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Abstract

We prove a stochastic maximum principle of Pontryagin’s type for the optimal control of
a stochastic partial differential equation driven by white noise in the case when the set of
control actions is convex. Particular attention is paid to well-posedness of the adjoint backward
stochastic differential equation and the regularity properties of its solution with values in infinite-
dimensional spaces.

1 Introduction

In this paper we consider an infinite-dimensional stochastic optimal control problem for a system
evolving in a Hilbert space H and described by a state equation of the form

dXt = AXt dt+ F (Xt, ut) dt+G(Xt, ut) dWt, X0 = x ∈ H, (1.1)

where A is the infinitesimal generator of a strongly continuous semigroup etA of linear operators, W
a cylindrical Wiener process in H, F and G are suitable drift and diffusion coefficients, with values
in H and L(H) respectively, depending on a control process u taking values in a set U contained
in another Hilbert space U . The cost function is

J(x, u) = E

∫ T

0
L(Xt, ut) dt+ EΦ(XT ), (1.2)

for suitable real-valued functions L, Φ (more precise assumptions will be given later).
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Our goal in this paper is to give a necessary condition for existence of an optimal control. This
condition, called stochastic maximum principle (SMP) in the sense of Pontryagin, was extensively
studied in the finite dimensional case, especially after the seminal paper by Peng [17] which gives a
very general form of the SMP. There is at present a great interest in generalizations to the infinite
dimensional case, that was started in [1], with particular emphasis on the application to optimal
control of stochastic partial differential equations (SPDEs): see [4], [5], [6], [8], [12], [14], [15], [19],
[24]. The main limitation of the present state of the art is perhaps that known results only deal
with the case when the Wiener process driving the equation is finite-dimensional or has a trace-
class covariance operator whereas, to our best knowledge, there is no result for a cylindrical Wiener
process W .

In this paper our purpose is to establish the SMP for an evolution equation driven by a cylin-
drical Wiener process, in a form suitable for direct application to controlled SPDEs driven by white
noise. On the other hand, we will suppose in this paper that the control domain U is convex, which
allows us to apply convex perturbation arguments instead of spike variation in the deduction of
the necessary optimality condition. Our main result is as follows: under suitable conditions, in
particular differentiability conditions on F,G,L,Φ, any optimal control ū and the corresponding
trajectory X̄ must satisfy the SMP inequality

〈∇u[F (X̄t, ūt)](v − ūt), pt〉+ 〈∇uL(X̄t, ūt), v − ūt〉+Tr
[

q∗t
(

∇u[G(X̄t, ūt)](v − ūt)
)]

≥ 0, v ∈ U .

Here ∇ denotes the gradient operator, (p, q) is a pair of stochastic processes taking values, respec-
tively, in H and in the space of Hilbert-Schmidt operators on H, which we characterize as the
unique solution to the so-called adjoint equation, a linear backward stochastic differential equation
(BSDE) of the form

{

−dpt =
[

A∗pt +
∑∞

i=1 C
∗
i (t)qtei +∇xL(X̄t, ūt)

]

dt−∑∞
i=1 qtei dβ

i
t ,

pT = ∇xΦ(X̄T ),
(1.3)

where ei is an orthonormal basis of H, βi
t = 〈Wt, ei〉 are independent scalar Brownian motions, and

Ci are processes in L(H) defined as Ci(t) = ∇x[G(X̄t, ūt)ei]. There are some techincal difficulties
that we have to face. The first one is the occurrence of the first series in (1.3), which needs to be
interpreted in a suitable way and for which convergence holds in a weak sense in general; we call
this class of BSDEs ‘singular’. The second one is the occurrence of the trace operator in the SMP:
for this term to be well defined we need to prove that the process q satisfies additional regularity
results, in particular it takes values in the space of trace-class operators on H, for which the trace
is meaningful.

This paper is organized as follows: in the next section we introduce our control problem and
formulate the main assumptions; then we prove that they are verified in the reference case of
the nonlinear controlled heat equation perturbed by noise. In Section 3 we apply the convex
perturbation argument, we deduce an equation for the first-order variation process and, under
some more assumptions, we prove the SMP taking for granted some results on singular BSDEs. In
Section 4 we make a careful study of a general class of linear singular BSDEs, proving in particular
the trace-class regularity and useful duality relations. In the Appendices we conclude with some
reminders and some auxiliary results.
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2 Formulation of the Optimal Control Problem

Given two real separable Hilbert spaces X and Y by S2(X,Y ) we denote the Hilbert space of
Hilbert-Schmidt operators from X to Y and by S1(X,Y ) we denote the Banach space of trace class
operators (these are instances of the Schatten-von Neumann classes of operators: some reminders
are collected in Appendix 5.1). We write S1(X), S2(X) instead of S1(X,X), S2(X,X).

Given two Banach spaces D and E, we say that a mapping f : D → E is of class G1(D,E) if it
is Gâteaux differentiable and ∇f : D → L(D,E) is strongly continuous (that is, continuous with
respect to the strong operator topology).

Finally H is a separable Hilbert space and (Wt)t≥0 is an H-valued cylindrical Wiener process.
We denote (Ft)t≥0 the corresponding Brownian filtration, completed in the usual way, that verifies
the usual conditions.

By Lp
P([0, T ]×Ω,H) we denote the Banach space ofH-valued progressively measurable processes

X with E
∫ T
0 |Xs|pds < ∞ and by Lp

P(Ω, C([0, T ],H)) the subspace of H-valued progressively
measurable processes X with continuous trajectories satisfying E sups∈[0,T ] |Xs|p < ∞. Here and
below we use the symbol | · | to denote a norm when the corresponding space is clear from the
context, otherwise we use a subscript.

Assumption 2.1 (i) A is the generator of a strongly continuous semigroup etA, t ≥ 0, of
bounded linear operators in H.

(ii) U is a convex subset of a separable Banach space U .

(iii) F : H × U → H is a map of class G1(H × U,H). Moreover, denoting its gradient on H × U
as (∇xF,∇uF ), there exist constants L,C ≥ 0 such that

|∇xF (x, u)|L(H) + |∇uF (x, u)|L(U,H) ≤ L, |F (0, u)| ≤ C, x ∈ H, u ∈ U .

(iv) G : H × U → L(H) satisfies esAG(x, u) ∈ S2(H) for all s > 0, x ∈ H, u ∈ U , and the map
(x, u) → esAG(x, u) is of class G1(H × U,S2(H)). Moreover there exist constants L,C ≥ 0
and α ∈ [0, 1/2) such that

|∇x[e
sAG(x, u)]|L(H,S2(H)) + |∇u[e

sAG(x, u)]|L(U,S2(H)) ≤ Ls−α,

|esAG(0, u)|S2(H) ≤ C s−α,

for all x ∈ H, u ∈ U .

(v) L : H × U → R and Φ : H → R are bounded, Lipschitz and of class G1.

(vi) There exists an orthonormal basis (ei)i∈N ∈ H such that, for all i ∈ N and all u ∈ U , the map
x → G(x, u)ei is of class G1(H,H). Moreover there exists a constant L ≥ 0 such that

|∇x[G(x, u)ei]|L(H) ≤ L, i ∈ N, x ∈ H, u ∈ U.

(vii) For all x, y ∈ H the map u → G(x, u)y is of class G1(U,H) and there exists a constant C ≥ 0
such that

|∇u[G(x, u)y]v|H ≤ C |y|H |v|U , x, y ∈ H, u, v ∈ U.

3



Any progressively measurable U -valued process u will be called an admissible control.
Under the above assumptions, for every admissible control, the state equation (formulated in

mild sense):

Xt = etAx+

∫ t

0
e(t−s)AF (Xs, us)ds+

∫ t

0
e(t−s)AG(Xs, us)dWs (2.1)

admits a unique solution X ∈ Lp
P(Ω, C([0, T ],H)) for every p ≥ 1, see [2]. Moreover the cost

associated to the initial datum x and control u is the well defined real number

J(x, u) = E

∫ T

0
L(Xt, ut)dt+ EΦ(XT ).

Remark 2.2

1. Combining points (iv) and (vii) of Assumption 2.1 it is easy to check that for every s > 0,
x, h ∈ H, u ∈ U and any direction v ∈ U we have

(∇u[e
sAG(x, u)]v)h = esA∇u[G(x, u)h]v. (2.2)

Similarly, ∇x[e
sAG(x, u)] ei = esA∇x[G(x, u)ei].

2. For further use we need to introduce a suitable approximation of the derivative operator
(∇u[e

sAG(x, u)]v). Let us denote Πn the orthogonal projection in L(H) onto the linear span
of e1, . . . , en. Next, for fixed x ∈ H, u, v ∈ U , let us define operators in L(H) setting, for
every y ∈ H,

Γ(x, u, v)y = ∇u[G(x, u)y]v, Γn(x, u, v)y = ∇u[G(x, u)(Πny)]v =
n
∑

i=1

∇u[G(x, u)ei]v 〈y, ei〉H .

