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AMENABLE INVARIANT RANDOM SUBGROUPS

URI BADER, BRUNO DUCHESNE, AND JEAN LÉCUREUX,
WITH AN APPENDIX BY PHILLIP WESOLEK

Abstract. We show that an amenable Invariant Random Subgroup of a locally compact second
countable group lives in the amenable radical. This answers a question raised in the introduction
of [AGV12]. We also consider an opposite direction, property (T), and prove a similar statement
for this property.

Yes, the IRS is amenable to working with you if you are

cooperative and willing to work with them.

— taxes.answers.com

1. Introduction

1.1. Invariant random subgroups. Let G be a locally compact second countable group. We
denote by S(G) the space of closed subgroups of G. We endow it with the Chabauty topology
which is defined in the following way. For K ⊆ G compact and U ⊆ G open, we define the two
following subsets of S(G)

OK = {H ∈ S(G); H ∩K 6= ∅} and OU = {H ∈ S(G); H ∩ U = ∅}.
The Chabauty topology is then the smallest topology on S(G) containing the OK ’s and OU ’s when
K and U vary respectively among compact and open subspaces of G. With this topology S(G)
is a compact metrizable space [Pau07, Propositions 1.7&1.8]. Maybe more concretely, a sequence
(Hn) of closed subgroups converges to H if and only if the following properties hold.

• For any h ∈ H and n ∈ N, there is hn ∈ Hn such that (hn) converges to h.
• For any converging sequence (hn) such that hn ∈ Hn for all n ∈ N, the limit is in H .

Recently, a new and fruitful point of view about — non-free — probability measure preserving
(shortly p.m.p) actions appeared and is currently a fast growing field of research.

Definition 1.1. An invariant random subgroup (shortly IRS) is a Borel probability measure on
S(G) which is invariant under the adjoint action of G on S(G) by conjugations.

We denote the space of IRSs by IRS(G). A probabilistic point of view is the following: an IRS
is a random closed subgroup of G whose distribution is invariant under conjugations. We will
alternate between the two points of view depending on the desire of short statements or precise
ones.

The name IRS first appeared in [AGV12] for countable groups. We refer to [AGV12] for
historical background on IRSs before the name was coined. Since this first appearance, IRSs
appeared in several papers, for example in [ABB+12] and [BT14] where recent references are
given in the introduction.

Standard examples of IRSs are given by closed normal subgroups (Dirac masses in S(G)) and
lattices (in that case the measure is supported on the conjugacy class of the lattice). Thus, an
IRS may be thought as a generalization of both normal subgroups and lattices. A general idea is
that a statement true for normal subgroups and lattices should be true for IRSs.
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There is a more general way to construct IRSs: Let Gy X be a p.m.p action, the map

X → S(G)
x 7→ StabG(x)

allows us to push the invariant probability measure on X to S(G) and obtain an IRS. Actually, any
IRS can be obtained that way (see [AGV12, Proposition 14] in the discrete case and [ABB+12] in
the general case). So IRSs can be seen as p.m.p actions outside the classical world of free actions
(where StabG(x) = {e} for almost all x ∈ X). An IRS µ is said to be ergodic if Gy (S(G), µ) is
ergodic.

1.2. Amenability. In their generalization of Kesten theorem about amenable normal subgroups
to IRSs, the authors of [AGV12] were led to the study of amenable IRSs, which are IRSs supported
on amenable subgroups. We denote by Sa(G) the subspace of S(G) consisting of amenable closed
subgroups. It is an open question to decide whether Sa(G) is closed. Nevertheless, P. Wesolek
shows in Appendix A that it is a Borel subset. Recall that among amenable closed normal
subgroups, there is a unique maximal one, which is called the amenable radical of G (see for
example [Zim84, Proposition 4.1.12]). We denote it by Ra(G).

Since we consider only subgroups ofG, it is more natural to use the notion of relative amenability
as introduced in [CM13] via the fixed point property. Let us recall that G is amenable if any non-
empty convex compact G-space has a fixed point.

Definition 1.2. A subgroupH ∈ S(G) is relatively amenable if for any non-empty convex compact
G-space there is a H-fixed point.

Clearly, every amenable subgroup of G is relatively amenable. We denote by Sra(G) the closed
subset of relatively amenable subgroups of G.

Definition 1.3. An IRS µ of G is relatively amenable if µ(Sra(G)) = 1 and it is said to be
amenable if µ(Sa(G)) = 1.

At the end of the introduction of [AGV12], the authors state that if G is a linear group any
amenable IRS lies in Ra(G) (see [Gla14] for a proof). They implicitly ask if the same holds in the
general case. The same question also appeared in the introduction of [BT14] and in [TD12, §7].
We prove the following statement which yields a positive answer as a corollary.

Theorem 1.4. Any relatively amenable IRS of G lies in the amenable radical.

If H ≤ G is a closed subgroup of G, we identify S(H) with the closed subspace of S(G)
consisting of closed subgroups of G included in H . More precisely, Theorem 1.4 means that if
µ ∈ IRS(G) and µ(Sra(G)) = 1 then µ(S(Ra(G))) = 1.

Corollary 1.5. Any amenable IRS of G lies in the amenable radical of G.

Remark 1.6. This theorem is related to [BG04, Theorem 5.4] which concerns strongly non-
amenable groups, namely discrete groups with positive first Betti number.

This previous theorem allows us to extend [AGV12, Theorem 5] — with the same proof —
outside the linear world. Let Γ be a group generated by a finite symmetric set S. A sequence (Hn)
of finite index subgroups of Γ is said to locally approximates Γ if the Schreier graphs Sch(Γ/Hn, S)
converge to the Cayley graph Cay(Γ, S) in Benjamini-Schramm convergence [BS01]. We obtain
the following theorem, where ρ0

(

Sch(Γ/Hn, S)
)

and ρ(Cay(Γ, S)) are the spectral radii of the

Markov averaging operator on respectively ℓ20(Sch(Γ/Hn, S)) and ℓ
2(Cay(Γ, S)).

