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ABSTRACT

We show that an amenable Invariant Random Subgroup of a locally com-

pact second countable group lives in the amenable radical. This answers

a question raised in the introduction of [2]. We also consider an opposite

direction, property (T), and prove a similar statement for this property.
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1. Introduction

Yes, the IRS is amenable to working with you if you are

cooperative and willing to work with them.

— taxes.answers.com

1.1. Invariant random subgroups. LetG be a locally compact second count-

able group. We denote by S(G) the space of closed subgroups of G. We endow

it with the Chabauty topology which is defined in the following way. For K ⊆ G
compact and U ⊆ G open, we define the two following subsets of S(G)

OK = {H ∈ S(G); H ∩K 6= ∅} and OU = {H ∈ S(G); H ∩ U = ∅}.

The Chabauty topology is then the smallest topology on S(G) containing the

OK ’s and OU ’s when K and U vary respectively among compact and open

subspaces of G. With this topology S(G) is a compact metrizable space [20,

Propositions 1.7&1.8]. Maybe more concretely, a sequence (Hn) of closed sub-

groups converges to H if and only if the following properties hold.

• For any h ∈ H and n ∈ N, there is hn ∈ Hn such that (hn) converges

to h.

• For any sequence (hn) such that hn ∈ Hn for all n ∈ N, the limit of any

converging subsequence of (hn) is in H.

Recently, a new and fruitful point of view about — non-free — probability

measure preserving (shortly p.m.p) actions appeared and is currently a fast

growing field of research.

Definition 1.1: An invariant random subgroup (shortly IRS) is a Borel probabil-

ity measure on S(G) which is invariant under the adjoint action of G on S(G)

by conjugations.

We denote the space of IRSs by IRS(G). From a probabilistic point of view

an IRS is a random closed subgroup of G whose distribution is invariant under

conjugation. We will alternate between the two points of view depending on

the desire for short statements or precise ones.

∗ U.B & P.W. acknowledge the support of the European Research Council (Grants

306706 & 278469). B.D. is supported in part by Lorraine Region and Lorraine
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The name IRS first appeared in [2] for countable groups. We refer to [2]

for historical background on IRSs before the name was coined. Since this first

appearance, IRSs appeared in several papers, for example in [1] and [8] where

recent references are given in the introduction.

Standard examples of IRSs are given by closed normal subgroups (Dirac mea-

sures in S(G)) and lattices (in that case the measure is supported on the con-

jugacy class of the lattice). Thus, an IRS may be thought of as a generalization

of both normal subgroups and lattices. A general idea is that a statement true

for normal subgroups and lattices should generalize to IRSs.

There is a more general way to construct IRSs: Let Gy X be a p.m.p action,

the map

X → S(G)

x 7→ StabG(x)

allows us to push the invariant probability measure on X to S(G) and obtain

an IRS. Actually, any IRS can be obtained that way (see [2, Proposition 14] in

the discrete case and [1] in the general case). So IRSs highlight one aspect of

p.m.p actions. This point of view is only interesting outside the classical world

of free actions (where StabG(x) = {e} for almost all x ∈ X). An IRS µ is said

to be ergodic if Gy (S(G), µ) is ergodic.

1.2. Amenability. In their generalization of Kesten theorem about amenable

normal subgroups to IRSs, the authors of [2] were led to the study of amenable

IRSs, which are IRSs supported on amenable subgroups. We denote by Sa(G)

the subspace of S(G) consisting of amenable closed subgroups. It is an open

question to decide whether Sa(G) is closed. Nevertheless, P. Wesolek shows

in Appendix A that it is a Borel subset. Recall that among amenable closed

normal subgroups, there is a unique maximal one, which is called the amenable

radical of G (see for example [25, Proposition 4.1.12]). We denote it by Ra(G).

Since we consider only subgroups of G, it is more natural to use the notion

of relative amenability as introduced in [10] via the fixed point property. Let

us recall that G is amenable if any non-empty convex compact G-space has a

fixed point.

Definition 1.2: A subgroup H ∈ S(G) is relatively amenable if in any non-empty

convex compact G-space there is a H-fixed point.
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Clearly, every amenable subgroup of G is relatively amenable. We denote by

Sra(G) the closed subset of relatively amenable subgroups of G.

Definition 1.3: An IRS µ of G is relatively amenable if µ(Sra(G)) = 1 and it is

said to be amenable if µ(Sa(G)) = 1.

At the end of the introduction of [2], the authors state that if G is a linear

group any amenable IRS lies in Ra(G) (see [13] for a proof). They implicitly

ask if the same holds in the general case. The same question also appeared in

the introduction of [8] and in [24, §7]. We prove the following statement which

yields a positive answer as a corollary.

Theorem 1.4: Any relatively amenable IRS of G lies in the amenable radical.

If H ≤ G is a closed subgroup of G, we identify S(H) with the closed subspace

of S(G) consisting of closed subgroups of G included in H. More precisely,

Theorem 1.4 means that if µ ∈ IRS(G) and µ(Sra(G)) = 1 then µ(S(Ra(G))) =

1.

Corollary 1.5: Any amenable IRS of G lies in the amenable radical of G.

Remark 1.6: This theorem is related to [7, Theorem 5.4] which concerns

strongly non-amenable groups, namely discrete groups with positive first Betti

number.

This previous theorem allows us to extend [2, Theorem 5] — with the same

proof — outside the linear world. Let Γ be a group generated by a finite

symmetric set S. A sequence (Hn) of finite index subgroups of Γ is said to

locally approximates Γ if the Schreier graphs Sch(Γ/Hn, S) converge to the

Cayley graph Cay(Γ, S) in Benjamini-Schramm convergence [6]. We obtain the

following theorem, where ρ0

(
Sch(Γ/Hn, S)

)
and ρ(Cay(Γ, S)) are the spectral

radii of the Markov averaging operator on respectively `20(Sch(Γ/Hn, S)) and

`2(Cay(Γ, S)).