Note that by (vi) we have

|Γ(x, u, v)|L(H) ≤ C |v|, |Γn(x, u, v)|L(H) ≤ C |v|
√
n, Γn(x, u, v)y → Γ(x, u, v)y

in H as n → ∞. Moreover, recalling (2.2), we have for s > 0

|esAΓn(x, u, v) − (∇u[e
sAG(x, u)]v)|2S2(H) =

∑

i>n

|esA∇u[G(x, u)ei]v|2H ↓ 0, (2.3)

since the series
∑∞

i=1 |esA∇u[G(x, u)ei]v|2H = |∇u[e
sAG(x, u)]v|2

S2(H) is convergent. Finally,

given a trace class operator Q ∈ S1(H) it is easy to check that

|Tr(QΓn)| ≤ C |v|U |Q|S1(H), Tr(QΓn) → Tr(QΓ). (2.4)

2.1 The Reference Example

Consider the following controlled stochastic heat equation in [0, 1]:,






























dXt(ξ) =
∂2

∂x2
Xt(ξ) dt+ b(ξ,Xt(ξ), ut(ξ)) dt + σ(ξ,Xt(ξ), ut(ξ))dW(t, ξ),

Xt(0) = Xt(1) = 0, t ∈ [0, T ],

X0(ξ) = x(ξ), ξ ∈ [0, 1],
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where b and σ : [0, 1] × R× R → R are given Borel measurable functions. We assume that b(t, ·, ·)
and σ(t, ·, ·) are of class C1, Lipschitz uniformly with respect to t, and that b(·, 0, 0) and σ(·, 0, 0)
are bounded. In the above equation (W(t, ξ)), t ≥ 0, ξ ∈ [0, 1] is a space time white noise and by
(Ft)t≥0 we denote its natural (completed) filtration. The set of admissible control actions U is a
convex subset of U := L2([0, 1]) and we assume that U ⊂ L∞([0, 1]). A control u is a (progressive)
process with values in U . We also introduce the cost functional:

J(u) = E

∫ T

0

∫ 1

0
l(ξ,Xt(ξ), ut(ξ)) dξ dt+ E

∫ 1

0
h(ξ,XT (ξ)) dξ,

where l : [0, 1] × R × R → R, h : [0, 1] × R → R are given bounded, Borel measurable functions.
We assume that, for a.e. ξ ∈ [0, 1], b(ξ, ·, ·) and h(ξ, ·) are of class C1 with bounded derivatives
(uniformly with respect to ξ).

To reformulate the problem in our general framework we have set H = L2([0, 1]) and consider
an H-valued cylindrical Wiener process (Wt)t≥0.

A is the realization of the second derivative operator in H with Dirichlet boundary conditions.
So D(A) = H2([0, 1]) ∩H1

0 ([0, 1]) and Aφ = φ′′ for all φ ∈ D(A).
Finally for x, y ∈ L2([0, 1]), u, v ∈ L∞([0, 1]),

F (x, u)(ξ) = b(ξ, x(ξ), u(ξ)), [G(x, u)y](ξ) = σ(ξ, x(ξ), u(ξ))y(ξ),

L(x, u) =

∫ 1

0
l(ξ, x(ξ), u(ξ))dξ, Φ(ξ) =

∫ 1

0
h(ξ,X(ξ))dξ.

The state equation written in abstract form is

dXt = AXtdt+ F (Xt, ut)dt+G(Xt, ut)dWt, X0 = x,

where x ∈ H and the solution will evolve in H. Moreover the cost becomes

J(x, u) = E

∫ T

0
L(Xs, us)ds+ EΦ(XT ).

It is well known (see [3]) that Assumptions 2.1 (i)-(v) are satisfied. Concerning Assumption 2.1
(vi) we notice that in our concrete case for all y ∈ L2([0, 1]),

[∇x(G(x, u)ei)y](ξ) =
∂σ

∂x
(ξ, x(ξ), u(ξ))ei(ξ)y(ξ).

So it is enough to choose an orthonormal basis in L2([0, 1]) with supi supξ |ei(ξ)| < ∞, for instance
a trigonometrical basis.

Finally concerning Assumption 2.1 (vii) we notice that for all y ∈ L2([0, 1]) and all v ∈
L∞([0, 1]):

[∇u((G(x, u)y)]v(ξ) =
∂σ

∂u
(ξ, x(ξ), u(ξ))y(ξ)v(ξ),

and |[∇u((G(x, u)y)]v(ξ)|L2([0,1]) ≤ Lσ|y|L2([0,1])|v|L∞([0,1]) where Lσ is the Lipschitz constant of σ
with respect to u.
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3 The Stochastic Maximum Principle

3.1 First Variation

In this section we perturb a given admissible control, that eventually will be the optimal one, and
compute the corresponding expansion of the cost.

In the following u and u′ are two admissible controls and we assume that δu := u′−u is bounded
in U . Moreover we denote by Xǫ the state (e.g. the solution to equation (2.1) corresponding to the
control uǫ := (1− ǫ)u+ ǫu′ = u+ ǫδu).

Regular dependence on parameters of the mild solution to forward SDEs gives us the first order
expansion of the state:

Theorem 3.1 The map ǫ → Xǫ is of class G1 from [0, 1) to Lp
P(Ω, C([0, T ],H)) and its derivative

in ǫ = 0 is given by the unique mild solution Y ∈ Lp
P(Ω, C([0, T ],H)) of the linear equation















dYt =
[

AYt +∇xF (Xt, ut)Yt +∇uF (Xt, ut)δut

]

dt

+
[

∇xG(Xt, ut)Yt +∇uG(Xt, ut)δut

]

dWt,

Y0 = 0.

(3.1)

Explicitly, we have P-a.s.

Yt =

∫ t

0
e(t−s)A∇xF (Xs, us)Ys ds+

∫ t

0
e(t−s)A∇uF (Xs, us)δus ds

+

∫ t

0
∇x[e

(t−s)AG(Xs, us)]Ys dWs +

∫ t

0
∇u[e

(t−s)AG(Xs, us)]δus dWs, t ∈ [0, T ].

(3.2)

Proof. The proof will follow arguments similar to the ones exposed in [7], see the proof of Propo-
sition 3.3. We limit ourselves to proving the claim in the case F = 0, the general case being a
straightforward extension.

Consider the mapping Φ from Lp
P(Ω, C([0, T ],H)) × [0, 1) to Lp

P(Ω, C([0, T ],H)) given by

Φ(Ξ, ǫ)t = etAx+

∫ t

0
e(t−l)AG(Ξl, ul + ǫδul)dWl.

Clearly Xǫ is a solution to the state equation (2.1) with u replaced by uǫ if and only if it is a fixed
point of Φ(·, ǫ).

In [7] it is shown that, if β > 0 is large enough then Φ(·, ǫ) is a contraction, uniformly with
respect to ǫ, in Lp

P(Ω, C([0, T ],H)) endowed with the equivalent norm (E supt∈[0,T ] e
βt|Ξt|p)1/p.

Moreover Φ(·, ǫ) is of class G1 from Lp
P(Ω, C([0, T ],H)) to Lp

P(Ω, C([0, T ],H)) with derivative, in
the direction N , given by:

(∇ΞΦ(Ξ, ǫ)N)t =

∫ t

0
e(t−l)A∇xG(Ξl, ul + ǫδul)NldWl.

Concerning the dependence on ǫ we have

Iht : =
Φ(Ξ, ǫ+ h)t − Φ(Ξ, ǫ)t

h
−
∫ t

0
∇u

(

e(t−l)AG(Ξl, ul)δul

)

dWl

=

∫ t

0

{
∫ 1

0

[

∇u

(

e(t−l)AG(Ξl, u
ǫ
l + ζhδul)

)

δul −∇u

(

e(t−l)AG(Ξl, u
ǫ
l )
)

δul

]

dζ

}

dWl.
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By the factorization method (see the proof of Proposition 3.2 in [7]) we get for 1/p < γ < 1/2−α:

|Ih|p
Lp

P
(Ω,C([0,T ],H))

≤ cpE

∫ T

0
|V h

l |pdl,

where

V h
l =

∫ l

0
(l−σ)−γ

{
∫ 1

0

[

∇u

(

e(l−σ)AG(Ξσ , u
ǫ
σ + ζhδuσ)

)

δuσ −∇u

(

e(l−σ)AG(Ξσ , u
ǫ
σ)
)

δuσ

]

dζ

}

dWσ.

By the Burkholder-Davis-Gundy inequality

E|V h
l |p ≤ cpE

{
∫ l

0
(l − σ)−2α

[
∫ 1

0

∣

∣

∣
∇u

(

e(l−σ)AG(Ξσ, u
ǫ
σ + ζhδuσ)

)

δuσ

−∇u

(

e(l−σ)AG(Ξσ, u
ǫ
σ)
)

δuσ

∣

∣

∣

2

S2(K,H)
dζ

]

dσ

}p/2

.

Thus by Hypothesis 2.1-(iv):

E|V h
l |p ≤ cp

{

|δu|2L∞(Ω×[0,T ],U)

∫ l

0
(l − σ)−2(γ+α)dσ

}p/2

≤ cpl
p/2−p(γ+α)|δu|pL∞(Ω×[0,T ],U).

