table does not "explain" the decisions made by the Naive Bayes classifier, it gives easily interpretable hints to the human operator.

V. CONCLUSION AND PERSPECTIVES

This paper proposes a general methodology that combines expert knowledge with feature selection and automatic classification to design accurate anomaly detector and classifier. The main idea is to build from expert knowledge parametric anomaly scores associated to range of plausible parameters. From those scores, hundreds of binary indicators are generated in a way that covers the parameter space as well as introduce simple confirmation indicators. This turns anomaly detection into a classification problem with a very high number of binary features. Using a feature selection technique, one can reduce the number of useful indicators to a humanly manageable number. This allows a human operator to understand at least partially how a decision is reached by an automatic classifier. This is favored by the choice of the indicators which are based on expert knowledge. A very interesting byproduct of the methodology is that it can work on very different original data as long as expert decision can be modeled by a set of parametric anomaly scores. This was illustrated by working on signals of different lengths.

The methodology has been shown sound using simulated data. Using a reference high performance classifier, Random Forests, the indicator generation technique covers sufficiently the parameter space to obtain high classification rate. Then, the feature selection mechanism (here a simple forward technique based on mRMR) leads to a reduced number of In order to justify the costs of collecting a sufficiently large real world labelled data set in our context (engine health monitoring), additional experiments are needed. In particular, multivariate data must be studied in order to simulate the case of a complex system made of numerous sub-systems. This will naturally lead to more complex anomaly models. We also observed possible limitations of the feature selection strategy used here as the performances displayed abrupt changes during the forward procedure. More computationally demanding solutions, namely wrapper ones, will be studied to confirm this point.

It is also important to notice that the classification accuracy is not the best way of evaluating the performances of a classifier in the health monitoring context. Firstly, health monitoring involves intrinsically a strong class imbalance [START_REF] Japkowicz | The class imbalance problem: A systematic study[END_REF]. Secondly, health monitoring is a cost sensitive area because of the strong impact on airline profit of an unscheduled maintenance. It is therefore important to take into account specific asymmetric misclassification cost to get a proper performance evaluation.
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 5 Fig. 5. Data set A Random Forest: classification accuracy on learning set (circle) as a function of the number of indicators. A boxplot gives the classification accuracies on the test subsets, summarized by its median (black dot inside a white circle). The estimation of those accuracies by the out-of-bag (oob) bootstrap estimate is shown by the crosses.
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 56 Figures 5,[START_REF] Côme | Aircraft engine health monitoring using self-organizing maps[END_REF], 7 and 8 summarize the results for the 100 first indicators. The classification accuracy of the Random Forest increases almost monotonously with the number of indicators, but after roughly 25 to 30 indicators (depending on the data set), performances on the test set tend to stagnate (this is also the case of the out-of-bag estimate of the performances, which shows, as expected, that the number of indicators could be selected using this measure). In practice, this means that the proposed procedure can be used to select the relevant indicators implementing this way an automatic tuning procedure for the parameters of the expertly designed scores.Results for the Naive Bayes classifier are slightly more complex in the case of the second data set, but they confirm
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 6 Fig.6. Data set B Random Forest, see Figure5for details.
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 7 Fig. 7. Data set A Naive Bayes classifier: classification accuracy on learning set (circle) as a function of the number of indicators. A boxplot gives the classification accuracies on the test subsets, summarized by its median (black dot inside a white circle).
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 8 Fig. 8. Data set B Naive Bayes classifier, see Figure 7 for details.
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 9 Fig. 9. Data set A Naive Bayes classifier: classification error for each class on the training set (solid lines) and on the test set (dotted lines, average accuracies only).

  A. CONFU(K,N) CORRESPONDS TO A POSITIVE MANNWHITNEYWILCOXON U TEST ON K WINDOWS OUT OF N CONSECUTIVE ONES. CONFF(K,N) IS THE SAME THING FOR THE F-TEST. RATEF(α) CORRESPONDS TO A POSITIVE F-TEST ON α × m WINDOWS OUT OF m. LSEQF(α) CORRESPONDS TO A POSITIVE F-TEST ON α × m CONSECUTIVE WINDOWS OUT OF m. LSEQU(α) IS THE SAME FOR A U TEST. DETAILED PARAMETERS OF THE INDICATORS HAVE BEEN OMITTED FOR BREVITY. indicators (23 for one of the data set) with good predictive performances when paired with a simpler classifier, the Naive Bayes classifier. As shown in the experiments, the class conditional probabilities of obtaining a positive value for those indicators provide interesting insights on the way the Naive Bayes classifier takes a decision.

  Data set Training set acc. OOB acc. Test set average acc.

	A	0.9770	0.9228	0.9352 (0.0100)
	B	0.9709	0.9118	0.9226 (0.0108)

TABLE I CLASSIFICATION

 I ACCURACY OF THE RANDOM FOREST USING THE 810 BINARY INDICATORS. FOR THE TEST SET, WE REPORT THE AVERAGE CLASSIFICATION ACCURACY AND ITS STANDARD DEVIATION BETWEEN PARENTHESIS.

  reports the same performance indicator for the Naive Bayes classifier. Those performances are significantly lower than the one obtained by the Random Forest. As shown by the confusion matrix on TableIII, the classification errors are not concentrated on one class (even if the errors are not perfectly balanced). This tends to confirm that the indicators are adequate to the task (this was already obvious from the Random Forest).

	Data set Training set accuracy Test set average accuracy
	A	0.7856	0.7718 (0.0173)
	B	0.7545	0.7381 (0.0178)

  CONFUSION MATRIX WITH ALL INDICATORS FOR NAIVE BAYES CLASSIFIER ON THE FULL TEST SET.

		0	1	2	3	total
	0	1759 667	45	29	2500
	1	64	712	50	3	829
	2	7	2	783	37	829
	3	32	7	195 595	829
			TABLE III		
	DATA SET A:					

The ACARS is a standard system used to transmit messages between an aircraft and ground stations, see http://en.wikipedia.org/wiki/ ACARS for details.
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