Theorem 1.7: Let Γ be a finitely generated group with trivial amenable radical

and let S be a finite symmetric generating set of Γ. Let (Hn) be a sequence of
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subgroups of finite index such that |Γ : Hn| → ∞ and

lim ρ0

(
Sch(Γ/Hn, S)

)
≤ ρ(Cay(Γ, S)).1

Then (Hn) locally approximates Γ.

Proof. Using Theorem 1.5 instead of [2, Theorem 3] the proof of [2, Theorem

5] can be repeated verbatim.

As explained in [24], Theorem 1.5 also yields positive answers to [24, Ques-

tions 7.2, 7.4 & 7.5], see Figure 1 in that paper. Namely, arguments there and

Theorem 1.5 show the following.

Theorem 1.8: Let Γ be a countable group with trivial amenable radical. Any

non-trivial p.m.p action of Γ that is weakly contained in the Bernoulli shift

Γ y [0, 1]Γ, is free.

Remark 1.9: A group satisfying the conclusion of Theorem 1.8 is said to be

shift-minimal. The work in [24] shows that no amenable IRS implies shift

minimality which in turn implies a trivial amenable radical. Thus in view of

the results in the current paper all three are equivalent.

1.3. Kazhdan property (T). An opposite property to amenability is Kazh-

dan property (T). This property is hereditary for finite covolume subgroups

in G (see for example [5, Theorem 1.7.1]). So, it is natural to hope it is also

hereditary for IRSs; at least when there is no strict closed subgroup containing

the IRS. In that case, the IRS is said to be spanning (see §3).

Definition 1.10: Let Sr(T )(G) be the subset of groups H ∈ S(G) such that

(G,H) has relative property (T). An IRS µ is said to have relative property (T)

if Sr(T )(G) has measure 1.

Theorem 1.11: Assume G is finitely generated. If G has a spanning IRS with

relative property (T) then G has property (T).

Remarks 1.12: (1) It is clear from the definitions that if G has property

(T) then any of its IRS has relative property (T) as does any closed

subgroup.

1 All along this text lim and lim denote respectively the limit superior and the limit inferior

of a sequence of real numbers.
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(2) Theorem 1.11 does not hold if one removes the finite generation as-

sumption. Consider the group G = ⊕n∈NZ/2Z. This countable group

is not finitely generated and thus does not have property (T). Let δn

be the Dirac measure at the n-th copy of Z/2Z and let µ be
∑
n∈N

δn/2
n.

The measure µ is a spanning IRS with relative property (T).

(3) For a result toward compact generation see Proposition 5.8.

Structure of the paper. In Section 2, we study the cone of convex weak*-

compact subsets of a dual Banach space. We show that the set of convex

weak*-compact subsets in the dual unit ball is a convex compact space itself.

This construction will allow us to construct the barycenter of a measure on

convex compact sets. The proof of Theorem 1.5 appears in Section 4. The last

section is devoted to relative property (T).

2. Locally convex structure on the cone of convex weak*-compact

subspaces

For all this section we fix some real separable Banach space (E, ‖ ‖), we define

E1 to be its unit ball and E∗ the dual Banach space with its unit ball E∗1 . Any

topological statement for subsets of E∗ will be relative to the weak*-topology.

We aim to define a locally convex (Hausdorff) topological vector space E in

which one can embed the set C of compact convex (non-empty) subspaces of

E∗.

First observe that C is an abstract cone [23, Chapter 3] with the operations

A+B = {a+ b; a ∈ A, b ∈ B} and λA = {λa; a ∈ A} for λ ≥ 0 — those sets

are also easily seen to be compact convex subsets. For C ∈ C and b ∈ E1, we

set b+(C) = max
c∈C

b(c) and b−(C) = min
c∈C

b(c).

Let E be the vector space
∏
b∈E1

Rb, with the product topology τ . This is

a locally convex (Hausdorff) topological vector space. By the Hahn-Banach

Separation Theorem, we get an injective map

f : C → E
C 7→ (b+(C))b∈E1

.

Observe that b+(C + C ′) = b+(C) + b+(C ′), b+(λC)=λb+(C) for λ ≥ 0 and

b+({−c; c ∈ C)} = −b−(C). This means that the previous operations defined
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on C are the same as the ones coming from the vector space in E : the abstract

cone C can actually be realized as a cone in E . In particular C is a convex

subspace of E .

We endow C with the induced topology, that is the coarsest topology such

that all linear forms b+ are continuous. Furthermore if G acts by isometries on

E, it also acts by linear homeomorphisms on C. Indeed for g ∈ G and b ∈ E1,

the map C 7→ b+(gC) is (bg)+.

If C ∈ C, we define C(C) = {C ′ ∈ C; C ′ ⊆ C} and C1 = C(E∗1 ).

Lemma 2.1: If C ′ ⊆ C, then C(C ′) is a closed convex subset of C(C) and C is

an extreme point of C(C). Moreover C1 is compact and if E is separable then

C1 is metrizable.

Proof. The first part comes from the fact that C ′ ⊆ C if and only if for any

b ∈ E1, b+(C ′) ≤ b+(C). If C ′, C ′′ ∈ C(C) and C = (C ′ + C ′′)/2 then for

any b ∈ E1, b+(C) = (b+(C ′) + b+(C ′′))/2 and since b+(C ′), b+(C ′′) ≤ b+(C),

one has b+(C ′) = b+(C ′′) = b+(C). Thus C ′ = C ′′ = C. This proves C is an

extreme point of C(C).

To prove compactness, first observe that f(C1) ⊆
∏
b∈E1

[−1, 1]. Let t = (tb) be

a point in the closure of f(C1). We will show there is C ∈ C1 such that f(C) = t.

Claim: For all finite subset F ⊂ E1, there is CF ∈ C1 such that for all b ∈ F ,

b+(CF ) = tb.

Assume the claim holds true. In that case, one can moreover assume that

CF =
⋂
b∈F

b−1
(
(−∞, tb]

)
∩ E∗1 .