The continuity of ∇u

(

e(s−σ)AG(Ξ, ·)
)

and Dominated Convergence Theorem yield: E|Y h
s |p → 0

and consequently that |Ih|Lp

P
(Ω,C([0,T ],H)) → 0. We can therefore conclude that Φ is differentiable

with respect to ǫ as well, with

∇ǫΦ(Ξ, ǫ) =

∫ t

0
∇u

(

e(t−l)AG(Ξl, ul)
)

δuldWl.

The continuity of ∇ΞΦ(Ξ, ǫ) and ∇ǫΦ(Ξ, ǫ) with respect to Ξ and ǫ can be proved in a similar way.
Summing up, Φ is a mapping of class G1 on Lp

P(Ω, C([0, T ],H)) × [0, 1). The parameter de-
pending contraction principle (see [7] Proposition 2.4) yields that the map [0, 1) ∋ ǫ → Xǫ ∈
Lp
P(Ω, C([0, T ],H)) that relates the parameter to the fixed point is of class G1 (in this case just

differentiable with continuous derivative). Moreover its derivative satisfies:

∇ǫX
ǫ = ∇ΞΦ(X

ǫ, ǫ)∇ǫX
ǫ +∇ǫΦ(X

ǫ, ǫ).

Plugging in the above relation the expressions for ∇ΞΦ and ∇ǫΦ we get,

∇ǫX
ǫ
t =

∫ t

0
e(t−l)A∇xG(Xǫ

l , ul + ǫδul)∇ǫX
ǫ
l dWl +

∫ t

0
e(t−l)A∇uG(Xǫ

l , ul + ǫδul)δul dWl,

and the claim follows letting ǫ = 0 and denoting Yt the limit.

As a consequence of the above result we have the following expansion of the cost:

Proposition 3.2 With the above notation, we have:

J(x, uǫ) = J(x, u) + ǫI(δu) + o(ǫ),

where

I(δu) = E

∫ T

0

[

〈∇xL(Xt, ut), Yt〉+ 〈∇uL(Xt, ut), δut〉
]

dt+ E〈∇xΦ(XT ), YT 〉.
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Proof. By the above theorem, if Rǫ
t := ǫ−1[Xǫ

t −Xt − ǫYt] then |Rǫ|Lp

P
(Ω,C([0,T ],H)) → 0. Moreover

J(x, uǫ)− J(x, u) = E

∫ T

0
[L(Xt + ǫ(Yt +Rǫ

t), ut + ǫδut)− L(Xt, ut)] dt

+ E [Φ(XT + ǫ(YT +Rǫ
T ))− Φ(XT )]

= ǫE

∫ T

0

∫ 1

0
∇xL(Xt + λǫ(Yt +Rǫ

t), ut + λǫδut)(Yt +Rǫ
t) dλ dt

+ ǫE

∫ T

0

∫ 1

0
∇uL(Xt + λǫ(Yt +Rǫ

t), ut + λǫδut)δut dλ dt

+ ǫE

∫ 1

0
∇xΦ(XT + λǫ(YT +Rǫ

T ))(YT +Rǫ
T ) dλ,

taking into account the continuity and boundedness of∇xL, ∇uL and∇xΦ, applying the dominated
convergence theorem it is then easy to show that

E

∫ T

0

∫ 1

0
∇xL(Xt + λǫ(Yt +Rǫ

t), ut + λǫδut)Yt dλ dt → E

∫ T

0
∇xL(Xt, ut)Yt dt,

E

∫ T

0

∫ 1

0
∇xL(Xt + λǫ(Yt +Rǫ

t), ut + λǫδut)R
ǫ
t dλ dt → 0,

E

∫ T

0

∫ 1

0
∇uL(Xt + λǫ(Yt +Rǫ

t), ut + λǫδut)δut dλ dt → E

∫ T

0
∇uL(Xt, ut)δut dt,

E

∫ 1

0
∇xΦ(XT + λǫ(YT +Rǫ

T ))YT → E∇xΦ(XT )YT ,

E

∫ 1

0
∇xΦ(XT + λǫ(YT +Rǫ

T ))R
ǫ
T → 0,

and the proof is completed.

3.2 Stochastic Maximum Principle

We will prove the stochastic maximum principle under the following additional assumption:

Assumption 3.3 We have etA ∈ S2(H) for all t > 0 and there exist c > 0 and α < 1/2 such that

|etA|S2(H) ≤ ct−α, t ∈ (0, T ].

In order to state the stochastic maximum principle we assume that an optimal control ū exists
and we denote X̄ is the corresponding state. Next we need to introduce the dual process (pt, qt),
with values in H × S2(H). To this end we fix an orthonormal basis {ei}i∈N in H such that point
(vi) in Assumption 2.1 holds and we define Ci(t)h = ∇x[G(X̄t, ūt)ei]h for h ∈ H. Then we have

|Ci(t)|L(H) ≤ L. (3.3)

Recalling Remark 2.2-1 and taking into account Hypothesis 2.1-(iv) we also obtain

∞
∑

i=1

|etACi(s)h|2 =
∞
∑

i=1

|∇x[e
tAG(X̄s, ūs)ei]h|2 = |∇x[e

tAG(X̄s, ūs)]h|2S2(H) ≤ L2t−2α|h|2H , (3.4)
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for all t > 0, s ≥ 0, h ∈ H.
Next we introduce the adjoint equation for the unknown process (p, q), written formally

{

−dpt =
[

A∗pt +
∑∞

i=1 C
∗
i (t)qtei +∇xL(X̄t, ūt)

]

dt−
∑∞

i=1 qtei dβ
i
t ,

pT = ∇xΦ(X̄T ),
(3.5)

where βi
t = 〈ei,Wt〉, i = 1, 2... is a family of independent Brownian motions. The precise notion of

(mild) solution to this equation is as follows: we say that a pair (p, q) with p ∈ L2
P(Ω× [0, T ],H),

q ∈ L2
P(Ω× [0, T ],S2(H)) is a mild solution to equation (3.5) if, for any t ∈ [0, T ], we have

pt = e(T−t)A∗∇xΦ(X̄T ) +

∞
∑

i=1

∫ T

t
e(s−t)A∗

C∗
i (s)Qsei ds

+

∫ T

t
e(s−t)A∗∇xL(X̄s, ūs) ds−

∞
∑

i=1

∫ T

t
e(s−t)A∗

Qsei dβ
i
s, P− a.s.,

(3.6)

where, for fixed t, the series
∑∞

i=1

∫ T
t e(s−t)A∗

C∗
i (s)Qsei ds is required to converge weakly in the

space L2(Ω,FT ,P,H) [in Proposition 4.18 below we will also give additional conditions that guar-
antee that the series converges in a stronger sense]. We refer the reader to the next section, in
particular to Definition 4.1 and Remark 4.2, for a more precise discussion of this notion of solution.
There we will also prove the following result.

Proposition 3.4 Under Assumptions 2.1 and 3.3 there exists a unique solution (p, q) to equation
(3.5). Moreover, qt ∈ S1(H) dP⊗ dt-a.s. and

E

∫ T

0
(T − t)2α|qt|2S1(H)dt < ∞.

Proof. This follows from Theorem 4.14 and Proposition 4.15. Hypothesis 4.1, needed for these
statements to hold, is verified due to Assumption 3.3 and inequalities (3.3) and (3.4).

The final ingredient in the proof of the stochastic maximum principle is a duality relation
involving the first variation process Y solution to equation (3.1) with u = ū and X = X̄. In the
present notation this equation (to be understood in the mild form (3.2)) can be written formally
as























dYt =
[

AYt +∇xF (X̄t, ūt)Yt +∇uF (X̄t, ūt)δut

]

dt

+
∞
∑

i=1

Ci(t)Yt dβ
i
t +

∞
∑

i=1

∇u[G(X̄t, ūt)ei]δut dβ
i
t ,

Y0 = 0.

(3.7)

In the next section we will prove the following duality relation.

Proposition 3.5 With the previous assumptions and notations, suppose that ρ : [0, T ] × Ω → H
and Γ : [0, T ] × Ω → S2(H) are progressively measurable and bounded and Y denotes the unique
mild solution to the equation

{

dYt =
[

AYt +∇xF (X̄t, ūt)Yt + ρt

]

dt+
∑∞

i=1 Ci(t)Yt dβ
i
t +

∑∞
i=1 Γtei dβ

i
t ,

Y0 = 0.
(3.8)
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Then

E

∫ T

0
〈pt, ρt〉dt+ E

∫ T

0
〈qt,Γt〉S2(H)dt = E〈∇xΦ(X̄T ),YT 〉+ E

∫ T

0
〈∇xL(X̄t, ūt),Yt〉dt. (3.9)

Proof. This is exactly formula (4.13) of Corollary 4.8, where we put s = 0, x = 0, γ = 0,
η = ∇xΦ(X̄T ), ft = ∇xL(X̄t, ūt) and note that in this case Ỹ∞,M coincides with the solution Y to
(3.8).

Now we are ready to state and prove the main result of this paper.

