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Abstract:

The goal of this paper is to propose a general finite element m@tkdd) for sound
propagation and vibro-acoustic problems in the presence of swirling dimted The
numerical method has already been successfully tested for shiearednf the authors’
recent papers. The acoustic variational formulation is based rmn-gtandard wave
equation established by Galbrun in 1931, which describes exactly the sanmalphys
phenomenon that the linearized Euler’'s equations (LEE). Though this eqgisataty
written in terms of the Lagrangian perturbation of the displaceraemixed pressure-
displacement formulation is preferred in order to avoid a locking phenomenon.
Furthermore, the coupling conditions for vibro-acoustic problems are ratural
introduced. The FEM method proposed in this paper is compared in the axisjgmme
case to a semi-analytical model, which is a generalisationidrinBre-Brown equation

to a duct with swirling flows and vibrating walls. A first setregults is compared with
semi-analytical solutions for a rigid wall duct. A second set of results cortberngoro-

acoustic interactions of a straight duct with an elastic outer wall.

PACS numbers: 43.20.Bi, 43.28.Py, 43.20.Mv, 43.20.Tb
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INTRODUCTION

Propagation of acoustic disturbances in a swirling duct flow isulgject of
considerable interest in many industrial applications, particulahgn turbomachines
are involved. For instance in aeroengine ducts, rotating fans tgereraignificant
swirling flow that may affect the propagation of sound. The maisgd basic equations
that describe such a problem are the linearised Euler’'s equétieB¥. The scalar full-
potential equation, which is very often used for sound propagation in moving flow

thanks to its simplicity”*** cannot be considered here because of the flow rotationality.

Kerrebrock was one of the first to study the disturbances that propagatméaa
flow swirl, typically happening behind a rotor stage. Based on Hig, he derived and
solved a scalar equation in the particular case of a mode primgagat straight duct.

Roger and Arbe¥/ also analysed pressure waves in pipes with swirling flows.

More recently, Golubev and AtaSsitudied a straight duct containing a mean flow
with swirl and showed the coupling that occurs between acoustic atthmat modes.
Tam and Auriauft analysed and clarified the characteristics of these waveesn
Cooper and Peak¥extended Golubev’s study to slowly varying lined ducts by applying

a multiple-scales method. Results showed the influence of the tho@aswirl, i.e. co-
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rotating modes are always much more damped than those in a nongWwoWw and

counter-rotating modes may be amplified.

Also, some work has been made to solve the general direct LERSiingt a finite
element method (FEM) in the late 19%0%*® and then recently using numerical
methods based on finite difference schemes (see, for instarefe, 1R 15,16).
Unfortunately, the effects of swirling flows have not yet bepecsically studied in

those analyses.

In fact, another wave equation is able to cope with arbitrary ootdtiflows:
Galbrun’s equatioH, established in 1931 and which is a reformulation of the LEE. As
explained later, this equation is derived from an Eulerian-Lagrandescription and
constitutes a second-order linear partial differential equatidgtewonly in terms of the

displacement perturbation (even in non-homentropic cases).

Although only few works deal with this equation, it may be an integst
alternative to the LEE. It yields a gain of one to two unknowns cadparthe LEE ; it
also provides exact expressions of intensity and elefypesides, boundary conditions
are easily expressed because acoustic displacement (whosel mom@onent is
generally continuous at any interface between two media) apmegticitly, which
avoid the somewhat difficult use of Myers’ condifinTheoretical details about

Galbrun’s equation are given in Ref. 18,21.
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Based on this equation, Poiféelerived a differential equation that is satisfied by
the radial component of the Lagrangian displacement, valid fomaalg propagating in

a straight duct with swirling flows.

As for the LEE, some numerical work has been realised to gieaeral solution of
Galbrun’s equation based on a FEM method, but so far, results only dleahom-

swirling flows'®232425

As far as vibro-acoustic coupling interactions are concerned, a fewsgape been
published when flow is present but no results with swirl have beennpedseither. It
has been shown that uniform mean flows can significantly chdregeibro-acoustic
behaviour of fluid loaded structuf@$’?® Pagneux and Aurégahextended Pridmore-
Brown’s model to infinite ducts with vibrating walls and shearedmfows. Ben Tahar
and Goy' developed a variational formulation based on Galbrun’s equation to study
vibroacoustic problems with arbitrary mean flows, but their method gnegycorrupted

result$”.

