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Abstract

We prove the maximum principle of Pontryagin’s type for the optimal control of a stochastic
partial differential equation driven by a white noise under the hypothesis that the control domain
is convex.

1 Introduction

In this paper, we consider the following infinite-dimensional stochastic optimal control problem.
Let H be a Hilbert space, A be the infinitesimal generator of a Cy semigroup, and W a cylindrical
Wiener process.

The state equation is

di Xy = AXydt + F (X, us)ds + G( X, us)dWs,  Xo = xg (1.1)

where o € H and the solution will evolve in H.
The cost function is

J(x,u) = IE/OT L(Xs,us)ds + E®(X7). (1.2)

The precise hypothesis will be given in the next section.

Our goal in this paper is to give a necessary condition for an optimal control. Such necessary
condition called stochastic maximum principle (SMP) is extensively studied in finite dimensional
case, see the seminar paper by Peng [16] which gives the general SMP. Concerning the infinite



dimensional case, to our best knowledge, only the SMP for the state equation driven by trace-class
noise is established, see [1, 11, 5].

Hence in this paper, we will establish SMP for SPDEs driven by white noise (i.e. cylindrical
Wiener process). On the other hand, we suppose in this paper that the control domain is convex,
which allows us to apply convex perturbation instead of spike pertubation.

This paper is organized as follows: we introduce our control problem in the next section.
In Section 3, we apply the convex perturbation, the first-order variation equation and the dual
equation. Particular attention will be paid to the regularity of the adjoint process. And the last
section is devoted to the SMP and an example will be given.

2 Formulation of the optimal control problem

Assumption 2.1. (i) A is the generator of a Cy semigroup e, t >0, in H. Moreover Vs > 0:
e e Ly(H) with |eSA|L2(H) < Ls™%; for suitable L > 0, a € [0,1/2).
where Lo(H) is the (Hilbert) space of Hilbert Schmidt operators in H.
(ii) U is a bounded convex subset of a separable Banach space Uy
(i4i) F: H x U — H is Lipschitz in both variables
(iv) G: Hx U — L(H) verifies for all s >0, t € [0,T], X,Y € H, u,v € U,

]eSAG(t, 0,u)| Ly < L 5™
4G (t, X, u) — G (L, Y, 0)|ymy < L s X = Y|+ |u—0|),

for some constants L > 0 and a € [0,1/2).

(2.1)

(v) F(-,-) is Gateaux differentiable H x U — H,
for all s > 0, e*AG(-,-) is Gateauz differentiable H x U — Lo(H).

(vi) L(-,-) and ®(-) are bounded Lipschitz and differentiable.

(vit) For all = € H the map u — G(X,u)= is Gateauz differentiable and

IVuG (X, W)E| £y, 1y < cost|Z[y recall (Up C L)
Under the above assumptions the state equation (formulated in mild sense):

t t
X, = etz + / AR (X, ug)ds + / eIAG(X,, ug)dW,
0 0

admits a unique solution X € L}, (Q,C([0,T], H)), see [2].

Remark 2.2. If we perturb the control by spike variation that is we consider solution of

t t
X¢ = etag + / IR (X, uf)ds + / UG X, ) AWy
0 0

where ug = usly 146 (8) + Vo[ 19+ (8) for fized to € [0,T], vo € U then

| X(to + ) — X (to + 0)| p2op.m) = 60/27)



2.1 An example

Let (W(t,x)), t >0, x € [0,1] be a space time white noise
(Ft)e>0 denotes its natural (completed) filtration.
The set of admissible control actions U is a convex subset of L>([0, 1]).
A control u is a (progressive) process with values in U.
The controlled state equation is the following SPDE: for ¢ € [0,T], = € [0, 1],

2
dX¢(z) = %Xt(:c) dt + b(z, X¢(x), us(z)) dt + o(x, X¢(x), ug(x))dW(t, x),
X(0) = X(1)=0, tel0,T]
Xo(z) = mo(z), z€][0,1]

where b(z,7,u),0(z,m,u) :[0,1] x R x R — R are given,

we assume they are C'! and Lipschitz with respect to r and u;

for fixed r and u we suppose b(-,7,u) € L?([0,1]), o(-,r,u) € L>=([0,1]) bdd.
We also introduce the cost functional:

T
J(u):E/O /Ol(x,Xt(x),ut(x))dxdt—i—E/Oh(x,XT(x))dx

where [(z,7,u) : O x RXxR = R, h(z,7): O x R — R are given bounded functions, we assume
that they are C'!' with bounded derivatives with respect to r and w;
The noise is reformulated as a L?([0,1]) valued cylindrical Wiener process (W)

E<Wy,a >p02< Way >pe=(tAs) <z,y>p, Yr,ycH=L*0,1])

A is the realization of the second derivative operator in H with Dirichlet boundary conditions.
So it is an unbounded operator with domain HZ([0,1]) € H = L?([0, 1]).
For all X,V € H, x € [0, 1] the non linearities are defined by

F(X,u)(z) = bz, X (2),u(z)),  [GX,0)V](z)=o(z, X(z),u(z))V (),

LX) = [ 1), u(@)d, (X)) = [ h(X (@)
@ @]
The state equation written in abstract form becomes
di Xy = AXydt + F (X, us)ds + G(Xs,us)dWs,  Xo = xg

where o € H and the solution will evolve in H.
The cost becomes

T
J(x,u) = IE/O L(Xs,us)ds + E®(X7p)



3 First Variation Equation

Let (X, ) be an optimal pair, fix any other bounded. U-valued progressive control v
Let u§ = u; + €(vy — u) and X§ the corresponding solution of the state equation.
Finally denote (du); = vy — 4y
Since we are not considering spike variations things are easy at this level

Xf = X; + €Y + o(e).

VXG(Xt, ﬁt)Y;f th + VUG(Xt, ﬁt)(éu)t, th
Y = 0

By [2] the above equation admits an unique mild solution with

E( sup ]YHQ) < 400,
t€[0,T]

Moreover
J(z,u®) = J(z,u) + el (v) + o(e)
with T
I(v) = IE/O (VxL(Xy, 1), Ys) + (Vo L(Xy, @), (6u)e)] dt + E(Vx®(X7), Yr)

We fix a basis (e;);ey € H and assume that for all i € N the map X — G(X,u)e; is Gateaux
differentiable H — H.

‘We notice that in our concrete case for all V € H

V(GO we) V(@) = 5o, Xu(6), m(€)e OV ()

So it is enough to choose ¢; € L*([0,1])
We denote Vx (G(Xy,it)e;)V = Ci(t)V.
Recall that gradients Vy are with respect to variables X € H = L2([0, 1])
For simplicity we let F' = 0 from now on.
The equation for the first variation becomes

{dYt(:c) = AYdt + 32, Ci(t) Y dBi + VG ( Xy, tr) (Su) AW,
Yo = 0

where 3{ = (e;, W;) and we have:
L |Ci()|pmy < ¢, P—as. forallte[0,7]
2. 20 |10 (s)v|? < et72¥w]], forallt >0,5>0, (a<1/2)

S S orall iz (o <172



4 Linear BSDE driven by white noise and duality

The main result of this paper is the well solvability of linear BSDE driven by white noise and
its duality with linear FSDE. In this section, we first give some precise estimates concerning the
solution of linear FSDE and then we study the existence and uniqueness of solution of BSDE.

4.1 Linear Forward SDE

Let us first give some precise estimates concerning the solution of the linear FSDE. Consider the
following linear FSDE:

dXy = AXpdt+377, Ci(t) Xy dpi + 3272 Ci(t)w B}
+ > Trei dBy + pydt (4.1)
X = .

Assumption 4.1. 1. Cy(t) € L(H); |Ci(t)|r(m) < e
2. 3 |eCz|? < ct 72|z |?
where (e!Y) is the Cy-semigroup generated by A and o < %, t<1.