Theorem 1.7. Let Γ be a finitely generated group with trivial amenable radical and let S be a
finite symmetric generating set of Γ. Let (Hn) be a sequence of subgroups of finite index such that
|Γ : Hn| → ∞ and

lim ρ0
(

Sch(Γ/Hn, S)
)

≤ ρ(Cay(Γ, S)).1

Then (Hn) locally approximates Γ.

1All along this text lim and lim denote respectively the limit superior and the limit inferior of a sequence of real
numbers.
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Proof. Using Theorem 1.5 instead of [AGV12, Theorem 3] the proof of [AGV12, Theorem 5] can
be repeated verbatim. �

As explained in [TD12], Theorem 1.5 also yields positive answers to [TD12, Questions 7.2, 7.4
& 7.5], see Figure 1 in that paper. Namely, arguments there and Theorem 1.5 show the following.

Theorem 1.8. Let Γ be a countable group with trivial amenable radical. Any non-trivial p.m.p
action of Γ that is weakly contained in the Bernoulli shift Γ y [0, 1]Γ, is free.

Remark 1.9. A group satisfying the conclusion of Theorem 1.8 is said to be shift-minimal. The
work in [TD12] leads to the conclusion that shift-minimality is equivalent to triviality of the
amenable radical.

1.3. Kazhdan property (T). An opposite property to amenability is Kazhdan property (T).
This property is hereditary for finite covolume subgroups inG (see for example [BdlHV08, Theorem
1.7.1]). So, it is natural to hope it is also hereditary for IRSs; at least when there is no strict
closed subgroup containing the IRS. In that case, the IRS is said to be spanning (see §3).
Definition 1.10. Let Sr(T )(G) be the subset of groups H ∈ S(G) such that (G,H) has relative
property (T). An IRS µ is said to have relative property (T) if Sr(T )(G) has measure 1.

Theorem 1.11. Assume G is finitely generated. If G has a spanning IRS with relative property
(T) then G has property (T).

Remarks 1.12. (1) It is clear from the definitions that if G has property (T) then any of its
IRS has relative property (T).

(2) Theorem 1.11 does not hold if one removes the finite generation assumption. Consider the
group G = ⊕n∈NZ/2Z. This countable group is not finitely generated and thus does not
have property (T). Let δn be the Dirac measure at the n-th copy of Z/2Z and let µ be

6/π2
∑

n∈N

δn/n
2. The measure µ is a spanning IRS with relative property (T).

(3) For a result toward compact generation see Proposition 5.8.

Structure of the paper. In Section 2, we study the cone of convex weak*-compact subsets of a
dual Banach space. We show that the set of convex weak*-compact subsets in the dual unit ball
is a convex compact space itself. This construction will allow us to construct the barycenter of a
measure on convex compact sets. The proof of Theorem 1.5 appears in Section 4. The last section
is devoted to relative property (T).

2. Locally convex structure on the cone of convex weak*-compact subspaces

For all this section we fix some real separable Banach space (E, ‖ ‖), we define E1 to be its unit
ball and E∗ its dual Banach space with its unit ball E∗

1 . Any topological statement for subsets
of E∗ will be relative to the weak*-topology. We aim to define a locally convex (Hausdorff)
topological vector space E in which one can embed the set C of compact convex (non-empty)
subspaces of E∗.

First observe that C is an abstract cone [Sub12, Chapter 3] with the operations A + B =
{a + b; a ∈ A, b ∈ B} and λA = {λa; a ∈ A} for λ ≥ 0 — those sets are also easily seen to be
compact convex subsets. For C ∈ C and b ∈ E1, we set b+(C) = max

c∈C
b(c) and b−(C) = min

c∈C
b(c).

Let E be the vector space
∏

b∈E1

Rb, with the product topology τ . This is a locally convex (Haus-

dorff) topological vector space. By the Hahn-Banach Separation Theorem, we get an injective
map

f : C → E
C 7→ (b+(C))b∈E1 .

Observe that b+(C + C′) = b+(C) + b+(C′), b+(λC)=λb+(C) for λ ≥ 0 and b+({−c; c ∈ C)} =
−b−(C). This means that the previous operations defined on C are the same as the ones coming
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from the vector space in E : the abstract cone C can actually be realized as a cone in E . In particular
C is a convex subspace of E .

We endow C with the induced topology, that is the coarsest topology such that all linear forms b+

are continuous. Furthermore if G acts by isometries on E, it also acts by linear homeomorphisms
on C. Indeed for g ∈ G and b ∈ E1, the map C 7→ b+(gC) is (bg)+.

If C ∈ C, we define C(C) = {C′ ∈ C; C′ ⊆ C} and C1 = C(E∗
1 ).

Lemma 2.1. If C′ ⊆ C, then C(C′) is a closed convex subset of C(C) and C is an extreme point
of C(C). Moreover C1 is compact and if E is separable then C1 is metrizable.

Proof. The first part comes from the fact that C′ ⊆ C if and only if for any b ∈ E1, b
+(C′) ≤ b+(C).

If C′, C′′ ∈ C(C) and C = (C′ + C′′)/2 then for any b ∈ E1, b
+(C) = (b+(C′) + b+(C′′))/2 and

since b+(C′), b+(C′′) ≤ b+(C), one has b+(C′) = b+(C′′) = b+(C). Thus C′ = C′′ = C. This
proves C is an extreme point of C(C).

To prove compactness, first observe that f(C1) ⊆
∏

b∈E1

[−1, 1]. Let t = (tb) be a point in the

closure of f(C1). We will show there is C ∈ C1 such that f(C) = t.
Claim: For all finite subset F ⊂ E1, there is CF ∈ C1 such that for all b ∈ F , b+(CF ) = tb.

Assume the claim holds true. In that case, one can moreover assume that

CF =
⋂

b∈F

b−1
(

(−∞, tb]
)

∩ E∗
1 .