In this paper, it is attempted to propose a general method basedEd & Bolve
sound propagation and vibro-acoustic problems with swirling mean flows.papisr

continues the authors’ recent works about sound propatfationl vibro-acoustic



F. Treysséde, Acustica

interaction§® in moving fluids based on Galbrun’s equation to specifically includenme

swirling flows effects.

A mixed variational formulation based on the pressure-displacemeiablesr is
used for acoustics in order to avoid some spurious solutions. Though thé methald
is quite general, finite element discretisation and numericalteeare presented for the

axisymmetric case.

In order to validate the proposed general FEM method, a simple extewfsthe
Pridmore-Brown equation to swirling flows is also developed to dbkveropagation of
a mode inside a straight duct. Inspired from Pagneux anéiganis work’®, the effects
of vibrating walls with non-axisymmetric behaviour modes are ialdoded. Solutions
with both methods are then compared. A first set of results goraparisons for pure
propagation (without vibrating walls). A second set of results deittsan elastic outer

wall duct (vibro-acoustic coupling).

I. THEORY

This section gives the governing equations for a general vibro-acqueblem.

Galbrun’s equation and the mixed Eulerian-Larangian description are ¢aiece
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A. Galbrun’s equation

In a continuous medium, two kinds of variables can be used to descrikieaphys
guantities: Lagrangian and Eulerian variables. The Lagrangiant pbiview, usually
used for media at rest, consists in following the particle fratin a reference time.
Physical quantities are thus expressed in terna,tff (vherea is the position occupied
by the particle at the reference time. The Eulerian bkesa usually used in fluid
mechanics, correspond to the geometrical poskiahtimet of the particlea (x is time
dependent). For a perturbed field, one can chose either non-perturbed Budgebles
(xo,t) or perturbed Eulerian variablest], wherex, andx are the geometrical position of
the same patrticla, respectively in the mean flow and perturbed configuratitinen, if

w" is the linear perturbation of the particle displacement vexj@mdx are related by:
X =X, +EW" (2.1)
In the remainder of this article, mean flow (or non-perturbed) diemtare
distinguished from their total (or perturbed) counterparts by dbscsipt 0. Then, two
kinds of perturbation can be defined for any arbitrary varigble

WE =W(x,t) - (x,t
(x1) - ¥ (x.) 02
W =P (x,t) =¥, (X,.t)
SuperscriptsE and L denote respectively Eulerian and Lagrangian perturbations.
From these definitions, Eulerian perturbations are clearly a$sdcto the same

geometrical point but not the same particle, whereas Lagrangrarbagions are

associated to the same particle.
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From (2.1) and (2.2), the following fundamental relation between Eularah
Lagrangian linear perturbations can be obtained:
WE (Xo,t) = WE (Xo,t) +Wh (Xo,t). [ o (Xo.t) (2.3)
W(xo,t) represents the Lagrangian perturbation of the physical qusthépressed
in terms of Eulerian variables. This description is thus mixed amgbe called mixed
Eulerian-Lagrangian description. Note that Eulerian and Lagrapgeuaorbations off

are equivalent i¥, remains constant.

When Lagrangian perturbations are written in terms of Euleremmables, the
perturbation of derivatives is not straightforward (derivation and dragan
perturbation operations do not commute). An in-depth account on mixed repiiesenta

can be found in Ref. 31. To the first order, it can be shown that:

wo _ d Wt d 09,
= here— =3—+
HdatH = dt M o o T
Q)WDL_GHJL ow"
D = —
X;§ 0% 0%

1

(2.4)

¥, j= 123

Now, we start from Euler equations (a perfect fluid with adiatieansformations is

assumed):
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dp 0V,

+ =0
EE paxJ
H dv  ap

—+— =0 2.5
L dt " ox @5)
Op=P(p, s) and :—f— ﬁ

p, p, v and s denotes the fluid pressure, density, velocity and entropy fields.