3. (e*4) is hilbert-Schmidt with

1
\]etA]\%2(H) <ct™?, <1, a< 5

4. C; are strongly measurable processes.

Theorem 4.2. Assume that x € LP(Q, Fs,1, H), p € L5(Q, LY ([s,T], H)), v € L¥([s,T] x Q,H),
I'e LF([s,T] x Q,L(H)) (T stronly progressively measurable), p large enought. Then there exists
a unique solution X for (4.1) with

T p
B( sup [XiP) < c(1+Blol + T~ + 1l +E( [ Inddr) ).
te(s,T| s

Moreover if we replace any of the above sums by a finite sium then the corresponding solution
converges to the above on the norm

E( sup |X;—X{P)—0
tels,T]

Proof. The proof of this theorem is similar to [6] and we omit it. O
Proposition 4.3. If v is Hilbert-Schmidt valued then
T 2 T
B(sup [Xif) < clBlol? +E ( [ loddt) + Dol +E [ L0yt
tels,T| s s

Proof. It suffices to apply directly Gronwall’s lemma. U



Proposition 4.4.

t t t 2
B < clElol+ [ ) * Bl + [ (=) gt + [ i)

Proof. Let
u(t) = E|Xy|?,

v(t) = E(lZ ) + 0l

t 2
K = cE|z|* + E </ ]pﬂdl) .

Then
u(t) §K+/ (t—l)_Q%(l)lerc/ (t — D)~ 2u(l)dl.
let ) . )
e(t) = K+/ (t — )2 v(l)dl,
then ) .
u(t) < e(t) + c/ (t — 1) 2u(l)dl.
By [9], .
u(t) < e(t) +c/ (t — 1)2%e(l)dl.
Now )
/t(t —1)"2%(l)dl
= K t(t—l)QadH—c/t(t—l)2O‘/l(l—§)2°‘v(§)d§
K(t—s)72 1 ¢ tv t — )72 = ¢) 7l
< K(t-s) +/S<o/§<t 21— )
But
t t—C
_N\"2a(] _ 204 — _ _8—2a5—2a S
/C<H><zodz/o<t<> d
— /1(1 _ 2)720427204(16 . C)74a+1dz
0
— C(t o C)f4a+1 < C(t o C)72a.
Consequently,

u(t) < cK + c/t(t — )~ 2(l)dl.

Remark 4.5. From the above proposition, we have also:

T T T
B[0P < Bl + [ BTy + it + B a2,



4.2 Existence of Linear BSDE

In this subsection, we study the following linear BSDE:

{ —dP, = [A"Pi+ Y32, Cr()Quei] dt + fr dt — Y72, Que: dB] (4.2)
Pr = . |

where n € L*(Q, Fp,P, H), f € L3H(2 x [0,T], H), and {e;} is a fixed orthonormal basis in H.

Theorem 4.6. There exists at least one solution (P, Q) for (4.2) such that

4.2.1 Approximating Equation

The first step to prove the existence is to study the approximating equation.

—dPtN = [A*PtN + szil Cz* (t)QéVeZ] dt + ft dt — Zfil Q,{VGZ d,@tl (4 3)
PN = 1. '
Proposition 4.7. There exists a unique (P, QN) with
PN e L3(Q,C((0,T), H), QN € LH(Q x [0,T], Lo(H))
verifying (4.3) in the following mild sense:
* T * N o T * .
PtN — (T-A 77_|_/ pls—)A [Z C;(S)Qévei + f] ds — Z/ X Qévei dpi.
t i=1 =1 t
Proof. It is a direct consequence in [10]. O
Proposition 4.8.
T T T M
E(RY,z) +E / (P, ps)ds + E / (@Y. Do) rpmyds + E / > QY ei, Cf (s)3s)ds
t t t

T
— E{p,x¥M)1E / (o XM,
t

where
AXNM = (AXIM 4 p)ds + ) Ci(s) XM A+ " TeeidBl + ) Cils)vsdBi-
i=1 i=1 i=1

Proof. First approximate A with Yosida approximations and then pass to the limit. We notice
that all terms are well defined. O



4.2.2 Weak Convergence

The second step to prove the existence is to define (P, Q) as weak limit of (P, Q") in some Hilbert
space.