Theorem 3.6 Suppose that Assumptions 2.1 and 3.3 hold and that an optimal pair (ū, X̄) exists.
Then for every v ∈ U we have, dP⊗ dt-a.s.,

〈∇u[F (X̄t, ūt)](v − ūt), pt〉+ 〈∇uL(X̄t, ūt), v − ūt〉+Tr
[

q∗t
(

∇u[G(X̄t, ūt)](v − ūt)
)]

≥ 0,

where (p, q) is the unique mild solution to equation (3.5).

Proof. Step 1: we prove the duality formula

E

∫ T

0
〈pt,∇uF (X̄t, ūt)δut〉dt+ E

∫ T

0
Tr
[

q∗t
(

∇u[G(X̄t, ūt)]δut
)]

dt

= E〈∇xΦ(X̄T ), YT 〉+ E

∫ T

0
〈∇xL(X̄t, ūt), Yt〉dt,

(3.10)

where Y is the first variation process solution to (3.7).
We define

ρt = ∇uF (X̄t, ūt)δut, Γth = ∇u[G(X̄t, ūt)h]δut,

for every h ∈ H. Since we take δu to be a bounded process, it follows that ρ is also bounded,
by Assumption 2.1-(iii). Heuristically, we note that with this choice the equations (3.7) and (3.8)
coincide, so that Y = Y and (3.10) coincides with (3.9). However such argument is not correct, as
we can not directly apply Proposition 3.5 above, since Γ is not a bounded process with values in
S2(H), so we have to revert to an approximation procedure.

Let us denote Πn the orthogonal projection in L(H) onto the linear span of e1, . . . , en and define

Γn
t h = ∇u[G(X̄t, ūt)(Πnh)]δut =

n
∑

i=1

∇u[G(X̄t, ūt)ei]δut 〈h, ei〉H , h ∈ H.

Each Γn is a bounded process in L(H) (by Assumption 2.1-(vii) and since δu is bounded) and since
it has finite rank it is also bounded in S2(H). Let Yn be the unique mild solution to the equation

{

dYn
t =

[

AYn
t +∇xF (X̄t, ūt)Yn

t + ρt

]

dt+
∑∞

i=1Ci(t)Yn
t dβi

t +
∑∞

i=1 Γ
n
t ei dβ

i
t ,

Yn
0 = 0.

(3.11)

We can now apply Proposition 3.5 and obtain the duality relation

E

∫ T

0
〈pt, ρt〉dt+ E

∫ T

0
〈qt,Γn

t 〉S2(H)dt = E〈∇xΦ(X̄T ),Yn
T 〉+ E

∫ T

0
〈∇xL(X̄t, ūt),Yn

t 〉dt. (3.12)
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Now we let n → ∞. It is convenient at this point to recall the notation introduced in Remark 2.2-2,
namely the operators Γ(x, u, v) and Γn(x, u, v): indeed we have

Γt = Γ(X̄t, ūt, δut), Γn
t = Γn(X̄t, ūt, δut),

and it follows from (2.3) that for s > 0

|esAΓn
t − (∇u[e

sAG(X̄t, ūt)]δut)|2S2(H) = |esAΓn(X̄t, ūt, δut)− (∇u[e
sAG(X̄t, ūt)]δut)|2S2(H) ↓ 0,

(3.13)
dP⊗ dt-a.s., and from (2.4) that

|Tr(q∗tΓn
t )| ≤ C |δut|U |qt|S1(H) ≤ c |qt|S1(H), Tr(q∗tΓ

n
t ) → Tr(q∗tΓt), dP⊗ dt− a.s., (3.14)

since we know that qt ∈ S1(H) dP⊗ dt-a.s. Writing down the mild form of the equations for Y and
Yn and substracting we obtain (compare (3.2)),

Yn
t − Yt =

∫ t

0
e(t−s)A∇xF (Xs, us)(Yn

s − Ys) ds +

∫ t

0
∇x[e

(t−s)AG(Xs, us)](Yn
s − Ys) dWs

+

∫ t

0

(

e(t−s)AΓn
t −∇u[e

(t−s)AG(Xs, us)]δus

)

dWs.

It follows from (3.13) that the last integral tends to zero in L2(Ω,F ,P,H). By standard estimates
it also follows that supt∈[0,T ] E|Yn

t − Yt|2H → 0, so that we can pass to the limit in the right-hand
side of (3.12). Next we note that

E

∫ T

0
〈qt,Γn

t 〉S2(H)dt = E

∫ T

0
Tr(q∗tΓ

n
t )dt → E

∫ T

0
Tr(q∗tΓt)dt

by dominated convergence, as it follows from (3.14) and the fact that

E

∫ T

0
|qt|S1(H) dt ≤

(
∫ T

0
(T − t)−2αdt

)1/2(

E

∫ T

0
(T − t)2α|qt|2S1(H) dt

)1/2

< ∞

by Proposition 3.4 and the assumption that α < 1/2. Passing to the limit in (3.12) we finish the
proof of Step 1.

Step 2: conclusion. It follows from Proposition 3.2 and the duality formula of Step 1 that

J(x, uǫ)− J(x, ū) = ǫE

∫ T

0
〈∇uF (X̄t, ūt)δut, pt〉 dt+ ǫE

∫ T

0
〈∇uL(X̄t, ūt), δut〉 dt

+ǫE

∫ T

0
Tr
[

q∗t
(

∇u[G(X̄t, ūt)]δut
)]

dt+ o(ǫ)

Since ū is optimal, we have J(x, uǫ) − J(x, ū) ≥ 0 and the proof can be concluded by standard
arguments based on localization and the Lebesgue differentiation theorem, see, e.g., [17, 23].
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4 Singular Infinite-dimensional BSDEs

The main purpose of this section is to give a complete proof of Propositions 3.4 and 3.5 that were
used in an essential way to prove the stochastic maximum principle. They both refer to properties
of the dual (backward) equation (3.5). To simplify the notation we will present our results in the
case when F = 0, the general case being essentially the same. On the other hand, we will address
a class of backward equations which are otherwise more general, namely of the form

{

−dPt = [A∗Pt +
∑∞

i=1 C
∗
i (t)Qteidt+ ft] dt−

∑∞
i=1 Qtei dβ

i
t ,

PT = η,
(4.1)

where βi
t = 〈ei,Wt〉, i = 1, 2... is a family of independent Brownian motions, η ∈ L2(Ω,FT ,P,H),

f ∈ L2
P(Ω × [0, T ],H). The unknown process is the pair denoted (P,Q) and takes values in

H ×S2(H). We will work under the following assumptions, which are assumed to hold throughout
this section.

Hypothesis 4.1

1. etA, t ≥ 0, is a strongly continuous semigroup of bounded linear operators in H. More-
over, etA ∈ S2(H) for all t > 0 and there exist constants c > 0 and α ∈ [0, 1/2) such that
|etA|S2(H) ≤ ct−α for all t ∈ (0, T ].

2. The processes Ci are strongly progressively measurable with values in L(H). Moreover we
have |Ci(t)|L(H) ≤ c, P− a.s. for all t ∈ [0, T ] and i ∈ N.

3.
∑∞

i=1 |etACi(s)h|2 ≤ ct−2α|h|2H for all t ∈ (0, T ], s ≥ 0, h ∈ H.

Strongly progressively measurable processes means that they are progressively measurable with
values in the space L(H) endowed with the Borel sets of the strong operator topology.

We notice that the sum
∑∞

i=1 C
∗
i (t)Qtei in equation 4.1 is not convergent in general, even when

Qt is Hilbert-Schmidt. Moreover the semigroup does not seem to be directly helpful since under
Hypothesis 4.1 it is not clear whether the sum

∑∞
i=1 e

sA∗

C∗
i (t)Qtei converges or not. The main

result of this paper is the proof of well-posedness of such class of linear BSDEs which are driven
by white noise and involve a ‘singular’ infinite sum.

We give the following notion of (mild) solution.

Definition 4.1 We say that a pair of processes (P,Q) with P ∈ L2
P(Ω × [0, T ],H), Q ∈ L2

P(Ω ×
[0, T ],S2(H)) is a mild solution to equation (4.1) if the following holds:

1. Denoting SM (s) :=
∑M

i=1(T − s)αC∗
i (s)Qsei, s ∈ [0, T ] then the sequence (SM ) converges

weakly in L2
P(Ω × [0, T ],H).

2. For any s ∈ [0, T ],

Ps = e(T−s)A∗

η+

∞
∑

i=1

∫ T

s
e(l−s)A∗

C∗
i (l)Qleidl+

∫ T

s
e(l−s)A∗

fldl−
∞
∑

i=1

∫ T

s
e(l−s)A∗

Qleidβ
i
l , P−a.s.

(4.2)
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Remark 4.2 Notice that, for any fixed s, the map g 7→
∫ T
s (T − l)−αe(l−s)A∗

gldl is a bounded linear
functional from L2

P([0, T ] × Ω,H) to L2(Ω,FT ,P,H), hence weakly continuous. So if condition 1
above holds then, for all fixed s ∈ [0, T ], the sum

M
∑

i=1

∫ T

s
e(l−s)A∗

C∗
i (l)Qldl =

∫ T

s
(T − l)−αe(l−s)A∗

SM (l)dl

converges, weakly in L2(Ω,FT ,P,H), to a limit that we denote
∑∞

i=1

∫ T
s e(l−s)A∗

C∗
i (l)Qleidl and

that appears in (4.2).