Applying perturbation rules (2.4) to the above system yields:

—,OOD]]WL

A +Dp— T wil 4, pLdOO 0 (2.6)
0 dt dt
Hp" =dp" ( ands = ))

The first relation simply means that dilatation fluctuationsatliyebalance density
fluctuations. The third relation corresponds to the well-known relatiomela® pressure
and density fluctuations. Unlike the Eulerian description, this rel&i@snthe advantage
to remain valid even in the non-homentropic case. This is due to theh&dcthe
Lagrangian perturbation of entropy is zero (the Eulerian pertarba generally non-

zero except for homentropic flows — see Ref. 32).

Then, replacing the density and pressure fluctuations into the secatterqives

the so-called Galbrun’s equation:

diw"
dt’

Po O(pf0 W) 00wt )-pp M= p, O (2.7)
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This equation has the interesting property of deriving from a Lggmardensity.
This yields an exact energy conservation law and exact exmpnesfor the energy and

intensity (see Ref. 19). In particular, the intensity is given by:

. (w" dw" [ L ow"
I = + -w- 2.8
Ao B e (p )=, (2.8)

B. Governing equations for vibro-acoustics

A typical vibro-acoustic duct is depicted on Fig.1. The geometaxisymmetric
and sketched on the,%) cutting plane.Q, is the acoustic domairf)s the structural
domain.l'¢ denotes the fluid/solid coupling interface. Boundary notations correspond to

different types of boundary conditions, as defined later.

From now on and throughout this paper, a stationary, incompressible and
homentropic base flow is assumed for simplicity. This implies ghaémains spatially
constant. Besides, a mixed pressure-displacement form is pteféor a purely

displacement one, as justified later. In the harmonic case, equation (2.7) thusdecome
O diw"

° dt?
Hpt = -p,GIw"

+0p= 0
P with%= i+, (2.9)

When considering swirling flows, the const@gtassumption cannot hold from the

mean flow point of view because the azimuthal component of the fldociteis

10
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directly related to the pressure gradient (see for instaete3R). From the acoustical
point of view, this assumption is less restrictive and means éhastinp, gradient
might have a negligible effect upon the acoustic propagation. The puwptss paper
is to get a simple validation of the FEM method to the detrimenfulbf realistic
examples. However, as stated in Ref. 19 and 24, tern® igradient should not

represent any numerical difficulties for the FEM method proposed in this paper.

A linear elastic and isotropic structure is assumed, with nalirstress and strain.

The differential equation governing structure vibrations is thus given by:

0°u

Ps

Ps is the material density the structural displacemend; the stress tensor. No

external force density has been considered.

The coupling conditions that must be imposed at the fluid/solid intedi@céased
upon the continuity of normal stress and normal displacement. Accord@uaplia™®, the
continuity of the normal Lagrangian displacement is equivalent towgleknown
Myers’ conditiorf’, which holds when an Eulerian description is chosen. The coupling
conditions are then:

%J B, =w" B, onl, (2.11)
M, =-pn,

No is the structure inward normal (outward from the fluid point of view), takehe

non-perturbed configuration.

11



F. Treysséde, Acustica

It is important to note that, given the fact that there is nalrstress and strain, no
superscript are needed on the structural stress tensor and efisptddecause Eulerian
and Lagrangian perturbations are equivalent in this specificcase Eq. (2.3). It is the
same for the fluid pressure fluctuation (we have assumegdigatonstant). Thus, there
is no ambiguity for the continuity of normal stresses, which is reduced to themoen

normal stress continuity for vibro-acoustic problems.

For the acoustic part, we also need the two following boundary conditidnsed

Lagrangian displacement condition and an absorbing wall condition. They are given b

w-t=w onfl, (2.12)
wh [, = —_i p- onr, (2.13)
lwZ

Here again, the impedance condition is based on the normal displacement

continuity. For a perfectly rigid wall, i.& -, Eq. (2.13) reduces tw" (i, =0. For

practical calculations, a third boundary condition may be needed atitlie¢ of the duct

to simulate a modal non-reflecting condition, which is of the form:

|:| L
EOO(VOmO)dOdW :mevL
1t onr,, (2.14)
E{NL M. = - L
g ez, "

This condition has been successfully used in Ref. 19 andZg4and Z,. are

respectively the standard modal non-reflecting impedance and tihix mgpedance.

12
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The latter is needed to determine a unique solution when flow ienrés vector

condition is necessary). Both impedances are explicitly given in section V.