Corollary 4.9. We have
1. PN converges weakly to an element in L*([0,T] x Q, H);
2. for any t, PN converges weakly to an element Py in L?(Q, F;,P, H);
3. QN converges weakly to an element Q in L?([0,T] x Q, Lo H)).

Moreover, we have

M

T T
E(B,z) +E / (Py. pa)ds +E / (QuTa) Laiyds + E / S (Quer, i ()7}

=1

T
= E(n’X’é\’4> +]E/ <fS)Xéw>dSa
t

where

dXM = (AxM —i—psds—i—ZC XMdBZ—irZFeldﬁ +ZC )vsdBE.

=1 =1

Proof. The result follows from the fact that if I' € L>°(Q x [0, T], L(H)), then

E( sup 6XM — xMPy 0.
te[0,7
Moreover by the previous estimates the map (T',z) — XM are uniformly bounded as maps
from L?(Q, Fs,P) x L%(Q x [0,T]). Hence by, for instance, Ej; N.T)p,ds, we define a uni-

formy bounded and weakly convergenging linear functional on L?(€2 x [0,T], Lo(H)). The limiting
functional

T T
B [ (QT)nds =5 [ (X, f)ds + (X} )
t t
can be extended to the whole L2(Q x [0, 7], L?) by duality. O
Proposition 4.10. The map t — P; is weakly continuous [0,T] — L*(Q, Fr,P, H).

Proof. Choose p =0, v =0 and v = 0 in the definition of X** (where s, x are starting time and
position, z € L?(Q, Fs, P, H)).
fix x € L?(Q, Fr,P, H) and remark that

T
E<Ps,x> = E<P3axs> = < < X;is’sﬂﬁ + E/ <Xlxs’s,fl>dl,

where x5 = E(x|Fy).
Notice that
sup E|X™* <e.
le[s, T



»Ls

The weak continuity is proved if we show that the map s +— X ls is continuous in 5, VI > §.

On the one hand, assume that s,, | s. Then
||Xl5n,93Sn _ Xl§715||%2 < C||Xlsn’x3" _ Xlsn,l“gH%Q + ||Xlsn’m§ _ Xlg,l“g”%%

5,X5
The first term is controlled by E|zs, — z5/%. And the second term is || X;™"* — X;"’XS" |2, and is
controlled by
E|X57 — s

< cBleln I Ags — oo + B[ Y / el DAC (1) X dj|
=178

IN

Sn ~
CEletn =9 ge — g + c/ (sn — 1) 2*dlsup E| X" |?,
5 !

which converges to 0.
On the other hand, if s, 1 s,

anvsn _ Xlsvg — Xl)(s s Xls’g'

Hence it is enough to prove that
XInofn — g,

But -
S
X;Bmsn —r= e(S*Sn)Axn g +/ § :Ci(l)Xlx"’S”d,@lZ.
S

n =1
Noticing that E|X;™*"|> < ¢, and that

sfsn)Axn r= e(sfsn)A(xn _ ,I) + e(sfsn)Ax —z,

el
we conclude the proof. O
Corollary 4.11. P is a progessively measurable process.

Proof. Fix t and choose a basis {¢,,} in L?(Q, 7, P, H). We have

o0
Pi=> (P, om)em.

m=1

Proposition 4.12.
P=P

Proof. We have that P € L%(Q x [0,T], H). Notice that we have fixed a version. Moreover notice
that since E|P/V|? < ¢, we obtain

T T
B (BN~ [ (mpnd vpe 3@ x 0.71.10)
0 0



4.2.3 Regularity of @

We have, letting x = 0,p = 0, and v = 0,

T M T
B[ (@03 Culon(o)ds =BG 0) +E [ (X9, s
i=1
Consider now the functionals
T
T B+ B [ (X0, L),
0

where v, = (T — $)*35. By the previous estimates such functionals are equibounded and converge
(V3 € L™) to