With this assumption, observe that F ⊆ F ′ implies CF ′ ⊆ CF . Now define

C = ∩F∈F(E1)CF where F(E1) denotes the set (directed for reverse inclusion

order) of finite subsets of E1. Fix b ∈ E1. For F ∈ F(E1), choose cF ∈ CF
such that b(cF ) = b+(CF ). As E∗1 is compact, the net (cF ) has a convergent

subnet with limit c. Since cF ′ ∈ CF for F ⊆ F ′, the point c is in C and

continuity implies b(c) = b(cF ) = tb for F containing b. Since C ⊆ CF , one has

b+(C) ≤ b+(CF ) = tb. Thus b+(C) = tb for all b ∈ E1 and f(C) = t.

It remains to show the claim. Fix F ∈ F(E1). There is a sequence (Ck) with

Ck ∈ C1 such that for all b ∈ F , b+(Ck) → tb. For each b ∈ F choose ckb ∈ Ck

such that b(ckb ) = b+(Ck). After passing to a subsequence one may assume that
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ckb converges to some cb as k → ∞. Thus for b, b′ ∈ F , b(cb′) = lim
k→∞

b(ckb′) ≤

lim
k→∞

b+(Ck) = tb and b(cb) = tb. Define CF to be the closed convex hull of

{cb}b∈F . By construction CF satisfies the conditions of the claim.

For metrizability, let (bn) be a dense countable subset of E1 and assume (Cα)

is a net in C1 such that b+n (Cα)→ b+n (C) for any n ∈ N. We have

|b+(C)− b+(Cα)| ≤ |b+(C)− b+n (C)|+ |b+n (C)− b+n (Cα)|+ |b+n (Cα)− b+(Cα)|

≤ 2‖bn − b‖+ |b+n (C)− b+n (Cα)|

which shows that |b+(C) − b+(Cα)| → 0. Thus, the embedding of f : C1 →∏
n∈N

Rbn yields the same topology as τ on C1. This shows metrizability.

Remark 2.2: The proof of Lemma 2.1 shows that C1 embeds as a convex

bounded subspace in `∞(E1). Since weak*-topology and the topology of point-

wise convergence coincide on bounded subsets of `∞(E1), C1 can be seen as a

weak*-compact convex subset of `∞(E1) (seen as the dual of `1(E1)).

If G acts continuously by linear isometries on E, then there are obvious linear

isometric adjoint actions of G on `1(E1) and `∞(E1) that are not continuous.

However the restriction of this action to C1 and to the weak*-closure of its

span L is continuous. In particular C1 is a general2 convex compact G-space.

Moreover L can be identified with the dual of some Banach space L[ which can

be realized as the Banach space quotient of `1(E1) by the intersection of the

kernels of all elements of L.

The following Lemma is a key step in the proof of Theorem 1.4:

Lemma 2.3: Assume E is separable, G acts by isometries on E and C ∈ C1 is

G-invariant. If there is no invariant closed convex proper subspace of C then

the only G-invariant Borel probability measure on C(C) is δC .

Proof. Let ν ∈ Prob(C(C))G. Let C0 be its barycenter, that is C0 =

∫
C ′ dν(C ′).

The integration process is the vector-valued integration in locally convex vector

spaces (see e.g. [21, Theorem 3.27] or [9, IV §7 N0 2]). Recall the barycenter

2 We use the adjective general to emphasize that, contrarily to Zimmer’s original definition,

a general convex compact G-space is merely a convex compact G-invariant subset of some

locally convex vector with a continuous affine action of G (not necessarily in the dual of

some separable Banach space on which G acts).
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is uniquely defined via the relation ϕ

(∫
C ′ dν(C ′)

)
=

∫
ϕ(C ′) dν(C ′) for all

ϕ ∈ E∗. For b ∈ E1 and g ∈ G,

b+(gC0) = (bg)+(C0) =

∫
(bg)+(C) dν(C) =

∫
b+(gC) dν(C)

=

∫
b+(C) dν(C) = b+(C0).

Since E1 separates points in C(C), C0 is G-invariant and thus C = C0 by

minimality. Choose a dense countable set (bn) in E1. Since for all C ′ ⊂ C

compact convex, b+n (C ′) ≤ b+n (C), the above equality implies that {b+n (C ′) =

b+n (C); C ′ ∈ C(C)} has measure one for all n, and hence C ′ = C almost surely3.

It follows that ν = δC .

3. Spanning IRSs

The following lemma yields the existence of a minimal closed subgroup in which

an IRS lies. The existence of such minimal subgroup was already proved in [14].

This subgroup is called the normal closure of the IRS. We include a proof for

completeness.

Lemma 3.1: Let µ ∈ IRS(G). There exists a unique minimal closed subgroup

N ≤ G such that µ(S(N)) = 1. This group is moreover normal.

Proof. Let H be the family of all closed subgroups H such that µ(S(H)) = 1.

We define H0 to be
⋂
H∈H

H. Normality, closeness and uniqueness are immediate

consequences of the definition, thus it suffices to prove that µ(S(H0)) = 1.

Choose a countable subset {gn}n∈N of the open subset G \H0 such that G \
H0 =

⋃
n∈N

B(gn, ρn) where ρn = d(gn, H0)/2 . For n ∈ N, choose Hn ∈ H such

that Hn ∩B(gn, ρn) = ∅. We have H0 =
⋂
n∈N

Hn and thus S (H0) =
⋂
n∈N
S (Hn).

The latter intersection being countable, we have µ(S(H0)) = 1.

Definition 3.2: An IRS on G is spanning if G is the normal closure of the IRS.

3 One may also rely on the fact that C is an extreme point and corollary [9, IV §7 N0 2]

tells us ν = δC .
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To illustrate this definition, one can reformulate [8, Corollary 1.2] in the

following way: If G has a spanning unimodular IRS then G is unimodular itself.

If µ ∈ IRS(G) is spanning, it is proved in [14] that for any S ⊆ S(G) with

µ(S) = 1, G = 〈∪H∈SH〉. Since an IRS of G is also an IRS of its normal

closure, considering spanning IRSs is a natural reduction to prove results on

IRS. One has to be careful with relative properties since an IRS may have a

property relatively to G and this property may fails relatively to the normal

closure (for example think to a normal subgroup with relative property (T)

which does not have property (T)).