For the structure, boundary conditions are of two types, a fixedadespkent or a
fixed boundary force:

(2.15)

o,=-f onTl, (2.16)

Il NUMERICAL METHOD

The variational formulation (already derived in Ref. 25) used fosirspla general
vibro-acoustic problem is first recalled. A mixed pressure-dispi@nt based
formulation is chosen for acoustics in order to avoid spurious solutionsFENE

discretisation of acoustic and structural variables is briefly given.

A. Variational formulation

For the acoustic part of the problem, the most natural variati@medufation
associated with Galbrun’s equation is a purely displacement bagedldtion obtained
from Eq. (2.7). However, this kind of formulation is known to give corruptedlte

when standard finite elements are used for discretisation, evee imotflow case>*

13
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This locking phenomenon is analogous to what happens in fluid mechasicsctural
mechanics when an incompressible medium is considered (see émcmfef. 35). To
avoid this problem, a mixed pressure-displacement based formulationbdsas

proposed. More details are given in Ref. 24.

Equations (2.9) are respectively multiplied by two trial fields, and p,, and

integrated over the acoustic dom&ip After integrating by parts, we get:
1 . S
(S p PP+ (0w a+ (Wil e @ [l wod
I!;:Q) 2 pp +i£ pw-a+ J 9] Jfa
—ia){ aw [(ZR/O[[BM)@+ iaj; g(ng] V\D) wl
, (3.1)
-l il v

o a5 o )= 0 cfi)

wheredQ, is the surface enclosing the acoustic dongain

In the no-flow case (first line of the above formulation), the donogierators of
(3.1) are almost identical to those used by Wang and Baththeir mixed formulation.
The only slight difference is that one has chosen to integrafmitiy the divergence
term of the second equation of system (2.9) (instead of the fiasbfehe first equation)

in order to let the normal displacement appear explicitly at the boundary.

As noted in Ref. 25, normal displacement continuity is then easily edpbg

replacing the fluid normal displacement with the structure nodisglacement when

14
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fluid-structure interactions are considered. This specificity avdlis use of a
Lagrangian multiplier to force normal displacement continuity, as dorief. 30 and

37.

The variational formulation associated to the structure equa®d®)(does not
present any problem. It is classically obtained after muléipba by a trial fieldu” and

integrating by parts:

J:g*:adQ—a?(!’@u* Eth+b£ u fod,)dS = 0 L (3.2)

s

where 0Qs is the surface enclosing the structural dom@in £ the symmetric strain

tensor (o is still the inward normal from the structure point of view).

Now, formulations (3.1) and (3.2) are combined. Vibro-acoustic coupling conditions
(2.11) are applied by replacing the acoustic normal displacemetiteirboundary
integral over ¢ of (3.1), and the structural normal stress tensor in the boundagyainte
over ¢ of (3.2). Boundary conditions (2.12), (2.14) and (2.15) are also applied. This
yields the following general vibro-acoustic variational foratign, which consists in

solving {WL, pL,u} verifying {WL|r =W andu U} and:

P

u

15
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1, ,
—{Ep pLdQ+§!; Opow @+ Jawm] 62et (f)Ja,QVE wad
—ia)i!; QAW E@\/ODBNL)GH iag: ,q(vgﬂj V\E) we- b[ ,Q(ﬂy W) (NZO \Q)d
S| o (w mo)ds%JE b pdSva} (z, w) dsl—;[z—l “dpds (3.3)

—(Jl QU EIdQ+J: £: 0dQ+Ju* [fdS

= 0ad

M

o
rLI

The three first lines represent the acoustic problem when no cguplassumed,

[P (m)os-f(i ) pos 0 i pd fi

the fourth line is the structural problem and the last line giwesplmg conditions
between both media. Note that impermeable walls have been assuthathg [th, =0

onl [ ;.

It is interesting to note that both the impedance condition (2.12) andotineal

displacement continuity (2.11) are based upon the equality of the exmiable
w' h, =0 with the wall normal displacement. These conditions are then nimgies

to implement than in the LEE case, that would have required the useeosMgndition
(in particular, Myer's condition implies normal derivatives, whicle alifficult to

compute via a FEM method).