With this assumption, observe that F ⊆ F ′ implies CF ′ ⊆ CF . Now define C = ∩F∈F(E1)CF where
F(E1) denotes the set (directed for reverse inclusion order) of finite subsets of E1. Fix b ∈ E1.
For F ∈ F(E1), choose cF ∈ CF such that b(cF ) = b+(CF ). As E∗

1 is compact, the net (cF ) has
a convergent subnet with limit c. Since cF ′ ∈ CF for F ⊆ F ′, the point c is in C and continuity
implies b(c) = b(cF ) = tb for F containing b. Since C ⊆ CF , one has b+(C) ≤ b+(CF ) = tb. Thus
b+(C) = tb for all b ∈ E1 and f(C) = t.

It remains to show the claim. Fix F ∈ F(E1). There is a sequence (Ck) with Ck ∈ C1 such
for all b ∈ F , b+(Ck) → tb. For each b ∈ F choose ckb ∈ Ck such that b(ckb ) = b+(Ck). Up

to extraction one may assume that ckb converges to some cb as k → ∞. Thus for b, b′ ∈ F ,
b(cb′) = lim

k→∞
b(ckb′) ≤ lim

k→∞
b+(Ck) = tb and b(cb) = tb. Define CF to be the closed convex hull of

{cb}b∈F . By construction CF satisfies the conditions of the claim.
For metrizability, let (bn) be a dense countable subset of E1 and assume (Cα) is a net in C1

such that b+n (Cα) → b+n (C) for any n ∈ N. We have

|b+(C)− b+(Cα)| ≤ |b+(C)− b+n (C)|+ |b+n (C) − b+n (Cα)|+ |b+n (Cα)− b+(Cα)|
≤ 2‖bn − b‖+ |b+n (C)− b+n (Cα)|

which shows that |b+(C)−b+(Cα)| → 0. Thus, the embedding of f : C1 →
∏

n∈N

Rbn yields the same

topology as τ on C1. This shows metrizability. �

Remark 2.2. The proof of Lemma 2.1 shows that C1 embeds as a convex bounded subspace in
ℓ∞(E1). Since weak*-topology and the topology of pointwise convergence coincide on bounded
subsets of ℓ∞(E1), C1 can be seen as a weak*-compact convex subset of ℓ∞(E1) (seen as the dual
of ℓ1(E1)).

If G acts continuously by linear isometries on E, then there are obvious linear isometric adjoint
actions of G on ℓ1(E1) and ℓ

∞(E1) that are not continuous. However the restriction of this action
to C1 and to the weak*-closure of its span L is continuous. In particular C1 is a general2 convex
compact G-space. Moreover L can be identified with the dual of some Banach space L♭ which

2We use the adjective general to emphasize that, contrarily to Zimmer’s original definition, a general convex
compact G-space is merely a convex compact G-invariant subset of some locally convex vector with a continuous
affine action of G (not necessarily in the dual of some separable Banach space on which G acts).
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can be realized as the Banach space quotient of ℓ1(E1) by the intersection of the kernels of all
elements of L.

The following Lemma is a key step in the proof of Theorem 1.4:

Lemma 2.3. Assume E is separable, G acts by isometries on E and C ∈ C1 is G-invariant. If
there is no invariant closed convex proper subspace of C then the only G-invariant Borel probability
measure on C(C) is δC .

Proof. Let ν ∈ Prob(C(C))G. Let C0 be its barycenter, that is C0 =

∫

C′ dν(C′). The inte-

gration process is the vector-valued integration in locally convex vector spaces (see e.g. [Rud91,
Theorem 3.27] or [Bou04, IV §7 N0 2]). Recall the barycenter is uniquely defined via the relation

ϕ

(
∫

C′ dν(C′)

)

=

∫

ϕ(C′) dν(C′) for all ϕ ∈ E∗. For b+ ∈ E1 and g ∈ G,

b+(gC0) = b+g(C0) =

∫

b+g(C) dν(C) =

∫

b+(gC) dν(C) =

∫

b+(C) dν(C) = b+(C0).

Since E1 separates points in C(C), C0 is G-invariant and thus C = C0 by minimality. Choose a
dense countable set (bn) in E1. Since for all C′ ⊂ C compact convex, b+n (C

′) ≤ b+n (C), the above
equality implies that {b+n (C′) = b+n (C); C

′ ∈ C(C)} has measure one for all n, and hence C′ = C
almost surely3. It follows that ν = δC . �

3. Spanning IRSs

The following lemma yields the existence of a minimal closed subgroup in which an IRS lies.
The existence of such minimal subgroup was already proved in [HT13]. This subgroup is called
the normal closure of the IRS. We include a proof for completeness.

Lemma 3.1. Let µ ∈ IRS(G). There exists a unique minimal closed subgroup N ≤ G such that
µ(S(N)) = 1. This group is moreover normal.

Proof. Let H be the family of all closed subgroups H such that µ(S(H)) = 1. We define H0 to be
⋂

H∈H

H . Normality, closeness and uniqueness are immediate consequences of the definition, thus

it suffices to prove that µ(S(H0)) = 1.

Choose a countable subset {gn}n∈N of the open subset G\H0 such that G\H0 =
⋃

n∈N

B(gn, ρn)

where ρn = d(gn, H0)/2 . For n ∈ N, choose Hn ∈ H such that Hn ∩ B(gn, ρn) = ∅. We have

H0 =
⋂

n∈N

Hn and thus S (H0) =
⋂

n∈N

S (Hn). The latter intersection being countable, we have

µ(S(H0)) = 1. �

Definition 3.2. An IRS on G is spanning if G is the normal closure of the IRS.

To illustrate this definition, one can reformulate [BT14, Corollary 1.2] in the following way: If
G has a spanning unimodular IRS then G is unimodular itself. If µ ∈ IRS(G) is spanning, it is

proved in [HT13] that for any S ⊆ S(G) with µ(S) = 1, G = 〈∪H∈SH〉. Since an IRS of G is also
an IRS of its normal closure, considering spanning IRSs is a natural reduction to prove results on
IRS. One has to be careful with relative properties since an IRS may have a property relatively
to G and this property may fails relatively to the normal closure (for example think to a normal
subgroup with relative property (T) which does not have property (T)).