T
E(X},n) +E /O (X7, f2)ds.

clearly the convergence still holds now V4 € L?([0,7] x Q, H) if we extend the functionals by
continuity. Consequently there exists L € L?([0,7T] x 2, H) such that for any ¥ € L([0,T] x Q, H),

T M T
/ (T = 523 C3(5)Quei, Fa)ds — E/ (L, 5:)ds.
By definition we put L = (T'—-)* 2, C#(-)Q.¢; and we have (T —-) Zf‘il C#(-)Q.e; converges

weakly to (T —)* Y2, C#(-)Q.e; in L*([0,T) x Q, H).

Lemma 4.13. (T —)* N C#()QNe; converges weakly to (T — ) 3252, C#(-)Q.¢; in L([0,T] x
O, H).

Proof. We have the following duality relation:

T N T
E / (T — 9 S CH)QY esra)ds = E(XY . n) + E / (XN, f)ds,
0 i=1 0
where ‘ '
{ d XN = AXNdt+Y) Cit) XN i+ S, Ci(t)Fe dB;
Xy =0,

and 7 = (T — s]*y.
On the other hand,

T o0 T
E /0 (7= )30 CE6)Queu ) = B + B /0 (X, f.)ds,

where , ‘
dXy = AXpdt+ Y2, Ci() X dB; + > 52, Ci(t)3 dB}
Xy = o.
And the claim follows by Proposition 4.4 and Theorem 4.2. O

10



Now we notice that for any fixed ¢, f — ftT(T —5)72%e(s=DA" £ ds is a bounded linear functional
L2([0,T) x Q,H) — L*(Q, Fr,P, H). Hence

T N § T
[ drenwQtas = [w-s
t t

converges weakly to ftT(T—s)*a (320 (T — 5)2els=DA" 0 (5)Qse;] ds. Similarly >°9°, ftT e QNe,dpl
converges weakly to > o7, ftT eG4 Q e;dB?, since QN converges weakly to Q in L2(Qx[0, T, Lo(H)).
Consequenly passing to the limit in equation () we get

T T
P = / A fods 4 T4y 4 / e Queidf;

t t

T *
+/ (T _ S)fae(sft)A
t

Remark 4.14. In the same way, ]\i T els=0A" 0 (g Qsds converges weakly to T(T—s5)—= X (T —s
i=1J¢ 7 t =1

N

i=1

N

Z(T — 5)elsTDA” C’;(S)Qé\[ei] ds.

=1

Notice that ()¢ being compace can be written

Qc =Y a;(O) (g5 (0), ),
j=1

where a; € R, (f;), (g;) are orthonormal basis in H. The choice can be done in a measurable way.
Let

ZSQn (a3 () f5() (g5 (), Ne(Q),

where ¢ is a real valued measurable function. We notice that [TY [,y < ¢(C).
By the duality relation,

T t
/ <QC,FC > E<XT5 >+ / <XsNafs>d5
0

0
we deduce that

/ Z\a] (€)d¢ < c(Bn?)2 </OT(T—Z) 2a 2(l)dl>%+c (/{)T\fs\%f (/OT(T [)l—2e 2([)dl>

Letting N — 400 in the above estimate, we get

E /0 ' Q|2 (O)dC < ey ( /0 T(T — e 2<l>dl>

Letting ¢(1) = 5T — 1)~ “p(1), we deduce

|

T
E /0 Qelyany (T — DGO < epmlBlizory,

11



Corollary 4.15.
T
E/O (T = 1)**|QulF, () dl < c.

Corollary 4.16. ftT Ziil els—0)A” C7(s)Qseids converges strongly in L*(H). In this case it obviouly
converges to ftT(T — 8) T [(T — )54 3%, C*(5)Qse;] ds.

Proof. Here we assume that
Z|65A*C* |2 <ecs™ 2a|x|2

This is the case for heat equation in [0, 1].