B. Finite element discretization

16
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In this paper, the geometry is assumed to be axisymmetridioWitloss of
generality, fluctuating variables can be written in the following form:

(w, ptu)(r.8.z.0)=(w", o u)(r.2) & (3.4)

Trial functions are given by:

(w*, p,u )(r,@,z,t):(V\? pu )(r,z) gm) (3.5)

In order to avoid locking and spurious solutions, a mixed pressure-disace
formulation is not sufficient: interpolations for displacement andspresvariables must
be adequately chosen. Though not necessary, a criterion that ecmwvesgence and
stability of the finite element is given by the inf-sup condiie®@e for instance Ref. 35).
This kind of finite element has already been successfully apphietthe variational
formulation (3.3) in the no-flow ca¥eand when testing the effect of shear fl6%3
The element used in this paper, sometimes referred to aB;the;”, “4/3c” or “MINI”
element in the literature, is a three-node triangle with arnat degree of freedom for

each component of the displacement. On the reference element, dmsglacend

pressure variables are thus interpolated as follows:

B (u V) =(1-u-vw, +wv, +w, {1-u-} w
0, (3.6)
(W) =(1-u-Y p+up+ vp

where the subscripts (i=1,2,3 denotes the node number. The standard linear
interpolation for the displacement is enriched with a bubble functiagmiaintains €
continuity @ is a generalised variable corresponding to an internal de§reeedom,

which can be condensed out before the elements are assembled)déseanark, it has

17
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to be noted that the overall method presented in this paper is &agiilgable to the 3D

case because elements satisfying the inf-sup condition exists in threesidinsetod”.

The structure is assumed to be a thin shell of constant thicknessibdd with
Reissner/Mindlin’s theory. To avoid transverse shear locking, the variationall&gron
associated to the structure is also mixed, written with dispkctsmand rotations as
explicit variables (a linear interpolation is chosen for eachgoplete description of

such an element is given for an axisymmetric shell geometry in Ref. 38, p.196.

After assembling and applying boundary conditions, the global discretised

variational formulation yields an algebraic system of the form:

K, COUQ O
%:T 00. 0¥ (3.7)
K VUe O fs

where U, and 0, respectively contain all the acoustic nodal unknowns (i.e. displacement

and pressure) and all the structural unknowns (displacement and rot&tios)the
fluid/structure coupling matriX, andfs denote the acoustic and vibration sources. Some
more details are provided in Ref. 25. The overall left-hand matriX3i7) is w
dependent, unsymmetrical, complex and banded. A sparse storage is choseixdebr

w, the unknown nodal vector is finally obtained by using a LU decomposition.

18
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V. SEMI-ANALYTICAL MODEL

This section presents the semi-analytical model used for tidatah of the FEM
model. This model constitutes a sort of Pridmore-Brown equation geeerdb a
swirling flow. It corresponds to the propagation of a single mode straaght duct.
Extending Pagneux and A@gan’s work to non-axisymmetric modes, the effect of a

vibrating wall is also included in order to study vibro-acoustic coupling.

A. Acoustic

For the acoustic fluid, we first suppose tpats constant and that the flow speed

components only depend upo(with no radial velocity):
Vo=Vy(r)e, +ran(r)e,  po=p() (4.1)
an(r) is the rotation speed (in rad/s) of the mean flow. &luctuating fields are

written with the following dependence:
(w, p°)(r.6.2.t) =(w", g ) (1) e (4.2)
where k, denotes the axial wave number. The material derivative is nean ¢y

dy/dt=-i(w-vk —my). The system (2.9) becomes:

19
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4.3
0,0 +ik,p =0 @3
5. LEa(w) m,  E
P =A% G- +i—w; +ik, w0
i Er or r A

with Q(r)=w-v, (r)k, -may (r). The first three equations allow to explicitly express

the Lagrangian displacement in terms of the pressure. Thertingpldisplacement in

the last equation of (4.3) yields the following scalar second order differeqiatien:

Pp- M . pDopt 0Q° nf
+-222 - = — kI p- =0 4.4
i S “

The primes denotasderivatives. In a way, Eq. (4.4) represents a Pridmore-Brown

equation generalised to swirling flows.