The following lemma is close to the locally essential lemma [Gla14, Lemma 2.2].

Lemma 3.3. Assume G is countable and let µ be an IRS. The normal closure N of µ coincides
with the subgroup generated by {h ∈ G; µ

(

{H ∈ S(G); h ∈ H}
)

> 0}.

3One may also rely on the fact that C is an extreme point and corollary [Bou04, IV §7 N0 2] tells us ν = δC .
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Proof. For h ∈ G, denote by Sh = {H ∈ S(G); h ∈ H}. Let N0 be the subgroup of G generated
by {h ∈ G; µ(Sh) > 0} and let N be the normal closure of µ. We aim to prove that N = N0. Let
S be the complement of ∪g∈G\N0

Sg in S(G). We have µ(S) = 1 and S = S(N0). In particular
N ≤ N0. If h /∈ N then Sh ∩ S(N) = ∅ and µ(Sh) = 0. Thus, if µ(Sh) > 0 then h ∈ N . This
shows that N0 ≤ N . �

4. Amenable IRSs

Amenability has many equivalent definitions. We use the following one (which appears in
[Zim84, 4.1.4] for example). Let H be a topological group. A convex compact H-space C is a
H-invariant convex weak*-compact subspace of the unit ball of the dual of a separable Banach
space on which H acts continuously by isometries. A topological group H is amenable if every
non-empty convex compact H-space contains a H-fixed point.

An important and open question about the space of amenable subgroups Sa(G) is to decide
whether it is closed in S(G). This question was investigated in [CM13], in which the authors
decided to introduce a weaker notion of amenability for closed subgroups. A subgroup H ∈ S(G)
is relatively amenable if for any non-empty convex compact G-space there is a H-fixed point.

It is easy to prove that the space of relatively amenable subgroups Sra(G) is closed in S(G)
[CM13, Lemma 18]. Of course, Sa(G) ⊆ Sra(G) and it is an open question to decide whether it
is actually an equality. The group G is said to belong to the class X if there is equality. This
class X is quite large since it contains, for example, discrete groups, connected groups, algebraic
groups over local fields, groups amenable at infinity, and is stable under some natural extension
processes [CM13, Theorem 2].

Proof of Theorem 1.4. We fix a locally compact second countable group G and an IRS µ satisfying
µ(Sra(G)) = 1. We let N be the normal closure of µ. We will argue to show that N is amenable,
hence being normal, it is contained in the amenable radical of G. In fact, we will show that N
is relatively amenable in G, and use the easy fact that normal subgroups are amenable iff they
are relatively amenable (see e.g [CM13, Proposition 3]). That is, we need to show that every
convex compact G-space has an N -fixed point. We fix such a G-space, C — a G-invariant convex
weak*-compact subspace of the unit ball of a dual of a separable Banach space E, on which G
acts continuously by isometries. Without loss of generality (by Zorn lemma and a compactness
argument) we assume as we may that C has no proper G-invariant closed convex subset. Let
K ⊳ G be the kernel of the action on C. We claim that for µ-a.e H ∈ G, H < K. The proof of
the theorem follows from the claim: by the definition of N , µ(S(K)) = 1 implies N < K and C
is N -fixed.

Lemma 4.1. The map H 7→ Fix(H) from Sra(G) to C(C) is Borel and G-equivariant.

Proof. Choose a countable dense subset (bn) of E1 as in the proof of Lemma 2.1. Since the b+n
are countable and define the topology, it suffices to prove that for any n ∈ N, H 7→ b+n (Fix(H))
is Borel. We actually prove that H 7→ b+n (Fix(H)) is upper semi-continuous. Fix a sequence Hn

converging to H in Sra(G) and choose ck ∈ Fix(Hk) such that b(ck) = b+n (Fix(Hk)). Let c be a
limit point (up to extraction) of (ck). Since the action G y C is continuous, c ∈ Fix(H) and

since bn is continuous, one has bn(c) = lim
k→∞

bn(ck). Thus b+n (Fix(H)) ≥ lim b+n (Fix(Hk)). The

G-equivariance is clear. �

Denote the image of µ under H 7→ Fix(H) by ν. Clearly, ν is a G-invariant Borel probability
measure on the compact metrizable space C(C). By Lemma 2.3, it follows that ν = δC , meaning
that µ-almost every H ∈ S(G) fixes every point of C, and the claim is proven. �

5. Kazhdan Property (T)

For a unitary representation π of G, we denote by Z1(G, π) the space of 1-cocycles, by B1(G, π)

the space of coboundaries and by H1(G, π) = Z1(G, π)/B1(G, π) the first reduced cohomology
associated to π. We refer to [BdlHV08] for standard facts about those objects. We recall the
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following important theorem due to Y. Shalom [Sha00, Theorem 6.1], see also [BdlHV08, Theorem
3.2.1].

Theorem 5.1. Assume G is compactly generated. The group G has property (T) if and only if

for any irreducible unitary representation π, H1(G, π) = 0.

We will use the following characterization of relative property (T) that holds for locally compact
second countable groups.

Proposition 5.2 ([Jol05]). Let H ∈ S(G). The pair (G,H) has relative property (T) if and only
if for any continuous isometric action of G on a Hilbert space there are H-fixed points.

We observe that relative property (T) is actually a Borel property and thus Sr(T )(G) is mea-
surable for any IRS.

Lemma 5.3. The subset Sr(T )(G) is a Borel subset of S(G).
Proof. We use this quantitative characterization of relative property (T) from [Jol05]. The pair
(G,H) has relative property (T) if and only if for every δ > 0 there is pair (Q, ε) (consisting
of a compact subset and a positive number) such that for any unitary representation of G with
(Q, ε)-invariant unit vector v, there is a H-fixed invariant vector at distance less than δ from v.