Let -
Qs = Z aj(s)fj(s) <gj(s)7 >
j=1

Then

N T
ZEI / eI CE (5)Qseqds|

< ZE [ 1€ i qanas
Y D 3 TE) S TR ER

toi=1 j=1

T N o0
< B[Sl 6 56 Loyl enlds

b= 1j5=1

T ©© 2 [e’e) %
e T

t j=1 i=1
< /Z]aj c(s —t) %ds
< / Qulz (s — £)ds

tT
= E/t |Qs|n, (T —8)¥(s —t) T — s) “ds

T 3 T 3

< c(/t |Qs|%l(T—s)2ads> (E/t (S—t)2a(T—S)2ad5>
< o0.

We have consequently proved that Ziil ftT els—0)A” C7(s)Qseids converges strongly in L (2, Fr, P, H)

12



> ft e=DA ¥ (5)Qseids. We also have that for any & € L2(Q, Fr, P, H),

[e's) T T
EQZ/ ) Quentn § = B[ ()7 (O T i) )
=171 ¢
The right hand is defined before by weak convergence. so the two definitions concur. O

4.3 Uniqueness of Linear BSDE

We prove the uniqueness in the following couple of processes (P, Q).
1L (1) PeL3(Q % [0,T],H), Q € LH(Q x [0,T], Lo (H)).

9 Efo — 5)22|Q,2 1A () ds<oo.

&

@amﬂﬁ@—%%ﬂ;@@mww@<m
4. (4) for any t € [0,T],

Py = T4 | / AT O (5)Queids + / eI fods =y / =N Q ey
i—1 ¢ i=1 "t

t

We notice that under assumption (2) Y ft eTDATC¥ (5)Qse4]?ds converges stronly in L'
so the second term of the right hand 51de is well defined. moreover, if (N,,), is any sequence
such that (T — -)* Y, CF(s)Qse; converges weakly in L?(Q2 x [0,7]) to an element say L, then
SN tT eV 0% (5)Qsesds converges weakly to ftT(T — 5)" %A L ds. Hence

[e's) T T
=17t t

Theorem 4.17. The mild solution is unique.

Proof. Let (N,), be ang sequence such that (T —-)* Y"1 | Cf(s)Qse; converges weakly in L(Q x
[0,T],H) to L, then

= T4 3 / 0N O (5)Queads+ / A (T —s)ptds - / 04 Qerdf,
i=171 ¢ i=1 71
where

Np,
%:@ﬂwh—Z@@@W%

i=1

We know that (" converges weakly to 0 in L?(2 x [0,77], H).
We need the following lemma:

13



Lemma 4.18. Assume that £ is a progressively measurable process with E fOT(T — 8)29¢]2ds < oc.
Then for any N € N, there exists a unique couple of processes (P,Q) with P € C([0,T], L*(Q2, H))
and Q € L3 (2 x [0, T, Lo(H)) such that

T Nn, T 0 T
P =T 047 4 / 70Ty G (s)Queids + / T e ds — 3 / TN QedBL.
t =1 t i=17t

Moreover, letting X™ be the solution of the FSDE:

{dXs" = AX"ds+ N Ci(s) X7 dBE + TdW,
XM=,

with T € L>®((Q x [0,T], L2(H)). Then we have the following duality relation:
T
E(Pt,1'> / <Q87 >L2 H)ds = E<X’?7n> +E/ <X;L7§8>L2(H)ds
t
T
= E(X#,n) + E/ (T = 5)" "X (T — 5)%Es) Lo (i) ds-
t
Proof. Notice that E|XN|2 < ¢, so the last integral is well defined. The proof of this lemma is
relegated to Appendix. O

End of Proof of Theorem 4.17. Let (P, Q) and (P',Q’) two solutions and let P = P — P’ and
Q = Q — Q. Then by the above duality formula,

T T
E<Pt7x> +E/ <Q87PS>L2(H)dS :E/ <(T_S)_an7@?>L2(H)dsa
t t
where
—_ Nn -
B = (T - 5)° [Ls -3 ci*(s)@sei] ,
=1

and L is the weak limit of Zfi"l Cr(s)Qse;.
finally we notice that there exists a constant ¢ such that for any n € N, and s € [¢, T,

E|X!]” <c,

and moreover
E| X" — X,> =0, VseltT).