4.1 Linear Forward SDEs

We will study equation (4.1) exploiting duality arguments. To this end we start by collecting precise
estimates on the solutions of a suitable family of linear forward SDEs. Namely, given any starting
time s ∈ [0, T ], we consider the equation on the time interval [s, T ]:

{

dYt = AYt dt+
∑∞

i=1 Ci(t)Yt dβ
i
t +

∑∞
i=1Ci(t)γt dβ

i
t +

∑∞
i=1 Γtei dβ

i
t + ρtdt,

Ys = x,
(4.3)

together with the approximating equations, for N,M ∈ N ∪ {∞}:
{

dỸN,M
t = AỸN,M

t dt+
∑N

i=1 Ci(t)ỸN,M
t dβi

t +
∑M

i=1 Ci(t)γt dβ
i
t +

∑∞
i=1 Γtei dβ

i
t + ρtdt,

ỸN,M
s = x.

(4.4)
In the above equation we always assume that x : Ω → H is bounded and Fs measurable,
ρ, γ : [s, T ] × Ω → H are progressively measurable and bounded, Γ : [s, T ] × Ω → S2(H) is
also progressively measurable and bounded.

For further use we note that ỸN,M clearly does not depend on M when γ = 0.
We start from a standard estimate on this SDE. Its proof coincides with the one of Proposition

3.2 in [7] and will be omitted.

Theorem 4.3 For all p ∈ [2,∞) and N,M ∈ N ∪ {∞}, in the space Lp
P(Ω, C([s, T ],H)) there

exists a unique solution Y to equation (4.3) and a unique solution ỸN,M to equation (4.4); note
that Ỹ∞,∞ = Y. Moreover, if p is large enough, the following estimate holds:

E( sup
t∈[s,T ]

|Yt|p) ≤ cp

(

1 + E|x|p + |Γ|pL∞([s,T ]×Ω,L(H)) + |γ|pL∞

P
([s,T ]×Ω,H) + E

(
∫ T

s
|ρt|dt

)p
)

.

We also have

ỸN,M → ỸN,∞, ỸN,M → Ỹ∞,M , ỸM,M → Y, ỸN,∞ → Y, Ỹ∞,M → Y (4.5)

in the norm of Lp
P(Ω, C([s, T ],H)), namely E(supt∈[s,T ] |ỸN,M

t − ỸN,∞
t |p) → 0 etc.

In addition, the above estimate holds for ỸN,M , ỸN,∞, Ỹ∞,M uniformly with respect to N and
M .

Finally, the first (respectively, the second) convergence result in (4.5) holds true uniformly with
respect to N (respectively, to M).
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The next estimate involves the Hilbert-Schmidt norm of Γ.

Proposition 4.4 Under the above assumptions and notations it holds

supt∈[s,T ]E|Yt|2 ≤ cE

[

|x|2 +
(
∫ T

s
|ρt|dt

)2

+ |γ|2L∞

P
([s,T ]×Ω,H) +

∫ T

s
|Γt|2S2(H)dt

]

.

Proof. Writing equation (4.3) in the mild form, namely

Yt = e(t−s)Ax+

∫ t

s
e(t−l)Aρldl +

∞
∑

i=1

∫ t

s
e(t−l)A [Ci(l)(Yl + γl) + Γlei] dβ

i
l ,

and taking into account Hypothesis 4.1 we get

E|Yt|2 ≤ cE

[

|x|2 +
(
∫ t

s
|ρl|dl

)2

+

∫ t

s
(t− l)−2α|γl|2dl +

∫ t

s
|e(t−l)AΓl|2S2(H)dl

]

+c

∫ t

s
(t− l)−2α

E|Yl|2dl. (4.6)

We obtain

E|Yt|2 ≤ cE

[

|x|2 +
(
∫ T

s
|ρl|dl

)2

+ |γ|2L∞ +

∫ T

s
|Γl|2S2(H)dl

]

+ c

∫ t

s
(t− l)−2α

E|Yl|2dl,

and the claim then follows applying a variant of the Gronwall Lemma, see Lemma 7.1.1 in [10].

The final estimate will be an important tool in the rest of the paper and again exploits a special
version of the Gronwall Lemma.

Proposition 4.5 For s ≤ t ≤ T ,

E|Yt|2 ≤ cE

[

|x|2 +
∫ t

s
(t− l)−2α|γl|2Hdl +

∫ t

s
(t− l)−2α|Γl|2L(H)dl +

(
∫ t

s
|ρl|dl

)2
]

. (4.7)

Proof. We first note that

|e(t−l)AΓl|S2(H)| ≤ |e(t−l)A|S2(H)|Γl|L(H) ≤ c(t− l)−α|Γl|L(H).

Consequently, letting

u(t) := E|Yt|2, v(t) := cE(|Γt|2L(H) + |γt|2), w(t) := cE|x|2 + cE

(
∫ t

s
|ρl|dl

)2

,

it follows from (4.6) that

u(t) ≤ w(t) +

∫ t

s
(t− l)−2αv(l)dl + c

∫ t

s
(t− l)−2αu(l)dl = e(t) + c

∫ t

s
(t− l)−2αu(l)dl,
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where we set e(t) = w(t) +
∫ t
s (t − l)−2αv(l)dl. Using again the Gronwall Lemma in [10] Lemma

7.1.1 we obtain

u(t) ≤ e(t) + c

∫ t

s
(t− l)−2αe(l)dl. (4.8)

Next we note that

∫ t

s
(t− l)−2αe(l)dl =

∫ t

s
w(l)(t− l)−2αdl + c

∫ t

s
(t− l)−2α

∫ l

s
(l − ζ)−2αv(ζ)dζ

≤ w(t)

∫ t

s
(t− l)−2αdl + c

∫ t

s
(t− l)−2α

∫ l

s
(l − ζ)−2αv(ζ)dζ

≤ cw(t) + c

∫ t

s
v(ζ)

∫ t

ζ
(t− l)−2α(l − ζ)−2αdl dζ.

But since

∫ t

ζ
(t− l)−2α(l − ζ)−2αdl =

∫ t−ζ

0
(t− ζ − s)−2αs−2αds =

∫ 1

0
(1− z)−2αz−2α(t− ζ)−4α+1dz

= c(t− ζ)−4α+1 ≤ c(t− ζ)−2α,

from (4.8) we obtain the required conclusion:

u(t) ≤ cw(t) + c

∫ t

s
(t− l)−2αv(l)dl.

Corollary 4.6 Integrating the inequality (4.7) with respect to t we get

E

∫ T

s
|Yl|2dl ≤ cE

[

|x|2 +
∫ T

s

(

|Γl|2L(H) + |γl|2
)

dl +

(
∫ T

s
|ρl|dl

)2
]

. (4.9)

4.2 Existence of a Solution to the Singular BSDE

We will proceed by approximation. Namely, we consider the following BSDE in infinite dimensions
where the singular sum in the drift has been truncated:

{

−dPN
s = [A∗PN

s +
∑N

i=1C
∗
i (s)Q

N
t ei + fs] ds −

∑∞
i=1Q

N
s ei dβ

i
s,

PN
T = η.

(4.10)

We still assume that η ∈ L2(Ω,FT ,P,H), f ∈ L2
P(Ω × [0, T ],H), so the above equation fits in the

classical theory of Hilbert valued BSDEs, see [11]. In particular it holds:

Proposition 4.7 Assume that η ∈ L2(Ω,FT ,P,H), f ∈ L2
P(Ω × [0, T ],H). Then there exists a

unique (PN , QN ) with

PN ∈ L2
P(Ω, C([0, T ],H), QN ∈ L2

P(Ω× [0, T ],S2(H))
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verifying (4.10) in the following mild sense:

PN
s = e(T−s)A∗

η +

∫ T

s
e(l−s)A∗

[

N
∑

i=1

C∗
i (l)Q

N
l ei + fl] dl −

∞
∑

i=1

∫ T

s
e(l−s)A∗

QN
l ei dβ

i
l . (4.11)

Moreover choosing as before x : Ω → H bounded and Fs measurable, ρ, γ from [s, T ] × Ω to H
progressively measurable and bounded and Γ : [s, T ] × Ω → S2(H) progressively measurable and
bounded it holds:

E〈PN
s , x〉+ E

∫ T

s
〈PN

l , ρl〉dl + E

∫ T

s
〈QN

l ,Γl〉S2(H)dl + E

∫ T

s

M
∑

i=1

〈QN
l ei, Ci(l)γl〉dl

= E〈η, ỸN,M
T 〉+ E

∫ T

s
〈fl, ỸN,M

l 〉dl,
(4.12)

where ỸN,M is the solution to equation (4.4).

We now define a candidate solution (P,Q) as the weak limit of (PN , QN ) in some Hilbert space.