For a pair (Q, ε) define Ψ(Q, ε) to be the set of functions of positive type ψ (see [BdlHV08,
Definition C.4.1]) with ψ(e) = 1 and inf

g∈Q
ℜ(ψ(g)) ≥ 1 − ε/2. For such a function the GNS

construction yields a unitary representation with a (Q, ε)-invariant unit vector v such that ψ(g) =

〈gv, v〉. Recall that a unitary representation of a group H with a
(

H,
√
2
)

-invariant unit vector

has a non-zero invariant vector [BdlHV08, Proposition 1.1.5]. Conversely if v is (Q, ε)-invariant
vector in some unitary representation of G, then the function ψ defined by ψ(g) = 〈gv, v〉 belongs
to Ψ(Q, ε). Now choose α ∈

(

0, 1/
√
2
)

. With the characterization and the reminder we have

Sr(T )(G) =
⋃

(Q,ε)

⋂

ψ∈Ψ(Q,ε)

{

H ∈ S(G); inf
g∈H

ℜ(ψ(g)) ≥ 1− α

}

.

To conclude, it suffices to observe that

{

H ∈ S(G); inf
g∈H

ℜ(ψ(g)) ≥ 1− α

}

is a closed subset and

that the union can be replaced by a countable one thanks to σ-compactness. �

We start the proof of Theorem 1.11 by dealing with finite-dimensional representations. A
topological group is said to have property (FE) if any continuous isometric action on a Euclidean
space has a fixed point. A subgroup H < G has relative property (FE) if for every continuous
isometric action of G on a Euclidean subspace, H fixes a point. We mimic Definition 1.10 to define
IRSs with relative property (FE).

Proposition 5.4. If G has a spanning IRS with relative property (FE) then G has property (FE).

The proof of this proposition relies on similar methods as the proof of the main theorem in
[DGLL14]. We prove Proposition 5.4 without emphasizing questions about measurability of the
constructions. The interested reader may have a look at [DGLL14] for those questions.

Proposition 5.4 will follow from the following lemma. If E is a Euclidean space, we endow the
space of all closed convex subspaces C(E) with the coarsest topology such that x 7→ d(x,C) is a
continuous function on C(E) for every x ∈ E. This is the so-called Wijsman topology [Bee93].

Lemma 5.5. Let E be a finite dimensional Euclidean space. Assume that G acts by isometries
on E, without fixed points, and irreducible linear part. The only G-invariant Borel probability
measure on C(E) is δE.

Proof. Let ν ∈ Prob(C(E))G. Fix x0 ∈ E and look at the function f : E → R defined by

f(x) =

∫

C(E)

d(x,C)− d(x0, C)) dν(C).
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This continuous function satisfies the cocycle relation f(gx) = f(x)+f(gx0). Either f achieves
a minimum or not. By [AB98, Lemma 2.4], if f has no minimum then G fixes a point at infinity
of E. In that case the linear part of G stabilizes the direction of this point. As we assumed the
representation to be irreducible, this cannot be the case.

Thus f has a minimal set M , which is a G-invariant and convex. If this convex subset is
bounded, then it has a G-invariant circumcenter, contradicting the assumption. If it is unbounded,
then by [AB98, Lemma 1.7] and the fact that G does not stabilize a point at infinity, we conclude
that M is an affine subspace of E. By the irreducibility assumption, it follows that M = E, hence
that f is constant.

In particular, one has that x 7→ d(x,C) is affine for almost all C ∈ C(E). Since the distance to
a strict convex subspace is not affine (it is non constant and does not take negative values), one
has C = E almost surely, hence ν = δC . �

Proof of Proposition 5.4. Let E be a Euclidean space with an action of G. Up to consider a
minimal invariant affine subspace we assume there is no invariant affine subspace of E. Let
µ ∈ IRS(G) with relative property (FE).

First we consider the case when the linear part of the action of E is irreducible. In that case,
by assumption, almost every H ∈ S(G) fixes an affine subspace of E. Pushing forward µ by the
map H 7→ Fix(H), we get a G-invariant measure on C(E). By Lemma 5.5, this measure is δE ,
meaning that almost every H ∈ S(G) fixes E pointwise. Since the IRS is spanning, this means
that G fixes E pointwise.

In the general case, any orthogonal representation can be written as the orthogonal sum of
irreducible representations (π1, E1), . . . , (πn, En). If b is the cocycle associated to the action of
G on E and Pi : E → Ei is the projection then Pi ◦ b is a cocycle for the representation πi on
Ei. Hence by the previous case, this associated affine action on Ei fixes a point for every i. This
implies that G fixes a point in E. �

In the proof of Theorem 1.11, we will use the notion of weakly mixing unitary representa-
tions. Recall that these are unitary representations without finite dimensional subrepresentation.
Moreover the tensor product of two weakly mixing representations is still weakly mixing.

Lemma 5.6. Let (π,H) be a separable weakly mixing unitary representation of G. Then the only
G-invariant measure on H is δ{0}.

Proof. Let ν be such a measure and (π,H) the conjugate representation [BdlHV08, Definition
A.1.10]. Consider the map Φ : H → H⊗H defined by Φ(x) = x⊗ x/‖x‖2 for x 6= 0 and Φ(0) = 0.

Now,

∫

H

Φ(x) dµ(x) is a G-invariant vector of H⊗H which has to be 0 because of weak-mixing.

In particular, for any v ∈ H and almost all x ∈ H, we have |〈v, x〉|2 = 〈v ⊗ v, x⊗ x〉 = 0. Since H
is separable, x = 0 for almost all x ∈ H, meaning that ν = δ{0}

�

Proof of Theorem 1.11. We consider a spanning IRS µ with relative property (T). Let π be an
irreducible unitary representation of G with underlying Hilbert space H (which we may assume
separable since G is second countable), b ∈ Z1(G, π) and consider the associated affine action α
given by α(g)v = π(g)v+ b(g) for any v ∈ H. The case where H has finite dimension is treated in
Proposition 5.4. From now on, we assume H has infinite dimension, thus weakly mixing.