Since @™ converges weakly to 0 in L?(Q2 x [0,T], we obtain

E(P,, ) + /t (QeTa) y(anyds = 0,

which concludes the proof of uniqueness. O
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5 Stochastic Maximum Principle

Summarizing all what we have
T ~ T ~
J(z,u¢) — J(z,a) = eE/ ((6u)s, [VuF(XS,uS)]*pS>ds+eE/ (VoL(X,, ), (6u)s)ds
0 0

T —
+eE /0 Tr [(VaG(Kor ) (6u)s) Qu]ds + o(e)

And we now know that all the terms in the above formula are well defined.

Recall we are assuming that |V,G(X;, Gs)vs|gz) < cost and we have just proved that Q €
Li(H), P®dt, as..

So we con conclude (by the usual localization - Lebesgue differentiation procedure) that

Theorem 5.1. Vv € U it holds P® dt a.s.

(v — U, [V (Xs, 05)] " ps) + (Vo L( X, Us), v — @) + Tr [(VuG(Xs, s)vs) Qs] > 0

6 Appendix

6.1 Schatten - Von Neumann Operators

We denote by Lo(H) the Hilbert space of Hilbert Schmidt operators H — H endowed with the
scalar product (L, M)y =2 (Le;, Me;) i

Given L € Ly(H) there exists a sequence (a%),en € f2 and a couple of orthonormal bases
(eX)nen, (fF)nen in H such that

L= ayfiles,) and [Lla =) (ap)*.
n=1

n

If t - L; is a Ly valued process then the above objects can be selected with the same measur-
ability properties as L.
Define L1(H) ={L € La(H) : |L|1 < oo} where

|L|y :==sup{(B,L)s: B € Ly(H), | Bl < 1}

1. If Be L(H) and L € L1(H) then LB, BL are in L;(H) moreover
|LBl1 < |L|1|Blcmy, IBL|1 < [Lhi|Blzmy

2. If L € L1(H) the trace Tr(L) := ) .2, (e;, Le;) converges absolutely and its value is indepen-
dent on the choice of the basis (¢;)ien

3. L =320 Jak|, Tr(L) = 3222, ak consequently |Tr(L)| < |L|y

n=1"n

15



6.2 Linear BSDE: some classical results

Proposition 6.1. Assume that

T
E/ (T — 5)*¥|ps|?ds < 0.
0

then the BSDE
—dY; = (A™Y; + ¢)dt — QdWy

admits a unque solution with

T T
E/ 1Q4)%ds + sup E|Yi|? < c(T—t)l_ZO‘/ (T
t s€L,T) t

Proof. The uniqueness is clear. Let us put

T
Yt:/ E(ps|Fi)ds.
t

Moreover, by the martingale representation theorem,

E(ps| Fi) = s —/ g(s,1)dw;.
t

Notice that

— 5)2E|y,|%ds.

p
E [ lg(o. )P do < Elg,f? + BIE(, 67" < 28], .
t

From the above two equations, we have:

T T T s
Y, = / E(ps|Ft)ds :/ psds —/ </ g(s,l)dﬂﬁ) ds
t t t t

_ /tT%ds - /tT </ng(s,l)ds> ;.

So there exists a unique couple (Y, Q) and

T
Qi :/l g(s,l)ds.

Let us now establish the estimates. As Q, = fUT g(p,o)dp,

T T
BIQ.P =Bl [ (T p) (T = p)p ool < (T =12 [ (T = 9" Blg(p.)dp.