The following lemma is close to the locally essential lemma [13, Lemma 2.2].

Lemma 3.3: Assume G is countable and let µ be an IRS. The normal closure N

of µ coincides with the subgroup generated by {h ∈ G; µ
(
{H ∈ S(G); h ∈ H}

)
>

0}.

Proof. For h ∈ G, denote by Sh = {H ∈ S(G); h ∈ H}. Let N0 be the

subgroup of G generated by {h ∈ G; µ(Sh) > 0} and let N be the normal

closure of µ. We aim to prove that N = N0. Let S be the complement of

∪g∈G\N0
Sg in S(G). We have µ(S) = 1 and S = S(N0). In particular N ≤ N0.

If h /∈ N then Sh ∩ S(N) = ∅ and µ(Sh) = 0. Thus, if µ(Sh) > 0 then h ∈ N .

This shows that N0 ≤ N .

4. Amenable IRSs

Amenability has many equivalent definitions. We use the following one (which

appears in [25, 4.1.4] for example). Let H be a topological group. A convex

compact H-space C is a H-invariant convex weak*-compact subspace of the

unit ball of the dual of a separable Banach space on which H acts continuously

by isometries. A topological group H is amenable if every non-empty convex

compact H-space contains a H-fixed point.

An important and open question about the space of amenable subgroups

Sa(G) is to decide whether it is closed in S(G). This question was investigated

in [10], in which the authors decided to introduce a weaker notion of amenability

for closed subgroups. A subgroup H ∈ S(G) is relatively amenable if for any

non-empty convex compact G-space there is a H-fixed point.

It is easy to prove that the space of relatively amenable subgroups Sra(G) is

closed in S(G) [10, Lemma 18]. Of course, Sa(G) ⊆ Sra(G) and it is an open
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question to decide whether it is actually an equality. The group G is said to

belong to the class X if there is equality. This class X is quite large since

it contains, for example, discrete groups, connected groups, algebraic groups

over local fields, groups amenable at infinity, and is stable under some natural

extension processes [10, Theorem 2].

Proof of Theorem 1.4. We fix a locally compact second countable group G and

an IRS µ satisfying µ(Sra(G)) = 1. We let N be the normal closure of µ. We

will argue to show that N is amenable, hence being normal, it is contained in

the amenable radical of G. In fact, we will show that N is relatively amenable

in G, and use the easy fact that normal subgroups are amenable iff they are

relatively amenable (see e.g [10, Proposition 3]). That is, we need to show that

every convex compact G-space has an N -fixed point. We fix such a G-space,

C — a G-invariant convex weak*-compact subspace of the unit ball of a dual

of a separable Banach space E, on which G acts continuously by isometries.

Without loss of generality (by Zorn lemma and a compactness argument) we

assume as we may that C has no proper G-invariant closed convex subset. Let

K C G be the kernel of the action on C. We claim that for µ-a.e H ∈ S(G),

H < K. The proof of the theorem follows from the claim: by the definition of

N , µ(S(K)) = 1 implies N < K and C is N -fixed.

Lemma 4.1: The map H 7→ Fix(H) from Sra(G) to C(C) is Borel and G-

equivariant.

Proof. Choose a countable dense subset (bn) of E1 as in the proof of Lemma 2.1.

Since the b+n are countable and define the topology, it suffices to prove that for

any n ∈ N, H 7→ b+n (Fix(H)) is Borel. We actually prove that H 7→ b+n (Fix(H))

is upper semi-continuous. Fix a sequence Hn converging to H in Sra(G) and

choose ck ∈ Fix(Hk) such that b(ck) = b+n (Fix(Hk)). Let c be a limit point

(up to extraction) of (ck). Since the action G y C is continuous, c ∈ Fix(H)

and since bn is continuous, one has bn(c) = lim
k→∞

bn(ck). Thus b+n (Fix(H)) ≥

lim b+n (Fix(Hk)). The G-equivariance is clear.

Denote the image of µ under H 7→ Fix(H) by ν. Clearly, ν is a G-invariant

Borel probability measure on the compact metrizable space C(C). By Lemma

2.3, it follows that ν = δC , meaning that µ-almost every H ∈ S(G) fixes every

point of C, and the claim is proven.
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5. Kazhdan Property (T)

For a unitary representation π of G, we denote by Z1(G, π) the space of 1-

cocycles, byB1(G, π) the space of coboundaries and byH1(G, π) = Z1(G, π)/B1(G, π)

the first reduced cohomology associated to π. We refer to [5] for standard facts

about those objects. We recall the following important theorem due to Y.

Shalom [22, Theorem 6.1], see also [5, Theorem 3.2.1].

Theorem 5.1: Assume G is compactly generated. The group G has property

(T) if and only if for any irreducible unitary representation π, H1(G, π) = 0.

We will use the following characterization of relative property (T) that holds

for locally compact second countable groups.

Proposition 5.2 ([16]): Let H ∈ S(G). The pair (G,H) has relative property

(T) if and only if for any continuous isometric action of G on a Hilbert space

there are H-fixed points.

We observe that relative property (T) is actually a Borel property and thus

Sr(T )(G) is measurable for any IRS.

Lemma 5.3: The subset Sr(T )(G) is a Borel subset of S(G).

Proof. We use this quantitative characterization of relative property (T) from

[16]. The pair (G,H) has relative property (T) if and only if for every δ > 0

there is pair (Q, ε) (consisting of a compact subset and a positive number) such

that for any unitary representation of G with (Q, ε)-invariant unit vector v,

there is a H-fixed invariant vector at distance less than δ from v.