For any H ∈ Sr(T )(G), Fix(H) is a non-empty affine subspace of H. For H1, . . . , Hn ∈ Sr(T )(G)
and ε > 0, we define the set of (∪iHi, ε)-fixed points

F (H1, . . . , Hn, ε) = {v ∈ H; ∀h ∈ H1 ∪ · · · ∪HN , ||α(h)v − v|| < ε}.

We claim there is An ⊆ S(G)n, with µn(An) = 1 such that for all ε > 0 and (H1, . . . , Hn) ∈ An,
F (H1, . . . , Hn, ε) 6= {0}. We prove it by induction. The case n = 1 follows from µ(Sr(T )(G)) = 1.
Assume this is true for n− 1, let v(H1, . . . , Hn−1;Hn) be the vector of minimal norm in the closed
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convex set F (H1, . . . , Hn−1, ε/3)− Fix(Hn). The map (H1, . . . , Hn) 7→ v(H1, . . . , Hn−1;Hn) sat-
isfies the assumption of Lemma 5.6 and thus is 0. In particular, there is some v which is at distance
less than ε/3 from both F (H1, . . . , Hn−1, ε/3) and Fix(Hn) and thus v ∈ F (H1, . . . , Hn, ε).

Let F = {g1, . . . , gn} ⊆ G be a finite subset, thanks to Lemma 3.3 one can find (hji ) such that

gi = h1i · · ·hk(i)i and µ
(

Shj

i

)

> 0.

Let N =

n
∑

i=1

k(i). The product set P =

n
∏

i=1

(Sh1
i
× · · · × S

h
k(i)
i

) ⊆ S(G)N has also posi-

tive measure and thus intersects AN . In particular, one can find
(

H1
1 , . . . , H

k(n)
n

)

in P such

that F (H1
1 , . . . , H

k(n)
n , ε/N) 6= ∅. Now, observe that gi ∈ H1

i · · ·Hk(i)
i and thus taking v ∈

F (H1
1 , . . . , H

k(n)
n , ε/N), we get a (F, ε)-invariant vector. Thus H1(G, π) = 0 and Shalom’s theorem

concludes the proof. �

Remark 5.7. In case one considers non spanning IRSs, our methods lead to the following statement
for G countable: The normal closure of an IRS with relative property (T) has relative property
(FH). We refer to [FVM12] for the definition of property (FH) and its relative version. We
emphasize that even if Shalom’s theorem shows that property (T) and property (FH) coincide for
compactly generated groups, the relative versions do not coincide.

The following proposition is an adaptation of the classical result of compact generation for
locally compact groups with property (T) (see for example [BdlHV08, Theorem 1.3.1]).

Proposition 5.8. If G has a spanning ergodic IRS with relative property (T) then G is compactly
generated as a normal subgroup.

Proof. Let C be the set of open compactly generated subgroups of G. For F ∈ C denote by
ℓ2(G/F ) the quasi-regular representation of G. We consider the Hilbertian sum

H =
⊕

F∈C

ℓ2(G/F ).

From construction, the diagonal representation of G on H almost has invariant vectors and thus
for almost all H ∈ S(G), H has non-trivial invariant vectors. In particular, for such H , there is
F ∈ C such that H has a non-trivial invariant vector f ∈ ℓ2(G/F ). Let g ∈ G such that f(gF ) 6= 0.
There are h1, . . . , hn such that HgF ⊆ h1gF ∪ · · · ∪ hngF that is H ⊆ h1F

g ∪ · · · ∪ hnF
g. In

particular, H is contained in at most n right classes of the normal closure 〈F 〉G of F and thus
there is F ′ ∈ C (namely, F ′ = 〈F g, h1, . . . , hn〉) such that H ≤ F ′ and thus H ≤ 〈F ′〉G. This last
condition is a G-invariant closed condition, thanks to ergodicity, there is F ′ ∈ C such that it holds
for almost all H ∈ S(G). That is almost surely H ≤ 〈F ′〉G. Finally the spanning property implies
that G = 〈F ′〉G. �

Remark 5.9. One may ask if the normal closure of an IRS with relative property (T) is actually
compactly generated. Observe that in the proof of Proposition 5.8 we did not use the general
assumption that G is second countable. We give a counterexample for a locally compact group
which is not second countable.

Consider the lamplighter group over the circle group G = Z/2Z ≀ S1 with the topology coming

from the discrete topology on
⊕

S1

Z/2Z and the usual one on S1. For s ∈ S1 let δs be the Dirac

measure on S(G) at the Z/2Z copy at coordinate s. Let µ =

∫

S1

δs ds. This is an ergodic IRS

with normal closure
⊕

S1

Z/2Z which is generated by one element as normal subgroup but is not

finitely generated.

Appendix A. The set of amenable closed subgroups

Phillip Wesolek
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The class of l.c.s.c. groups G such that the set Sa(G) ⊆ S(G) is closed in the Chabauty topology
is very large by work of Caprace and Monod [CM13, Theorem 2]. Caprace and Monod raise the
following question: Is Sa(G) closed in S(G) for all l.c.s.c. groups G? It is natural to consider
a weaker question: Is Sa(G) a Borel set in S(G)? We here answer the latter question in the
affirmative.

Theorem A.1. For every l.c.s.c. group G, Sa(G) is a Borel set in S(G).
Acknowledgements. The author thanks U. Bader, B. Duchesne, and J. Lécureux for including
this appendix in their work and for their many helpful comments and suggestions.

A.1. The class G and its closure properties. We consider the class of all l.c.s.c. groups G
such that Sa(G) is a Borel set in S(G); we denote this class by G .

Theorem A.2. The class G enjoys the following permanence properties:

(1) If N E G is an amenable closed subgroup and G/N ∈ G , then G ∈ G .
(2) If H ≤ G is a finite index closed subgroup of G and H ∈ G , then G ∈ G .
(3) If G0, G1 ∈ G , then G0 ×G1 ∈ G .