Corollary 4.8 We have

1. PN converges weakly to an element P in L2
P([0, T ] × Ω,H);

2. for any t, PN
t converges weakly to an element P̃t in L2(Ω,Ft,P,H);

3. QN converges weakly to an element Q in L2
P([0, T ] × Ω,S2(H)).

Moreover choosing η, f , x, ρ, γ, Γ as in Proposition 4.7 it holds, for all M ∈ N:

E〈P̃s, x〉+ E

∫ T

s
〈Pl, ρl〉dl + E

∫ T

s
〈Ql,Γl〉S2(H)dl + E

∫ T

s

M
∑

i=1

〈Qlei, Ci(l)γl〉dl

= E〈η, Ỹ∞,M
T 〉+ E

∫ T

s
〈fl, Ỹ∞,M

l 〉dl.
(4.13)

Proof. Let us consider the processes Y and ỸN,M , defined as solutions to equations (4.3) and
(4.4). In the first part of the proof we take s = 0, x = 0 and γ = 0 in these equations and we recall
that the processes ỸN,M do not depend on M , so that in particular Ỹ∞,M = Y.

By the estimates in Proposition 4.4 the maps

T : (ρ,Γ) 7→ (Ỹ∞,M
T , Ỹ∞,M ), TN : (ρ,Γ) 7→ (ỸN,M

T , ỸN,M )

can be extended to bounded linear maps from the space L2
P(Ω× [0, T ],H)×L2

P(Ω× [0, T ],S2(H))
to L2(Ω,FT ,P,H) × L2

P(Ω × [0, T ],H). We denote by T ∗,T ∗
N their Hilbert space adjoints. Given

arbitrary η ∈ L2(Ω,FT ,P,H), f ∈ L2
P(Ω× [0, T ],H) and setting (P,Q) = T ∗(η, f), we see that

E

∫ T

0
〈Pl, ρl〉dl + E

∫ T

0
〈Ql,Γl〉S2(H)dl = E〈η,YM

T 〉+ E

∫ T

0
〈fl,YM

l 〉dl,

while (4.12) (with s = 0, x = 0, γ = 0) shows that (PN , QN ) = T ∗
N (η, f). Since ỸN,M → Ỹ∞,M as

specified in Theorem 4.3, it follows easily that PN → P weakly in L2
P([0, T ]×Ω,H) and QN → Q

weakly in L2
P([0, T ] × Ω,S2(H)).
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Now, for arbitrary s ∈ [0, T ] and x ∈ L2(Ω,Fs,P,H) it follows from (4.12) (still with γ = 0)
that E〈PN

s , x〉 has a limit as N → ∞, equal to

−E

∫ T

s
〈PN

l , ρl〉dl − E

∫ T

s
〈QN

l ,Γl〉S2(H)dl + E〈η, ỸN,M
T 〉+ E

∫ T

s
〈fl, ỸN,M

l 〉dl.

This shows that PN
s converges weakly in L2(Ω,Fs,P,H), and we denote by P̃s its limit.

Finally, coming back to general γ, equality (4.13) follows from (4.12) letting N → ∞.

We then need to get some regularity property of the process (P̃s) which, for the moment, we
can not identify with (Ps) and has only been defined P-a.s. for any fixed s ∈ [0, T ].

Proposition 4.9 The map s 7→ P̃s is weakly continuous from [0, T ] to L2(Ω,FT ,P,H).

Proof. In order to stress its dependence on the initial time and state, given s ∈ [0, T ] and
x ∈ L2(Ω,Fs,P,H), denote by Yx,s the solution of equation (4.3) with ρ = Γ = γ = 0, namely:

dYξ,s
t = AYξ,s

t ds+
∞
∑

i=1

Ci(s)Yξ,s
t dβi

s, Yξ,s
s = x. (4.14)

We know by [2] that the above equation admits a unique mild solution with supt∈[s,T ] E|Yx,s
t |2 ≤

cT (1 + E|x|2), morever if x′ ∈ L2(Ω,Fs,P,H) then supt∈[s,T ] E|Yx,s
t − Yx′,s

t |2 ≤ cT (E|x− x′|2).
For fixed x ∈ L2(Ω,FT ,P,H), let us denote xs := E(x|Fs). Then equation (4.13) yields:

E〈P̃s, x〉 = E〈P̃s, xs〉 = E〈Yxs,s
T , η〉 + E

∫ T

s
〈Yxs,s

l , fl〉dl.

Since
sup

s∈[0,T ]
sup

t∈[s,T ]
E|Ys,xs

t |2 ≤ sup
s∈[0,T ]

cT (1 + E|xs|2) ≤ c,

the weak continuity is proved if we show that, for all t > s, the map s 7→ Ys,xs

t is continuous in the
norm of L2(Ω,F ,P,H).

If sn ↓ s then E|Ysn,xsn

t − Ys,xs

t |2 ≤ 2E|Ysn,xsn

t − Ysn,xs

t |2 + 2E|Ysn,xs

t − Ys,xs

t |2. The first term
is controlled by E|xsn − xs|2 = E|E(x|Fsn)− E(x|Fs)|2 → 0.

The second term is E|Ysn,xs

t − Ysn,Y
s,xs
sn

t |2 and is controlled by

E|Ys,xs

sn − xs|2 ≤ 2E|e(sn−s)Axs − xs|2 + 2E

∣

∣

∣

∣

∣

∞
∑

i=1

∫ sn

s
e(sn−t)ACi(t)Ys,xs

t dβi
t

∣

∣

∣

∣

∣

2

≤ 2E|e(sn−s)Axs − xs|2 + c sup
l∈[s,T ]

E|Ys,xs

l |2
∫ sn

s
(sn − t)−2αdt,

which converges to 0 as sn ↓ 0.

On the other hand, if sn ↑ s, Ysn,xsn

t − Ys,x
t = Ys,Y

sn,xsn
s

t − Ys,x
t . Hence it is enough to prove

that Ysn,xsn

s → x. in the norm of L2(Ω,F ,P,H). But, proceeding as before, we have

E|Yxsn
,sn

s − x|2 ≤ 2E|e(s−sn)Axsn − x|2 + c

∫ s

sn

(s− l)−2α
E|Yxsn

,sn
l |2dl.
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The claim follows recalling that supn supl∈[sn,s] E|Yxsn
,sn |2 ≤ cT supn(1 + E|xsn |2) < ∞ and that

|e(s−sn)Axsn − x| ≤ c|xsn − x|+ |e(s−sn)Ax− x|.

We are now in a position to prove that P̃ and P coincide.

Proposition 4.10 P̃ is a progressively measurable process and P̃ = P , dt⊗ dP-a.s.

Proof. We first prove progressive measurability. Fixed an arbitrary t ∈ [0, T ] we choose a basis
{ϕm} in L2(Ω,Ft,P,H). We have P̃l =

∑∞
m=1(E〈P̃l, ϕm〉H)ϕm, ∀l ≤ t. Since E〈P̃l, ϕm〉H is a

continuous function we immediately deduce that P̃ restricted to [0, t] is B[0, t]⊗Ft measurable.

To show that (P̃ ) and (P ) coincide choose x = γ = Γ = 0 and an arbitrary bounded progressively
measurable process ρ in (4.3). By definition of P̃ , for all t ∈ [0, T ], E〈PN

t , ρt〉 → E〈P̃t, ρt〉 so, by dom-

inated convergence theorem (exploiting the measurability of (P̃ )))
∫ T
0 E〈PN

l , ρl〉dl →
∫ T
0 E〈P̃l, ρl〉dl.

But we already know, see Corollary 4.8, that
∫ T
0 E〈PN

l , ρl〉dl →
∫ T
0 E〈Pl, ρl〉dl and the claim is

proved.

In the following when we refer to the process P we will always refer to its version P̃ .

We come now to the study of process Q.

Lemma 4.11 Setting SM (s) =
∑M

i=1(T−s)αC∗
i (s)Qsei, S

M converges weakly in L2
P(Ω×[0, T ];H).

The limit will be denoted by
∑∞

i=1(T − ·)αC∗
i (·)Q·ei.

Proof. Given an arbitrary bounded progressively measurable process γ in H, let ŶM,γ be the mild
solution of the equation

{

dŶM,γ
t = AŶM,γ

t dt+
∑∞

i=1Ci(t)ŶM,γ
t dβi

t +
∑M

i=1 Ci(t)(T − t)αγt dβ
i
t ,

ŶM,γ
0 = 0.

(4.15)

Similarly, let Ŷγ be the mild solution of equation of

{

dŶγ
t = AŶγ

t dt+
∑∞

i=1 Ci(t)Ŷγ
t dβi

t +
∑∞

i=1 Ci(t)(T − t)αγt dβ
i
t ,

Ŷγ
0 = 0.

(4.16)

We see that equation (4.15) (respectively, (4.16)) coincide with equation (4.4) (respectively, (4.3))
with s = x = Γ = ρ = 0, N = ∞ and γ replaced by (T − ·)αγ.