For a pair (Q, ε) define Ψ(Q, ε) to be the set of functions of positive type

ψ (see [5, Definition C.4.1]) with ψ(e) = 1 and inf
g∈Q
<(ψ(g)) ≥ 1 − ε/2. For

such a function the GNS construction yields a unitary representation with a

(Q, ε)-invariant unit vector v such that ψ(g) = 〈gv, v〉. Recall that a unitary

representation of a group H with a
(
H,
√

2
)

-invariant unit vector has a non-

zero invariant vector [5, Proposition 1.1.5]. Conversely if v is (Q, ε)-invariant

vector in some unitary representation of G, then the function ψ defined by

ψ(g) = 〈gv, v〉 belongs to Ψ(Q, ε). Now choose α ∈
(

0, 1/
√

2
)

. With the

characterization and the reminder we have
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Sr(T )(G) =
⋃

(Q,ε)

⋂
ψ∈Ψ(Q,ε)

{
H ∈ S(G); inf

g∈H
<(ψ(g)) ≥ 1− α

}
.

To conclude, it suffices to observe that

{
H ∈ S(G); inf

g∈H
<(ψ(g)) ≥ 1− α

}
is a

closed subset and that the union can be replaced by a countable one thanks to

σ-compactness.

We start the proof of Theorem 1.11 by dealing with finite-dimensional repre-

sentations. A topological group is said to have property (FE) if any continuous

isometric action on a Euclidean space has a fixed point. A subgroup H < G

has relative property (FE) if for every continuous isometric action of G on a

Euclidean subspace, H fixes a point. We mimic Definition 1.10 to define IRSs

with relative property (FE).

Proposition 5.4: If G has a spanning IRS with relative property (FE) then

G has property (FE).

The proof of this proposition relies on similar methods as the proof of the

main theorem in [11]. We prove Proposition 5.4 without emphasizing questions

about measurability of the constructions. The interested reader may have a

look at [11] for those questions.

Proposition 5.4 will follow from the following lemma. If E is a Euclidean

space, we endow the space of all closed convex subspaces C (E) with the coarsest

topology such that x 7→ d(x,C) is a continuous function on C (E) for every

x ∈ E. This is the so-called Wijsman topology [4].

Lemma 5.5: Let E be a finite dimensional Euclidean space. Assume that G

acts by isometries on E, without fixed points, and irreducible linear part. The

only G-invariant Borel probability measure on C (E) is δE .

Proof. Let ν ∈ Prob(C (E))G. Fix x0 ∈ E and look at the function f : E → R
defined by

f(x) =

∫
C (E)

d(x,C)− d(x0, C)) dν(C).

This continuous function satisfies the cocycle relation f(gx) = f(x)+f(gx0).

Either f achieves a minimum or not. By [3, Lemma 2.4], if f has no minimum

then G fixes a point at infinity of E. In that case the linear part of G stabilizes
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the direction of this point. As we assumed the representation to be irreducible,

this cannot be the case.

Thus f has a minimal set M , which is a G-invariant and convex. If this

convex subset is bounded, then it has a G-invariant circumcenter, contradicting

the assumption. If it is unbounded, then by [3, Lemma 1.7] and the fact that G

does not stabilize a point at infinity, we conclude that M is an affine subspace

of E. By the irreducibility assumption, it follows that M = E, hence that f is

constant.

In particular, one has that x 7→ d(x,C) is affine for almost all C ∈ C (E).

Since the distance to a strict convex subspace is not affine (it is non constant and

does not take negative values), one has C = E almost surely, hence ν = δC .

Proof of Proposition 5.4. Let E be a Euclidean space with an action of G. Up

to consider a minimal invariant affine subspace we assume there is no invariant

affine subspace of E. Let µ ∈ IRS(G) with relative property (FE).

First we consider the case when the linear part of the action of E is irreducible.

In that case, by assumption, almost every H ∈ S(G) fixes an affine subspace

of E. Pushing forward µ by the map H 7→ Fix(H), we get a G-invariant

measure on C (E). By Lemma 5.5, this measure is δE , meaning that almost

every H ∈ S(G) fixes E pointwise. Since the IRS is spanning, this means that

G fixes E pointwise.

In the general case, any orthogonal representation can be written as the

orthogonal sum of irreducible representations (π1, E1), . . . , (πn, En). If b is the

cocycle associated to the action of G on E and Pi : E → Ei is the projection

then Pi ◦ b is a cocycle for the representation πi on Ei. Hence by the previous

case, this associated affine action on Ei fixes a point for every i. This implies

that G fixes a point in E.

In the proof of Theorem 1.11, we will use the notion of weakly mixing unitary

representations. Recall that these are unitary representations without finite

dimensional subrepresentation. Moreover the tensor product of two weakly

mixing representations is still weakly mixing.

Lemma 5.6: Let (π,H) be a separable weakly mixing unitary representation of

G. Then the only G-invariant measure on H is δ{0}.

Proof. Let ν be such a measure and (π,H) the conjugate representation [5,

Definition A.1.10]. Consider the map Φ : H → H ⊗ H defined by Φ(x) =
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x⊗x/‖x‖2 for x 6= 0 and Φ(0) = 0. Now,

∫
H

Φ(x) dµ(x) is a G-invariant vector

of H ⊗ H which has to be 0 because of weak-mixing. In particular, for any

v ∈ H and almost all x ∈ H, we have |〈v, x〉|2 = 〈v ⊗ v, x⊗ x〉 = 0. Since H is

separable, x = 0 for almost all x ∈ H, meaning that ν = δ{0}

Proof of Theorem 1.11. We consider a spanning IRS µ with relative property

(T). Let π be an irreducible unitary representation of G with underlying Hilbert

space H (which we may assume separable since G is second countable), b ∈
Z1(G, π) and consider the associated affine action α given by α(g)v = π(g)v +

b(g) for any v ∈ H. The case where H has finite dimension is treated in

Proposition 5.4. From now on, we assume H has infinite dimension, thus weakly

mixing.

For any H ∈ Sr(T )(G), Fix(H) is a non-empty affine subspace of H. For

H1, . . . ,Hn ∈ Sr(T )(G) and ε > 0, we define the set of (∪iHi, ε)-fixed points

F (H1, . . . ,Hn, ε) = {v ∈ H; ∀h ∈ H1 ∪ · · · ∪HN , ||α(h)v − v|| < ε}.