Proof. For (1), let π : G→ G/N be the usual projection and define Π : S(G) → S(G/N) by C 7→
π(C). The Borel sigma algebra of S(G/N) is generated by sets of the form OU := {C | C∩U = ∅}
where U ranges over open subsets of G/N . To verify Π is Borel measurable, it is therefore enough
to check Π−1(OU ) is a Borel set for each open U ⊆ G/N . This, however, is immediate since
Π−1(OU ) = Oπ−1(U).

To prove (1), it now suffices to show Sa(G) = Π−1(Sa(G/N)). For the forward direction,

every compact, convex π(C)-space is a compact convex C-space via the map π. We conclude

there is an C-fixed point and, therefore, a π(C)-fixed point. Via the fixed point criterion, π(C)
is amenable. Conversely, suppose Π(C) ∈ Sa(G/N). So π−1(Π(C)) ∈ S(G), and π−1(Π(C))/N is
amenable. Since amenability is stable under group extension, π−1(Π(C)) ∈ Sa(G). It now follows
that C ∈ Sa(G).

Claim (2) is immediate. Indeed, the map Φ : S(G) → S(H) via C 7→ C ∩ H is Borel with
Φ−1(Sa(H)) = Sa(G).

To see (3), let πi for i ∈ {0, 1} be the projection onto the i-th coordinate. As with (1), these
maps induce Borel measurable maps Πi : S(G0 ×G1) → S(Gi). We claim

Sa(G0 ×G1) = Π−1
0 (Sa(G0)) ∩ Π−1

1 (Sa(G1)),

from which the result follows. The forward direction follows as with (1). Conversely, suppose

H ∈ Π−1
0 (Sa(G0)) ∩Π−1

1 (Sa(G1)), so π0(H)× π1(H) is amenable. Since H ≤ π0(H)× π1(H) is a
closed subgroup, we conclude that H is amenable. �

A.2. T.d.l.c.s.c. groups. We now show all totally disconnected locally compact second countable
(t.d.l.c.s.c.) groups lie in G . To do so, we will use Følner’s condition [BdlHV08, Theorem G.5.1].
A priori, Følner’s condition is non-Borel since there is quantification over uncountable sets. We
give a restatement that eliminates this problem. Our restatement makes use of an old theorem of
D. van Dantzig: A t.d.l.c. group admits a basis at the identity of compact open subgroups. See,
for example, [HR79, (7.7)].

Proposition A.3. Let G be a t.d.l.c.s.c. group with left invariant Haar measure µ. Suppose
F := (gi)i∈N is a countable dense subset of G and (Vi)i∈N is an ⊆-decreasing basis at 1 of compact
open subgroups. Then the following are equivalent:

(1) G is amenable.
(2) (Borel Følner’s condition) For all finite non-empty F ⊆ F and for all n ≥ 1, there is a finite

non-empty H ⊆ F and i ∈ N such that for U :=
⋃

h∈H

hVi

µ(giU∆U)

µ(U)
≤ 1

n
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for all gi ∈ Q :=
⋃

f∈F

fV0.

Proof. For the reverse direction, let K ⊆ G be compact. Since F is dense, there is a finite F ⊆ F
such that K ⊆ Q :=

⋃

f∈F

fV0. Fixing n ≥ 1, condition (2) now supplies a U =
⋃

h∈H

hVi for some

finite non-empty H ⊆ F that satisfies the inequality condition for a dense subset of Q. It suffices
to show the inequality holds for all x ∈ Q. To this end, fix x ∈ Q and let gj → x be such that the

inequality holds for all j. By taking a sufficiently large k, we have h−1g−1
k xh ∈ Vi for all h ∈ H .

Hence, gkU = xU , and the inequality holds for x.

Conversely, suppose Q :=
⋃

f∈F

fV0 with F ⊆ F finite and non-empty. Fix n > 0 and 0 < δ <
1

n

and apply the Følner condition to find a Borel U with 0 < µ(U) <∞ such that

µ(xU∆U)

µ(U)
≤ δ <

1

n

for all x ∈ Q.
We now approximate U by a set of the desired form. Fix ǫ > 0 small enough so that

1

1− ǫ

(

µ(xU∆U)

µ(U)
+ 4ǫ

)

<
1

n

for all x ∈ Q. By inner and outer regularity of the Haar measure, we may find a compact, non-
empty K and open O such that K ⊆ U ⊆ O, µ(K) ≥ (1 − ǫ)µ(U), and µ(O) ≤ (1 + ǫ)µ(U).
Now for each k ∈ K, there is Vj and g ∈ F with k ∈ gVj ⊆ O. The gVj form an open cover

of K, hence there is some finite, non-empty H ′ ⊆ F so that K ⊆ Ω :=
⋃

h∈H′

hVj(h). By taking

i = max{j(h) | h ∈ H ′} and possibly expanding H ′ by finitely many elements of F , Ω =
⋃

h∈H

hVi.

So Ω has the correct form.

We here argue Ω satisfies (2) for Q and
1

n
. By construction, K ⊆ Ω ⊆ O, whereby

(1 − ǫ)µ(U) ≤ µ(Ω) ≤ (1 + ǫ)µ(U).

Thus,
1

µ(Ω)
≤ 1

(1 − ǫ)µ(U)
. On the other hand, recall µ(A∆B) =: dµ(A,B) gives a pseudometric

on the algebra of measurable sets that is invariant under measure preserving maps; consider [Kec10,
Chapter 1]. For any x ∈ Q, we therefore have

dµ(xΩ,Ω)− dµ(xU,U) ≤ dµ(xΩ, xU) + dµ(xU,U) + dµ(U,Ω)− dµ(xU,U)
= 2dµ(Ω, U)
≤ 2µ(O \ Ω) + 2µ(O \ U)
≤ 4ǫµ(U)

and µ(xΩ∆Ω) ≤ µ(xU∆U) + 4ǫµ(U). We conclude

µ(xΩ∆Ω)

µ(Ω)
≤ 1

1− ǫ

(

µ(xU∆U)

µ(U)
+ 4ǫ

)

<
1

n
,

hence Ω satisfies (2) for Q and
1

n
. �

The next lemma gives a technique for computing the Haar measure in a Borel way.