The equality (4.13) reads:

E

∫ T

0
〈SM (l), γl〉dl = E

∫ T

0
〈(T − l)α

M
∑

i=1

C∗
i (l)Qlei, γl〉dl = E〈ŶM,γ

T , η〉 + E

∫ T

0
〈ŶM,γ

l , fl〉dl. (4.17)

By the estimate (4.7), we have |E
∫ T
0 〈SM (l), γl〉dl| ≤ c|γ|L2

P
([0,T ]×Ω,H). Since the set of bounded

elements γ is dense in L2
P([0, T ] × Ω,H) it follows that |SM |L2

P
([0,T ]×Ω,H) ≤ c. Since, by Theorem

4.3, the right-hand side of (4.17) converges as M → ∞ (to the limit E〈Ŷγ
T , η〉 + E

∫ T
0 〈Ŷγ

l , fl〉dl)
when γ is bounded, we conclude that SM converges weakly in L2

P([0, T ] × Ω,H).

If we replace Q by the approximating operators QM we obtain the same limit:
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Lemma 4.12 (T −·)α∑M
i=1 C

∗
i (·)QM

· ei converges weakly to (T −·)α∑∞
i=1C

∗
i (·)Q·ei in L2

P([0, T ]×
Ω,H).

Proof. The proof of the existence of the weak limit of the sequence (T − ·)α∑M
i=1 C

∗
i (·)QM

· ei
follows the same argument as in the proof of the above Lemma replacing equation (4.15) by

{

d
ˆ̂YM,γ
t = A

ˆ̂YM,γ
t dt+

∑M
i=1Ci(t)

ˆ̂YM,γ
t dβi

t +
∑M

i=1 Ci(t)(T − t)αγt dβ
i
t ,

ˆ̂YM,γ
0 = 0.

(4.18)

and replacing the second equality in (4.17) by

E

∫ T

0
〈(T − l)α

M
∑

i=1

C∗
i (l)Q

M
l ei, γl〉dl = E〈 ˆ̂YM,γ

T , η〉 + E

∫ T

0
〈 ˆ̂YM,γ

l , fl〉dl,

which follows from (4.12). The proof that the limit equals (T − ·)α
∑∞

i=1C
∗
i (·)Q·ei comes from the

observation that E sups∈[0,T ] |
ˆ̂YM,γ
s − Ŷγ

s |p → 0, which corresponds to the convergence ỸM,M → Y
in Theorem 4.3.

We are now in a position to prove existence of a solution to the singular BSDE (4.1). For the
uniqueness part we need the following Lemma on linear BSDEs with unbounded forcing term which
proof will be postponed to the Appendix.

Lemma 4.13 Assume that ξ is a progressively measurable process in H with E
∫ T
0 (T − l)2α|ξl|2dl <

∞. Then for any N ∈ N and any η ∈ L2(Ω,FT ,P) there exists a unique pair of processes (p, q)
with p progressively measurable in H, with s 7→ ps continuous from [0, T ] to L2(Ω,F ,H), and
q ∈ L2

P(Ω× [0, T ],S2(H)) such that:

ps = e(T−s)A∗

η +

∫ T

s
e(l−s)A∗

N
∑

i=1

C∗
i (l)qleidl +

∫ T

s
e(l−s)A∗

ξldl −
∞
∑

i=1

∫ T

s
e(l−s)A∗

qleidβ
i
l . (4.19)

Moreover, letting γ = ρ = 0, M = ∞ and Γ ∈ L∞
P (Ω× [0, T ],S2(H)) in equation (4.4) the following

duality relation holds:

E〈ps, x〉+ E

∫ T

s
〈ql,Γl〉S2(H)ds = E〈ỸN

T , η〉+ E

∫ T

s
〈(T − l)−αỸN

l , (T − l)αξl〉dl.

Notice that supl∈[s,T ] E|ỸN
l |2 < +∞ and that α < 1/2, so the last integral is well defined.

Proof. The proof of this lemma is postponed to the Appendix.

Theorem 4.14 The pair (P,Q) constructed in Corollary 4.8 is the unique mild solution to the
singular BSDEs (4.1).

Proof. Existence: As noticed in Remark 4.2, for any fixed s, the map g 7→
∫ T
s (T − l)−αe(l−s)A∗

gldl
is weakly continuous from L2

P([0, T ]× Ω,H) to L2(Ω,FT ,P,H).

Hence, by Lemma 4.11 and Lemma 4.12 the sequence
∑N

i=1

∫ T
s e(l−s)A∗

C∗
i (l)Q

N
l dl converges,

weakly in L2(Ω,FT ,P,H), to
∑∞

i=1

∫ T
s e(l−s)A∗

C∗
i (l)Qleidl.
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Similarly
∑∞

i=1

∫ T
s e(l−s)A∗

QN
l eidβ

i
l converges weakly to

∑∞
i=1

∫ T
s e(l−s)A∗

Qleidβ
i
l , since Q

N con-
verges weakly to Q in L2(Ω× [0, T ],S2(H)).
The fact that (P,Q) is a mild solution of the singular BSDEs (4.1) follows by passing to the limit
in equation (4.11) .

Uniqueness: Let (P,Q) and (P ′, Q′) two solutions and let P̄ = P − P ′ and Q̄ = Q−Q′. Moreover
let L̄ be the weak limit in L2

P(Ω× [0, T ]), as N → ∞, of (T − ·)α∑N
i=1C

∗
i (s)Q̄sei and define:

ϕ̄N
s = L̄s − (T − s)α

N
∑

i=1

C∗
i (s)Q̄sei.

Then equation (4.2) yields:

P̄s = −
∞
∑

i=1

∫ T

s
e(l−s)A∗

Q̄ldβ
i
l +

N
∑

i=1

∫ T

t
e(l−s)A∗

C∗
i (l)Q̄leidl +

∫ T

s
e(l−s)A∗

(T − l)−αϕ̄N
l dl.

thus, for any fixed N , (P̄ , Q̄) is the unique mild solution of equation (4.19) with ξl = (T − l)−αϕ̄N
l .

By Lemma 4.13 we obtain that, for all S2-valued bounded predictable Γ:

E〈P̄s, x〉+ E

∫ T

s
〈Q̄l,Γl〉S2(H)dl = E

∫ T

s
〈(T − l)−αỸN,Γ

l , ϕ̄N
l 〉L2(H)dl,

where again ỸN,Γ is the mild solution of equation (4.4) with γ = ρ = 0. By Theorem 4.3 we have,
in particular: supl∈[t,T ],N∈N E|ỸN,Γ

s |2 ≤ c, and E|ỸN,Γ
l − YΓ

l |2 → 0, ∀l ∈ [s, T ], where YΓ is the

mild solution of equation (4.4) with γ = ρ = 0. In particular ỸN,Γ converges strongly to YΓ in
L2
P(Ω× [s, T ],H).
Since ϕ̄N converges weakly to 0, we obtain:

E〈P̄s, x〉+ E

∫ T

s
〈Q̄l,Γl〉L2(H)dl = 0,

which concludes the proof of uniqueness.

4.3 Trace Class Regularity

We will now prove that the martingale term Q enjoys a trace class regularity that will be essential
to formulate the maximum principle.

Proposition 4.15 If (P,Q) is the unique mild solution of equation (4.1), then

E

∫ T

0
(T − l)2α|Ql|2S1(H)dl ≤ c

(

E|η|2 + E

∫ T

0
|fl|2dl

)

,

where the constant c only depends on the constants in Hypothesis 4.1.

Proof. Since Ql is, P-a.s. of class S2(H) and therefore compact, it can be written (see Appendix
1) as:

Ql =

∞
∑

j=1

aj(l)hj(l)〈gj(l), ·〉,
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where aj(l) ∈ R and (hj(l))j , (gj(l))j are orthonormal bases in H. Moreover, we can choose the
processes aj(l), hj(l), gj(l) (l ∈ [0, T ]) to be progressively measurable. Let

Γn
l = ϕ(l)

n
∑

j=1

sgn(aj(l))hj(l)〈gj(l), ·〉,

where ϕ is an arbitrary positive real-valued bounded progressively measurable process. We note
that |Γn

l |L(H) ≤ ϕ(l) and, being of rank n, the process Γn is also bounded in S2(H).
By (4.13) we have

E

∫ T

0
〈Ql,Γ

n
l 〉S2(H)dl = E〈Yn

T , η〉+ E

∫ T

0
〈Yn

l , fl〉dl,

where Yn is now the solution to equation (4.3) with s = x = γ = ρ = 0 and Γ = Γn. If we compute

〈Ql,Γ
n
l 〉S2(H) and we estimate E|Yn

T |2 by (4.7) and E
∫ T
0 |Yn

l |2dl by (4.9) we obtain:

E

∫ T

0

n
∑

j=1

|aj(l)|ϕ(l)dl ≤ c
(

E|η|2
)

1

2

(

E

∫ T

0
(T − l)−2αϕ(l)2dl

)

1

2

+c

(
∫ T

0
E|fl|2dl

)

1

2
(

E

∫ T

0
ϕ(l)2dl

)

1

2

.

If now n → ∞, recalling that
∑∞

j=1 |aj | = |Q|S1(H) (see Appendix 1 below) we get:

E

∫ T

0
ϕ(l) |Ql|S1

dl ≤ c
1

2

f,η

(

E

∫ T

0
(T − l)−2αϕ(l)2dl

)

1

2

,

where cf,η = c
(

E|η|2 + E
∫ T
0 |fl|2dl

)

. Denoting ϕ̃(l) = (T − l)−αϕ(l), we can rewrite the last

estimate as:

E

∫ T

0
ϕ̃(l)[(T − l)α|Ql|L1(H)]dl ≤ c

1

2

f,η|ϕ̃|L2

P
(Ω,×[0,T ])

and the claim follows from the arbitrariness of ϕ.