We claim there is An ⊆ S(G)n, with µn(An) = 1 such that for all ε > 0

and (H1, . . . ,Hn) ∈ An, F (H1, . . . ,Hn, ε) 6= {0}. We prove it by induction.

The case n = 1 follows from µ(Sr(T )(G)) = 1. Assume this is true for n − 1,

let v(H1, . . . ,Hn−1;Hn) be the vector of minimal norm in the closed convex set

F (H1, . . . ,Hn−1, ε/3)− Fix(Hn). The map (H1, . . . ,Hn) 7→ v(H1, . . . ,Hn−1;Hn)

satisfies the assumption of Lemma 5.6 and thus is 0. In particular, there is

some v which is at distance less than ε/3 from both F (H1, . . . ,Hn−1, ε/3) and

Fix(Hn) and thus v ∈ F (H1, . . . ,Hn, ε).

Let F = {g1, . . . , gn} ⊆ G be a finite subset, thanks to Lemma 3.3 one can

find (hji ) such that gi = h1
i · · ·h

k(i)
i and µ

(
Shj

i

)
> 0.

Let N =

n∑
i=1

k(i). The product set P =

n∏
i=1

(Sh1
i
× · · · × S

h
k(i)
i

) ⊆ S(G)N

has also positive measure and thus intersects AN . In particular, one can find(
H1

1 , . . . ,H
k(n)
n

)
in P such that F (H1

1 , . . . ,H
k(n)
n , ε/N) 6= ∅. Now, observe

that gi ∈ H1
i · · ·H

k(i)
i and thus taking v ∈ F (H1

1 , . . . ,H
k(n)
n , ε/N), we get a

(F, ε)-invariant vector. Thus H1(G, π) = 0 and Shalom’s theorem concludes

the proof.
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Remark 5.7: In case one considers non spanning IRSs, our methods lead to the

following statement for G countable: The normal closure of an IRS with relative

property (T) has relative property (FH). We refer to [12] for the definition of

property (FH) and its relative version. We emphasize that even if Shalom’s

theorem shows that property (T) and property (FH) coincide for compactly

generated groups, the relative versions do not coincide.

The following proposition is an adaptation of the classical result of compact

generation for locally compact groups with property (T) (see for example [5,

Theorem 1.3.1]).

Proposition 5.8: If G has a spanning ergodic IRS with relative property (T)

then G is compactly generated as a normal subgroup.

Proof. Let C be the set of open compactly generated subgroups of G. For

F ∈ C denote by `2(G/F ) the quasi-regular representation of G. We consider

the Hilbertian sum

H =
⊕
F∈C

`2(G/F ).

From construction, the diagonal representation of G on H almost has in-

variant vectors and thus for almost all H ∈ S(G), H has non-trivial invariant

vectors. In particular, for such H, there is F ∈ C such that H has a non-trivial

invariant vector f ∈ `2(G/F ). Let g ∈ G such that f(gF ) 6= 0. There are

h1, . . . , hn such that HgF ⊆ h1gF ∪ · · · ∪ hngF that is H ⊆ h1F
g ∪ · · · ∪ hnF g.

In particular, H is contained in at most n right classes of the normal closure

〈F 〉G of F and thus there is F ′ ∈ C (namely, F ′ = 〈F g, h1, . . . , hn〉) such that

H ≤ F ′ and thus H ≤ 〈F ′〉G. This last condition is a G-invariant closed con-

dition, thanks to ergodicity, there is F ′ ∈ C such that it holds for almost all

H ∈ S(G). That is almost surely H ≤ 〈F ′〉G. Finally the spanning property

implies that G = 〈F ′〉G.

Remark 5.9: One may ask if the normal closure of an IRS with relative prop-

erty (T) is actually compactly generated. Observe that in the proof of Propo-

sition 5.8 we did not use the general assumption that G is second countable.

We give a counterexample for a locally compact group which is not second

countable.
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Consider the lamplighter group over the circle group G = Z/2Z o S1 with

the topology coming from the discrete topology on
⊕
S1

Z/2Z and the usual one

on S1. For s ∈ S1 let δs be the Dirac measure on S(G) at the Z/2Z copy at

coordinate s. Let µ =

∫
S1

δs ds. This is an ergodic IRS with normal closure⊕
S1

Z/2Z which is generated by one element as normal subgroup but is not

finitely generated.

Appendix A. The set of amenable closed subgroups

Phillip Wesolek

The class of l.c.s.c. groups G such that the set Sa(G) ⊆ S(G) is closed in the

Chabauty topology is very large by work of Caprace and Monod [10, Theorem

2]. Caprace and Monod raise the following question: Is Sa(G) closed in S(G)

for all l.c.s.c. groups G? It is natural to consider a weaker question: Is Sa(G)

a Borel set in S(G)? We here answer the latter question in the affirmative.

Theorem A.1: For every l.c.s.c. group G, Sa(G) is a Borel set in S(G).

Acknowledgements: The author thanks U. Bader, B. Duchesne, and J. Lécureux

for including this appendix in their work and for their many helpful comments

and suggestions.

A.1. The class G and its closure properties. We consider the class of

all l.c.s.c. groups G such that Sa(G) is a Borel set in S(G); we denote this class

by G .

Theorem A.2: The class G enjoys the following permanence properties:

(1) If N E G is an amenable closed subgroup and G/N ∈ G , then G ∈ G .

(2) If H ≤ G is a finite index closed subgroup of G and H ∈ G , then G ∈ G .

(3) If G0, G1 ∈ G , then G0 ×G1 ∈ G .

Proof. For (1), let π : G→ G/N be the usual projection and define Π : S(G)→
S(G/N) by C 7→ π(C). The Borel sigma algebra of S(G/N) is generated by

sets of the form OU := {C | C ∩ U = ∅} where U ranges over open subsets of

G/N . To verify Π is Borel measurable, it is therefore enough to check Π−1(OU )



18 BADER, DUCHESNE, LÉCUREUX AND WESOLEK Isr. J. Math.

is a Borel set for each open U ⊆ G/N . This, however, is immediate since

Π−1(OU ) = Oπ−1(U).