Lemma A.4. Suppose G is a t.d.l.c.s.c. group with left invariant Haar measure µ and let (Vi)i∈N

be an ⊆-decreasing basis at 1 of compact open subgroups. For all non-empty compact open sets O

and L, there are finite setsW ⊆ O and K ⊆ L and i ∈ N such that O =
⊔

w∈W

wVi and L =
⊔

k∈K

kVi.

Therefore,
µ(O)

µ(L)
=

|W |
|K| .
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Proof. For each o ∈ O there is Vi(o) ∈ (Vi)i∈N such that oVi(o) ⊆ O, so O =
⋃

o∈O

oVi(o). Since O is

compact, there is a finite, non-empty set W ⊆ O such that O =
⋃

o∈W

oVi(o). We may likewise write

L =
⋃

l∈K

lVi(l) for K ⊆ L finite and non-empty. Taking i = max{i(x) | x ∈ W ∪K} and possibly

expanding W and K by finitely many elements, we have O =
⋃

o∈W

oVi and L =
⋃

l∈K

lVi. We

eliminate redundant cosets to conclude O =
⊔

o∈W ′

oVi and L =
⊔

l∈K′

lVi for some finite, non-empty

W ′ ⊆ O and K ′ ⊆ L. �

Theorem A.5. If G is a t.d.l.c.s.c. group, then Sa(G) is a Borel set in S(G).
Proof. Fix (Vi)i∈N an ⊆-decreasing basis at 1 of compact open subgroups for G. Let (di)i∈N be
a set of Kuratowski−Ryll-Nardzewski selector functions for S(G). That is to say, a set of Borel
functions di : S(G) → G such that {di(C)}i∈N is dense in C for all C ∈ S(G); see [Kec95, (12.13)]
for example.

For each C ∈ S(G), (C ∩ Vi)i∈N forms an ⊆-decreasing basis at 1 of compact open subgroups
of C, and (di(C))i∈N forms a countable dense subset. In view of Proposition A.3, C ∈ Sa(G) if
and only if for all finite non-empty F ⊆ N and for all n ≥ 1, there is a finite non-empty H ⊆ N

and i ∈ N such that for U :=
⋃

h∈H

dh(C) (C ∩ Vi)

µC(dj(C)U∆U)

µC(U)
≤ 1

n

for all dj(C) ∈ Q :=
⋃

f∈F

df (C) (C ∩ V0) where µC is the left invariant Haar measure on C. For

F ⊆ N finite non-empty, n > 0, j ∈ N, H ⊆ N finite non-empty, and i ∈ N, put

Ω :=







C ∈ S(G) | µC(dj(C)U∆U)

µC(U)
≤ 1

n
with U =

⋃

h∈H

dh(C) (C ∩ Vi)







and
Σ :=

{

C ∈ S(G) | dj(C) /∈ Q
}

.

Since Sa(G) is a combination of countable intersections and unions of sets with the forms of Ω
and Σ, showing Ω and Σ are Borel proves the theorem.

The case of Σ is immediate: For each f ∈ F , define Φf : S(G) → G by C 7→ df (C)
−1dj(C).

This is a Borel measurable map since the functions di are Borel and the group operations are
continuous. We thus see that

Σ =
⋂

f∈F

Φ−1
f (V c0 )

and, therefore, is Borel.
To see Ω is Borel, we apply Lemma A.4. Indeed, C ∈ Ω if and only if either dj(C)U = U or

there is l ≥ i and finite non-empty sets W,K ⊆ N with
|W |
|K| ≤

1

n
so that

(1) xU∆U =
⊔

w∈W

dw(C)(C ∩ Vl) and

(2) U =
⊔

k∈K

dk(C)(C ∩ Vl).

It is easy to verify the latter statement is Borel. We check the first disjunct: dj(C)U = U if and
only if

(1) ∀h ∈ H ∀m ∈ N ∃k ∈ H so that dk(C)
−1dj(C)dh(C)dm(C ∩ Vi) ∈ Vi and

(2) ∀h ∈ H ∀m ∈ N ∃k ∈ H so that dk(C)
−1dj(C)

−1dh(C)dm(C ∩ Vi) ∈ Vi.
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Let Φh,m,k : S(G) → G by C 7→ dk(C)
−1dj(C)dh(C)dm(C ∩ Vi) and Ψh,m,k : S(G) → G by

C 7→ dk(C)
−1dj(C)

−1dh(C)dm(C ∩Vi). Since the di are Borel functions and the group operations
are continuous, Φh,m,k and Ψh,m,k are Borel, hence

{C ∈ S(G) | dj(C)U = U} =
⋂

h∈H

⋂

m∈N

⋃

k∈H

Φ−1
h,m,k(Vi) ∩

⋂

h∈H

⋂

m∈N

⋃

k∈H

Ψ−1
h,m,k(Vi)

is Borel. The second disjunct follows similarly. We conclude Sa(G) is a Borel subset of S(G)
verifying the theorem. �

Proof of Theorem A.1. Let G be a l.c.s.c. group and form Ra(G), the amenable radical of G. In
view of Theorem A.2, if G/Ra(G) ∈ G , then G ∈ G , so we may assume Ra(G) = {1} without
loss of generality. Via [Mon01, Theorem 11.3.4], there is H ≤ G a finite index closed subgroup
that is a direct product of a connected group and a totally disconnected group. Since H ∈ G

implies G ∈ G , we may reduce again to G ≃ G0 ×G1 with G0 a connected l.c.s.c. group and G1 a
t.d.l.c.s.c. group. Now [CM13, Theorem 2] gives that G0 ∈ G , and G1 ∈ G via Theorem A.5. We
conclude G ∈ G verifying the theorem.

�
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