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Excitation of prestressed multi-wire helical
waveguides

Fabien Treyssede, Laurent Laguerre

Abstract Elastic guided waves are of interest for the non-destreativaluation
(NDE) of cables. Guided waves are multimodal and disper§hables are complex
structures, helical, multi-wired and highly prestressdds further complicates the
interpretation of measurement. Numerical models are reduor understanding
guided wave propagation and optimizing inspection systdiis paper reports on
the modeling of wave propagation inside seven-wire stratygécally encountered
in civil-engineering cables, including complicating effe such as geometry curva-
ture and prestress. Special attention is given to the imtemwergy transfer occur-
ring in a seven-wire strand excited by a source localizedsimgle wire. Numerical
results show how the energy transfer decreases with freguesich leads to the
discovery of a compressional mode of local type. This modg h@ae interesting
features for the NDE of cables.

1 Introduction

Understanding wave propagation inside cables is a conteticeask due to the
structural complexity in addition to the multimodal andpéissive nature of guided
waves. Cables are generally made of individual helical stees that are in contact
and subjected to high tensioning forces. This work focusesaven-wire strands,
constituted by one central cylindrical wire and six perighéelical wires, typically
encountered in civil-engineering cables. Numerical t@oésrequired for modeling
wave propagation inside such complex structures. In thikwea semi-analytical
finite element (SAFE) formulation is proposed. The formiolats specifically writ-
ten in a non trivial twisting coordinate system and accot@mtshe effects of axial
load.
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2 Computation of guided modes

First, we briefly review the twisting SAFE method for the cartggion of guided
modes in prestressed helical structures [1]. A SAFE approansists in applying
a time Fourier transform as well as a spatial Fourier tramsfmong the waveguide
axisz before discretizing the cross-sectipqy) by a finite element method. Inside
one finite elemeng, the displacement field is thus expressed as follows:

u(x,Y,z t) = N¥(x,y)use k&) (1)

whereU*® is the nodal displacement vector aNf is the matrix of nodal interpo-
lating functions of the elememt The variational formulation of three-dimensional
elastodynamics yields an eigenvalue problem of the fotgviorm:

{K1—w’™M +ik(K2— K1) +K?K3}U =0 2)

In this work, one emphasizes that the equilibrium equatmnst be rewritten
in a twisting coordinate system, defined by a non zero torsiofor clarity, the
strain-displacement relation written in a twisting systemgiven by [2]:

d/ox 0 O 000
0 a/dy 0 000
. 0 0 A 001
€= (Lyy+L,0/02)u, with: Ly = ajayajox o |'-2=looo ©
A —T 0/0x 100
T A d/dy 010

whereA = tyd /dx— 1xd /dy. One points out that the expressionsligy andL s do
not depend o, which proves that guided waves truly exist in helical stnoes [3].

Furthermore, the variational formulation must accountgdiastress effects and
is augmented by the following additional term, sometimdsrred to as geometric
stiffness:

’ tr(dodu - 0p- Oou™)dVp (4)
0
where subscripts 0 are used for the prestressed configuratjodenotes Cauchy
prestress. In Eq. (2), each matrice must hence be augmenéekim related to the
above geometric stiffness operator.

The FE mesh of the seven-wire strand cross-section is shoviigi 1a. We
suppose that friction is high enough to prevent interwiie. $figure 1b shows the
energy velocity dispersion curves of a strand subjectech taxéal tensile strain of
0.6%. Although dispersion curves exhibit a complex pattdra figure particularly
shows an apparent cut-off of the fastest mode (compreddigaa_(0,1) mode)
aroundwa/cs = 0.44, i.e. 86kHz for steel strands of 15.7mm nominal diameter.
This phenomenon, sometimes referred to as 'notch frequermincides with ex-
perimental results of the literature [4, 5]. It actually esponds to a sudden veering
between two distinct branches [2], denoted &3, 1)a andL (0, 1)b. Without load,
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the notch frequency is centered around 0.36, i.e. 68kHulfsesot shown for con-
ciseness). Numerical experiments have shown that the pesman responsible for
this frequency shift is indeed the increase of interwiretaoharea with the axial
load.

Fig. 1: (a) Cross-section FE mesh of a seven-wire strand, (b) nareshénergy velocity versus
frequency under 0.6% tensile strain (the arrow indicatestiich frequency).

3 Response under excitation

Now, we are interested in solving the forced response pnoldamilar to Eq. (2) but
with a non-zero excitatiof (k) at the right hand side. The waveguide response can
be obtained by expanding the solution as a sum of guided mddking advantage

of biorthogonality relations and applying the Cauchy rasitheorem, the authors
have shown in Ref. [6] that the SAFE solution as a functiom 5f0 can be written

as:

UnF (km) (5)

U= % Ao gk ith: g = — %
A VR T AR
The summation in Eq. (5) is performed over positive-goingle®oR;,, denotes the
power flow of themth mode. The above solution neglects the contribution of non
propagating modes. Viscoelasticity is not considered.here
One considers an excitatidh) normal to the cross-section, distributed over the
cross-section of the central wire (half-sine function gaimg at its boundary) and
concentrated at = 0. One focuses on the transfer of energy from the central wire
to the peripheral ones. The acoustic field of interest to tifyethe wave energy is
the power flow. We defing, the ratio of the power flow inside the six peripheral
wires to the power flow of the whole seven-wire strand. Traeefa smalhh means
a weak energy transfer to the peripheral wires and inversely
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Figure 2a showsg as a function of frequency for a loaded strand (0.6% tensile
strain). In the low frequency region, the energy transfgyddpheral wires is high.
This is an expected result since th@, 1)-like mode of a strand has a global be-
havior [2]. Then fromwa/cs = 1, n suddenly drops. This drop is indeed explained
by the excitation of a new compressional-like mode, denasid(0,1) in Fig. 1b,
whose motion is localized into the central wire. Figure 2tpthe modulus of the
modal coefficientory of propagating modes. The power of the localizé¢D, 1)
mode after its cut-on is clearly greater than the gldlial 1) mode. This new mode
could be of interest for NDE applications.
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Fig. 2: (a) Energy transfer ratio, (b) modulus of modal coefficieiotsa strand subjected to a
0.6% tensile strain
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