To prove (1), it now suffices to show Sa(G) = Π−1(Sa(G/N)). For the forward

direction, every compact, convex π(C)-space is a compact convex C-space via

the map π. We conclude there is an C-fixed point and, therefore, a π(C)-fixed

point. Via the fixed point criterion, π(C) is amenable. Conversely, suppose

Π(C) ∈ Sa(G/N). So π−1(Π(C)) ∈ S(G), and π−1(Π(C))/N is amenable.

Since amenability is stable under group extension, π−1(Π(C)) ∈ Sa(G). It now

follows that C ∈ Sa(G).

Claim (2) is immediate. Indeed, the map Φ : S(G)→ S(H) via C 7→ C ∩H
is Borel with Φ−1(Sa(H)) = Sa(G).

To see (3), let πi for i ∈ {0, 1} be the projection onto the i-th coordinate. As

with (1), these maps induce Borel measurable maps Πi : S(G0 ×G1)→ S(Gi).

We claim

Sa(G0 ×G1) = Π−1
0 (Sa(G0)) ∩Π−1

1 (Sa(G1)),

from which the result follows. The forward direction follows as with (1). Con-

versely, supposeH ∈ Π−1
0 (Sa(G0))∩Π−1

1 (Sa(G1)), so π0(H)×π1(H) is amenable.

Since H ≤ π0(H)×π1(H) is a closed subgroup, we conclude that H is amenable.

A.2. T.d.l.c.s.c. groups. We now show all totally disconnected locally com-

pact second countable (t.d.l.c.s.c.) groups lie in G . To do so, we will use

Følner’s condition [5, Theorem G.5.1]. A priori, Følner’s condition is non-Borel

since there is quantification over uncountable sets. We give a restatement that

eliminates this problem. Our restatement makes use of an old theorem of D.

van Dantzig: A t.d.l.c. group admits a basis at the identity of compact open

subgroups. See, for example, [15, (7.7)].

Proposition A.3: Let G be a t.d.l.c.s.c. group with left invariant Haar mea-

sure µ. Suppose F := (gi)i∈N is a countable dense subset of G and (Vi)i∈N is

an ⊆-decreasing basis at 1 of compact open subgroups. Then the following are

equivalent:

(1) G is amenable.
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(2) (Borel Følner’s condition) For all finite non-empty F ⊆ F and for all n ≥ 1,

there is a finite non-empty H ⊆ F and i ∈ N such that for U :=
⋃
h∈H

hVi

µ(gjU∆U)

µ(U)
≤ 1

n

for all gj ∈ Q :=
⋃
f∈F

fV0.

Proof. For the reverse direction, let K ⊆ G be compact. Since F is dense, there

is a finite F ⊆ F such that K ⊆ Q :=
⋃
f∈F

fV0. Fixing n ≥ 1, condition (2)

now supplies a U =
⋃
h∈H

hVi for some finite non-empty H ⊆ F that satisfies the

inequality condition for a dense subset of Q. It suffices to show the inequality

holds for all x ∈ Q. To this end, fix x ∈ Q and let gj → x be such that the

inequality holds for all j. By taking a sufficiently large k, we have h−1g−1
k xh ∈

Vi for all h ∈ H. Hence, gkU = xU , and the inequality holds for x.

Conversely, suppose Q :=
⋃
f∈F

fV0 with F ⊆ F finite and non-empty. Fix

n > 0 and 0 < δ <
1

n
and apply the Følner condition to find a Borel U with

0 < µ(U) <∞ such that

µ(xU∆U)

µ(U)
≤ δ < 1

n

for all x ∈ Q.

We now approximate U by a set of the desired form. Fix ε > 0 small enough

so that
1

1− ε

(
µ(xU∆U)

µ(U)
+ 4ε

)
<

1

n

for all x ∈ Q. By inner and outer regularity of the Haar measure, we may

find a compact, non-empty K and an open O such that K ⊆ U ⊆ O, µ(K) ≥
(1 − ε)µ(U), and µ(O) ≤ (1 + ε)µ(U). Now for each k ∈ K, there is Vj and

g ∈ F with k ∈ gVj ⊆ O. The gVj form an open cover of K, hence there

is some finite, non-empty H ′ ⊆ F so that K ⊆ Ω :=
⋃
h∈H′

hVj(h). By taking

i = max{j(h) | h ∈ H ′} and possibly expanding H ′ by finitely many elements

of F , Ω =
⋃
h∈H

hVi. So Ω has the correct form.
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We here argue Ω satisfies (2) for Q and
1

n
. By construction, K ⊆ Ω ⊆ O,

whereby

(1− ε)µ(U) ≤ µ(Ω) ≤ (1 + ε)µ(U).

Thus,
1

µ(Ω)
≤ 1

(1− ε)µ(U)
. On the other hand, recall µ(A∆B) =: dµ(A,B)

gives a pseudometric on the algebra of measurable sets that is invariant under

measure preserving maps; consider [18, Chapter 1]. For any x ∈ Q, we therefore

have

dµ(xΩ,Ω)− dµ(xU,U) ≤ dµ(xΩ, xU) + dµ(xU,U) + dµ(U,Ω)− dµ(xU,U)

= 2dµ(Ω, U)

≤ 2µ(O \ Ω) + 2µ(O \ U)

≤ 4εµ(U),

so µ(xΩ∆Ω) ≤ µ(xU∆U) + 4εµ(U). We conclude

µ(xΩ∆Ω)

µ(Ω)
≤ 1

1− ε

(
µ(xU∆U)

µ(U)
+ 4ε

)
<

1

n
,

hence Ω satisfies (2) for Q and
1

n
.

The next lemma gives a technique for computing the Haar measure in a Borel

way.

Lemma A.4: Suppose G is a t.d.l.c.s.c. group with left invariant Haar measure

µ and let (Vi)i∈N be an ⊆-decreasing basis at 1 of compact open subgroups.

For all non-empty compact open sets O and L, there are finite sets W ⊆ O

and K ⊆ L and i ∈ N such that O =
⊔
w∈W

wVi and L =
⊔
k∈K

kVi. Therefore,

µ(O)

µ(L)
=
|W |
|K|

.