Thus

(e

T T T
| EQfdr < @-v [ @ - peBlg(p.0)Pdpdo
t t o
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on the other hand,
T
EKP=E/“EWJEM#
t
T
=}m/’@—s>%T—@%m%uw@F
t

< @—nPMKZT—$meﬁ%&

O
Proof of Lemma. The existence and uniqueness follow from the above estimate. It suffices to
establish the duality by some truncation argument. U
References

[1] A. Bensoussan. Stochastic maximum principle for distributed parameter systems. J. Franklin
Inst. 315 (1983), no. 5-6, 387-406.

[2] G. Da Prato, J. Zabczyk. Stochastic equations in infinite dimensions. Encyclopedia of Mathe-
matics and its Applications, 44. Cambridge University Press, Cambridge, 1992.

[3] K. Du, Q. Meng. Stochastic maximum principle for infinite dimensional control systems.
Preprint arXiv:1208.0529.

[4] K. Du, Q. Meng. A General Maximum Principle for Optimal Control of Stochastic Evolution
Equations. Preprint arXiv:1206.3649.

[5] M. Fuhrman, Y. Hu, G. Tessitore. Stochastic maximum principle for optimal control of SPDEs.
C. R. Math. Acad. Sci. Paris 350 (2012), no. 13-14, 683-688.

[6] M. Fuhrman, G. Tessitore. Nonlinear Kolmogorov equations in infinite dimensional spaces: the
backward stochastic differential equations approach and applications to optimal control. Ann.
Probab. 30 (2002), no. 3, 1397-1465.

[7] G. Guatteri. Stochastic maximum principle for SPDEs with noise and control on the boundary.
Systems Control Lett. 60 (2011), no. 3, 198-204.

[8] G. Guatteri, G. Tessitore. On the Backward Stochastic Riccati Equation in Infinite Dimensions.
SIAM J. Control and Optimization, 44 (2005), no. 1, 159-194.

[9] Henry.

[10] Y. Hu, S. Peng. Adapted solution of a backward semilinear stochastic evolution equation.

Stochastic Anal. Appl. 9 (1991), no. 4, 445-459.

17



[11]

[12]

[13]

[14]

Y. Hu, S. Peng. Maximum principle for semilinear stochastic evolution control systems.
Stochastics Stochastics Rep. 33 (1990), no. 3-4, 159-180.

A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Progress in
Nonlinear Differential Equations and their Applications, 16. Birkhauser, Basel, 1995.

Q. Li, X. Zhang. General Pontryagin-type stochastic maximum principle and backward
stochastic evolution equations in infinite dimensions. Preprint arXiv:1204.3275.

B. Oksendal, A. Sulem, T. Zhang. Optimal control of stochastic delay equations and time-
advanced backward stochastic differential equations. Adv. in Appl. Probab. 43 (2011), no. 2,
572-596.

A. Pazy. Semigroups of linear operators and applications to partial differential equations.
Applied Mathematical Sciences, 44. Springer, New York, 1983.

S. Peng. A general stochastic maximum principle for optimal control problems. STAM J. Con-
trol Optim. 28 (1990), no. 4, 966-979.

S. Tang, X. Li. Maximum principle for optimal control of distributed parameter stochastic
systems with random jumps. Differential equations, dynamical systems, and control science,
867-890, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, 1994.

G. Tessitore. Some remarks on the Riccati equation arising in an optimal control problem with
state- and control-dependent noise. STAM J. Control Optim. 30 (1992), no. 3, 717-744.

G. Tessitore. Existence, uniqueness and space regularity of the adapted solutions of a backward
SPDE. Stochastic Anal. Appl. 14 (1996), no 4, 461-486.

J. M. A. M. van Neerven, M. C. Veraar, L. Weis. Stochastic integration in UMD Banach
spaces. Ann. Probab. 35 (2007), no. 4, 1438-1478.

J. Yong, X.Y. Zhou. Stochastic controls. Hamiltonian systems and HJB equations. Applications
of Mathematics (New York), 43. Springer, New York, 1999.

X.Y. Zhou. On the necessary conditions of optimal controls for stochastic partial differential
equations. STAM J. Control Optim. 31 (1993), no. 6, 1462-1478.

18