We end this section by proving that, under the following additional assumption, the weak limit
that defines the term

∑N
i=1

∫ T
s e(l−s)A∗

C∗
i (l)Qleidl in Definition 4.1 is indeed a strong limit in L1.

Hypothesis 4.16 We have
∑∞

i=1 |esA
∗

C∗
i (l)x|2 ≤ cs−2α|x|2 for all s > 0, l ≥ 0, x ∈ H, with

α < 1/2.

Remark 4.17 In the example in Section 2.1 this requirement coincides with Hypothesis 4.1-2 since
A and Ci are self adjoint.

Proposition 4.18 If Hypothesis 4.16 holds, in addition to Hypothesis 4.1, then the sequence
∑N

i=1

∫ T
s e(l−s)A∗

C∗
i (l)Qleidl converges strongly in L1(Ω,FT ,P;H) as N → ∞. The limit obvi-

ously coincides with the weak limit in L2(Ω,FT ,P;H) introduced in Definition 4.1.
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Proof. As above we expand Q as Ql =
∑∞

j=1 aj(l)hj(l)〈gj(l), ·〉. Then

N
∑

i=1

E

∣

∣

∣

∣

∫ T

s
e(l−s)A∗

C∗
i (l)Qleidl

∣

∣

∣

∣

≤ E

∫ T

s

N
∑

i=1

∣

∣

∣

∣

∣

∣

e(l−s)A∗

C∗
i (l)

∞
∑

j=1

aj(l)hj(l)〈gj(l), ei〉

∣

∣

∣

∣

∣

∣

dl

≤ E

∫ T

s

N
∑

i=1

∞
∑

j=1

|aj(l)| |e(l−s)A∗

C∗
i (l)hj(l)| |〈gj(l), ei〉|dl

≤ E

∫ T

s

∞
∑

j=1

|aj(l)|
(

∞
∑

i=1

|e(l−s)A∗

C∗
i (l)hj(l)|2

)
1

2

(

∞
∑

i=1

〈gj(l), ei〉2
)

1

2

≤ cE

∫ T

s

∞
∑

j=1

|aj(l)|(l − s)−αdl

= cE

∫ T

s
|Ql|S1(H)(l − s)−αdl

≤ c

(
∫ T

s
|Ql|2S1(H)(T − l)2αdl

)

1

2
(

E

∫ T

s
(l − s)−2α(T − l)−2αds

)

1

2

.

Strong convergence in L1(Ω;H) follows from Proposition 4.15. The coincidence of the two limits
is evident by testing them against any bounded Fs-measurable H-valued random variable.

5 Appendix

5.1 Trace Class Operators

We collect here some basic facts on Hilbert-Schmidt and trace class operators. For a detailed
treatment and for the proof of the results stated below see [18].

Given a real separable Hilbert space H we denote by S2(H) the Hilbert space of Hilbert Schmidt
operators H → H endowed with the scalar product 〈L,M〉S2(H) =

∑∞
i=1〈Lei,Mei〉H where (ei) is

any orthonormal basis in H.

If L ∈ S2(H) then there exists a sequence (aLj )j∈N ∈ ℓ2 and a pair of orthonormal bases (eLj )j∈N,

(hLj )j∈N in H such that L =
∑∞

j=1 a
L
j h

L
j 〈eLj , ·〉. Moreover |L|S2(H) =

∑∞
j=1(a

L
j )

2. Finally if t →
Lt is a S2(H)-valued measurable process then the above objects can be selected with the same
measurability property.

We define trace class operators in the following way: S1(H) = {L ∈ S2(H) : |L|S1
< ∞}, where

|L|S1
:= sup

{

〈B,L〉S2
: B ∈ S2(H), |B|L(H) ≤ 1

}

.

The following results are true:

1. If B ∈ L(H) and L ∈ S1(H) then LB, BL are in S1(H), and moreover
|LB|S1(H) ≤ |L|S1(H)|B|L(H), |BL|S1(H) ≤ |L|S1(H)|B|L(H).

2. If L ∈ S1(H) and (ei) is an arbitrary orthonormal basis, the trace Tr(L) :=
∑∞

i=1〈ei, Lei〉
converges absolutely and its value is independent of the choice of the basis (ei).

22



3. Using the expansion introduced above |L|S1(H) =
∑∞

j=1 |aLj |, Tr(L) =
∑∞

j=1 a
L
j consequently

|Tr(L)| ≤ |L|S1(H).

5.2 Linear, Infinite-dimensional BSDEs with Unbounded Terms

We prove here that infinite dimensional BSDEs can be well-posed even if they include an unbounded
term. The following proposition is an extension of the results in [12] and its proof follows the same
lines.

Proposition 5.1 Under the same assumptions and notations of Section 2, let η ∈ L2(Ω,FT ,P;H)
and let φ be a progressively measurable process in H satisfying

E

∫ T

0
(T − s)2α|ϕs|2ds < ∞,

then the BSDE
−dpt = (A∗pt + ϕt)dt− qtdWt, pT = η

admits a unique mild solution, that is a unique pair of processes (p, q) with p ∈ L2
P(Ω, C([0, T ],H)),

q ∈ L2
P(Ω× [0, T ],S2(H)) verifying

pt = e(T−t)A∗

η +

∫ T

t
e(l−t)A∗

ϕldl −
∫ T

t
e(l−t)A∗

qldWl.

Moreover the following estimate holds:

E

∫ T

t
|qs|2S2(H)ds + sup

s∈[t,T ]
E|ps|2 ≤ cE|η|2 + c(T − t)1−2α

∫ T

t
(T − s)2αE|ϕs|2ds.

Proof. The uniqueness follows directly from [12] since the difference (p̄, q̄) of two solutions satisfies:

−dp̄t = A∗p̄tdt− q̄tdWt, p̄T = 0.

Concerning existence, let us set:

pt = e(T−t)A∗

E(η|Ft) +

∫ T

t
e(s−t)A∗

E(ϕs|Ft)ds.

Moreover, by the martingale representation theorem,

E(ϕs|Ft) = ϕs −
∫ s

t
g(s, l)dWl, E(η|Ft) = η −

∫ T

t
h(l)dWl.

Notice that

E

∫ ρ

t
|g(ρ, σ)|2dσ ≤ E|ϕρ|2 + E|E(ϕρ|Ft)|2 ≤ 2E|ϕρ|2, E

∫ ρ

t
|h(σ)|2dσ ≤ 2E|η|2.
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From the above two equations, we have:

pt =

∫ T

t
e(s−t)A∗

ϕsds−
∫ T

t
e(s−t)A∗

(
∫ s

t
g(s, l)dWl

)

ds+ e(T−t)A∗

η −
∫ T

t
e(T−t)A∗

h(l)dWl

=

∫ T

t
e(s−t)A∗

ϕsds−
∫ T

t
e(l−t)A∗

(
∫ T

l
e(s−l)A∗

g(s, l)ds

)

dWl

+e(T−t)A∗

η −
∫ T

t
e(l−t)A∗

e(T−l)A∗

h(l)dWl.

So setting

ql =

∫ T

l
e(s−l)A∗

g(s, l)ds + e(T−l)A∗

h(l),

we deduce that (P,Q) is the unique solution
Let us now establish the estimates.

E|qσ|2 ≤ c

(
∫ T

σ
(T − ρ)−α(T − ρ)αE|g(ρ, σ)|dρ

)2

+ cE|h(σ)|2dσ

≤ (T − t)1−2α

∫ T

σ
(T − ρ)2αE|g(ρ, σ)|2dρ+ cE|h(σ)|2dσ.

Thus

∫ T

t
E|qσ|2dσ ≤ (T − t)1−2α

∫ T

t

∫ T

σ
(T − ρ)2αE|g(ρ, σ)|2dρdσ + c

∫ T

t
E|h(σ)|2dσ

≤ (T − t)1−2α

∫ T

t
(T − ρ)2α

(
∫ ρ

t
E|g(ρ, σ)|2dσ

)

dρ+ c

∫ T

t
E|h(σ)|2dσ

≤ (T − t)1−2α

∫ T

t
(T − ρ)2αE|ϕ(ρ)|2dρ+ cE|η|2.

On the other hand,

E|pt|2 ≤ cE

∣

∣

∣

∣

∫ T

t
E(ϕs|Ft)ds

∣

∣

∣

∣

2

+ E|E(η|Ft)|2 = E

[
∫ T

t
(T − s)−α(T − s)α|E(ϕs|Ft)|ds

]2

+ E|η|2

≤ (T − t)1−2α

∫ T

t
(T − s)2αE|ϕ(s)|2ds+ E|η|2,

which concludes the proof.

Proof of Lemma 4.13. Using Proposition 5.1, existence and uniqueness follows by a standard
contraction argument (see [12]). The final duality property is established by a simple truncation
argument.
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