Proof. For each o ∈ O there is Vi(o) ∈ (Vi)i∈N such that oVi(o) ⊆ O, so O =⋃
o∈O

oVi(o). Since O is compact, there is a finite, non-empty set W ⊆ O such

that O =
⋃
o∈W

oVi(o). We may likewise write L =
⋃
l∈K

lVi(l) for K ⊆ L finite

and non-empty. Taking i = max{i(x) | x ∈W ∪K} and possibly expanding W

and K by finitely many elements, we have O =
⋃
o∈W

oVi and L =
⋃
l∈K

lVi. We
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eliminate redundant cosets to conclude O =
⊔
o∈W ′

oVi and L =
⊔
l∈K′

lVi for some

finite, non-empty W ′ ⊆ O and K ′ ⊆ L.

Theorem A.5: If G is a t.d.l.c.s.c. group, then Sa(G) is a Borel set in S(G).

Proof. Fix (Vi)i∈N an ⊆-decreasing basis at 1 of compact open subgroups for G.

Let (di)i∈N be a set of Kuratowski−Ryll-Nardzewski selector functions for S(G).

That is to say, a set of Borel functions di : S(G) → G such that {di(C)}i∈N is

dense in C for all C ∈ S(G); see [17, (12.13)] for example.

For each C ∈ S(G), (C ∩ Vi)i∈N forms an ⊆-decreasing basis at 1 of compact

open subgroups of C, and (di(C))i∈N forms a countable dense subset. In view

of Proposition A.3, C ∈ Sa(G) if and only if for all finite non-empty F ⊆ N
and for all n ≥ 1, there is a finite non-empty H ⊆ N and i ∈ N such that for

U :=
⋃
h∈H

dh(C) (C ∩ Vi)

µC(dj(C)U∆U)

µC(U)
≤ 1

n

for all dj(C) ∈ Q :=
⋃
f∈F

df (C) (C ∩ V0) where µC is the left invariant Haar

measure on C. For F ⊆ N finite non-empty, n ≥ 1, j ∈ N, H ⊆ N finite

non-empty, and i ∈ N, put

Ω :=

C ∈ S(G) | µC(dj(C)U∆U)

µC(U)
≤ 1

n
with U =

⋃
h∈H

dh(C) (C ∩ Vi)


and

Σ :=
{
C ∈ S(G) | dj(C) /∈ Q

}
.

Since Sa(G) is a combination of countable intersections and unions of sets with

the forms of Ω and Σ, showing Ω and Σ are Borel proves the theorem.

The case of Σ is immediate: For each f ∈ F , define Φf : S(G) → G by

C 7→ df (C)−1dj(C). This is a Borel measurable map since the functions di are

Borel and the group operations are continuous. We thus see that

Σ =
⋂
f∈F

Φ−1
f (V c0 )

and, therefore, is Borel.
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To see Ω is Borel, we apply Lemma A.4. Indeed, C ∈ Ω if and only if either

dj(C)U = U or there is l ≥ i and finite non-empty sets W,K ⊆ N with
|W |
|K|
≤ 1

n
so that

(1) dj(C)U∆U =
⊔
w∈W

dw(C)(C ∩ Vl) and

(2) U =
⊔
k∈K

dk(C)(C ∩ Vl).

It is easy to verify the latter statement is Borel. We check the first disjunct:

dj(C)U = U if and only if

(1) ∀h ∈ H ∀m ∈ N ∃k ∈ H so that dk(C)−1dj(C)dh(C)dm(C ∩ Vi) ∈ Vi and

(2) ∀h ∈ H ∀m ∈ N ∃k ∈ H so that dk(C)−1dj(C)−1dh(C)dm(C ∩ Vi) ∈ Vi.

Let Φh,m,k : S(G) → G by C 7→ dk(C)−1dj(C)dh(C)dm(C ∩ Vi) and Ψh,m,k :

S(G) → G by C 7→ dk(C)−1dj(C)−1dh(C)dm(C ∩ Vi). Since the di are Borel

functions and the group operations are continuous, Φh,m,k and Ψh,m,k are Borel,

hence

{C ∈ S(G) | dj(C)U = U} =
⋂
h∈H

⋂
m∈N

⋃
k∈H

Φ−1
h,m,k(Vi)∩

⋂
h∈H

⋂
m∈N

⋃
k∈H

Ψ−1
h,m,k(Vi)

is Borel. The second disjunct follows similarly. We conclude Sa(G) is a Borel

subset of S(G) verifying the theorem.

Proof of Theorem A.1. Let G be a l.c.s.c. group and form Ra(G), the amenable

radical of G. In view of Theorem A.2, if G/Ra(G) ∈ G , then G ∈ G , so we may

assume Ra(G) = {1} without loss of generality. Via [19, Theorem 11.3.4], there

is H ≤ G a finite index closed subgroup that is a direct product of a connected

group and a totally disconnected group. Since H ∈ G implies G ∈ G , we may

reduce again to G ' G0 × G1 with G0 a connected l.c.s.c. group and G1 a

t.d.l.c.s.c. group. Now [10, Theorem 2] gives that G0 ∈ G , and G1 ∈ G via

Theorem A.5. We conclude G ∈ G verifying the theorem.
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Palaiseau, 2007, pp. 47–110. MR 2406240 (2009j:37004) 2

[21] Walter Rudin, Functional analysis, second ed., International Series in Pure and Applied

Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815 (92k:46001) 8

[22] Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Inventiones Math-

ematicae 141 (2000), no. 1, 1–54. MR 1767270 (2001k:22022) 12

[23] W. W. Subramanian, Cones, positivity and order units,

Master’s thesis, Mathematical Institute, Leiden University,

https://www.math.leidenuniv.nl/scripties/MasterSubramanian.pdf, September 2012. 6

[24] Robin D. Tucker-Drob, Shift-minimal groups, fixed price 1, and the unique trace property,

(2012). 4, 5

[25] Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics,
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