Using the first equation of (4.3), boundary condition (2.12y=&; and r=R,

becomes:
—| =Fi-——p (4.5)

Signs— and + are respectively associated with indices 1 and 2. NotEdh#4.5)
reduces to the no-flow case boundary condit&p‘r/ar =Fi poa)pL/ZL2 only if the

mean flow velocity is zero at walls (non-slip condition).

20
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Equations (4.4) and (4.5) constitutes an eigenvalue problem, whose eigsnaadi
eigenfunctions are respectivédyandp*(r). Its solution requires a numerical method and

leads to the wave modes. In this paper, it is assumedothad (incompressible case)

for simplicity as stated earlier. Besides, it must be notddthleaconstanp, assumption
made earlier is important for obtaining the relatively sintfde (4.4). Indeed, iy is r-

dependent, a scalar differential equation written only in terms sfngle variable
(namelyp or w-) may still be foundi* but calculations are tedious and this equation is

far more complex than (4.4).

B. Vibro-acoustic coupling

In case of coupled vibrating walls, the boundary condition (4.5) is modified.
subsection is an extension to rotating modaest Q) of Pagneux and Aégan’s papér.
The assumption of a thin shell based on Kirchhoff theory is made. Vibration equations of

a fluid-loaded wall located atR; (i=1,2) are then governed by Donnell’s thédry

Uy ou,  1+vo°u, 00° 1-v 9° 1 aZDU 0
R0z 2Ro@z Pz 2 ROG® 00"

dlou v 107 10°0 T b,
SRE06 H2 07 Ro8° ¢ofd’ 2RI@ z

1 ,., 10°0 10u, vaou__ 1
+B0% ——_ru+ — ey 2=
%RZ PO Goel” Roo Roz o e

Signs— and + are respectively associated with indices 1 arwg, 28 and O* are

0 i=12 (4.6

r=R

defined as:

21
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2 4 4 4
oo E gt e gl p 9, 10

- - = + +
p.(1-v?) 12R? 07 "00%97 Ra6*

4.7)

E, o5, v, h andc_ are respectively the Young’s modulus, density, Poisson’s ratio,

thickness and longitudinal wave speed of the shell being considered.

With the same dependence as in (4.2), structural displacements are re-written:

u(r,8,z,t)=u(r)et= (4.8)

Equation (4.6) now becomes:

—~ mku =0 i=12(4.9)

OOmOoOmsm o

A= :’E.J\,|3 2=

The above three equations allow to write in terms of p-(r=R) only. After

calculations, it can be shown that:

O . m (+v) , O

DJBZ_I 2 kz+ ur

O Razg 20, 1%

D
__ 1 Harv D/(l v) _
b= i Y e = 1
2k2 D( +|/) m2|§+ D n? D/(1+|/) (4.10)

Rzapz Rb’zD a,

0 2D2 25

0 L _a) L 1

5 +R+ﬁRK G2 Q2D14+ hﬁﬁ‘

22
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where:

i — 1+vY
allzﬂz_kz2 _1 Iz/m2 s =£ _( )
C 2R

1-v m’
iR K — g & (4.11)

Then, using the first equation of (4.3) and the normal continuity disptademne.

w- =u atr=R, the last equation of (4.10) finally gives:

Bz O@+vy L, O oot D/(l v) 0
Z m +
ERzal Rzapz < %2D a, 1%
L E (4.12)
0)2 a (. _,0on
+—+ FLLLE =
TR G i

Equation (4.12) constitutes the boundary condition that must be used to solve the
differential equation (4.4) when coupling effect of the vibratindl waR, has to be

included in the analysis.

C. Solution method

In order to solve Eq. (4.4) combined with (4.5) or (4.12), the solution of tlodispe
case of a uniform axial flow and rigid-body rotation is first oi#d. Then, the solution
for k; is used as an initial value to solve the more general equatiomith4n iterative

Runge-Kutta method.
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The specific solution uniform/rigid-body implies thatlerivatives ofQ become
zero. Solutions of Eq. (4.4) in the constagtcase are thus a combination of Bessel's

functions:
P (1) = AJ (k. 1)+ BY,(k 1) (4.13)
where the radial wave number is given by the dispersion equation:

K2 =Q%/ci-K (4.14)

With y being a factor that depends on the type of conditions used, (4.5) or (4.12),

boundary conditions are of the form:

%"

o =yp (4.15)

r=R,

Then, application of (4.13) into (4.15) yields the following characteristic exuati

{3 (s, R)-r (e, R K YOk Bk Y
(k. % (K, R)-1. 1k BH K. ¥( & B-n X .k R=0

The A" solution gives the axial wave numbeof the mode (m;fl). Besides, it can

(4.16)

be shown from (4.14) that:

My (k=) [(k- mgY ~(1- ) £

" 1-M{

k: (4.17)

wherek=a/cy, Mo=Vo/Co andko=a/Co. This relation is the same that is in Kerrebrock’s
analysis. Cut-off frequencies of the (m,n) mode corresponds to the valiéoofwhich
the term inside the square root vanishes when perfectly rigld ara considered. After

some calculations, we have:
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mw,
21T

f. =J1-Mgf, +

Cmn

(4.18)

fo.. :colgmn/Zn is the no-flow cut-off frequency. This simple relation shows that

cut-off frequencies are modulated byq/a—Mg factor (for any direction of the axial
flow) and incremented bynw, /277 (cut-off frequencies of counter-rotating modes are

decreased, and vice-versa for co-rotating modes). This basicwékb# experienced in

the next section.

If the mode is cut-off or duct walls are lindg becomes complex, which means that

the mode is attenuated. This attenuation is given in dB/m by:

a =8.6861m(k,) (4.19)

V. RESULTS

Figure 1 shows the types of boundary conditions used for FEM catmdaflhe
methodology is as follows. Lagrangian displacements obtained frosethieanalytical
model are imposed at the duct inlet of the FEM model (in thaireng, the term “inlet”
is used for the bottore=0 cross-section). The modal non-reflective boundary condition
(2.14) is preferred at the outlet, which is less constraining beghase and amplitude
are left free. FEM solutions inside the duct are then computed and campane semi-

analytical ones.
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Impedances defined by (2.14) can be given explicitly for a simgiée, for which
an %) dependence is assumed (as described in section 1V). Material des\ative
thus simply given byd/dt=—i(w-Vok,—may), which vyields the following explicit

expressions:

(C‘)_Vokz B m)z

5.1
ok 5.1)

an = _ipOVO (C{)—Vokz _nu'b)l ’ Z'w = ,00

k, is the modal axial wave-number, which is part of the semi-acalygolution.|

denotes the identity matrix.

When vibro-acoustics problems are considered, semi-analytical aispdats and
rotations are also enforced at the shell extremities of i Fodel. Semi-analytical
displacements are obtained from the semi-analytical pressiné4.10). With notations
of section IV, semi-analytical rotations in thez( and &y) planes, denoted bf and S,
are calculated as follows:

B=iku, , B =(imy-y)/R (5.2)

It is important to note that the above relations suppose that thacetransverse

shear because the Kirchhoff's theory has been used in Sectiém pdrticular, a rather

small shell thickness has to be chosen in order for both models to gen(asr stated

earlier, the shell FEM model takes into account any possible transversge shear
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In the following, iso-pressure contours are given in Pa in orderonatinimize
errors. Axial mean flow velocities are defined in Mach numbdg).( Mean flow
rotations are given with a non-dimensional parameter defined as:

Q=wy(R,-R)/ (5.3)
where Ry and R, are the inner and outer duct radius. Propagation and axial flow
directions are also sketched in order to explicitly show if ware@agation is upstream

or downstream. Typical values gf=1.2kg.m*> andc,=340m.s§" are used.

Test cases sweep a non-dimensional frequency range up tokddist and the
duct geometry is generally meshed withl/a0 finite element length. Meshes may be
adequately refined at walls in order to better describe trextefiof the mean flow
boundary layer thickness as well as shell vibrations, as done in Ref. 25. Figurs argive
example of aA/10 meshing, without and with refinement, used for the results of Fig.6

(f=650Hz).

A. Validation for pure acoustic propagation

The first test case is &3,1) mode propagating &400Hz in a cylindrical duct of
radiusR,=1.0m R;=0), with perfectly rigid walls, with a uniform axial mean fland a

rigid-body rotation represented by:

Vo, (1) =M, Vo (1) =Qed/(R,-R) (5.4)
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whereMg andQq are both constant. Here, we chob&s+0.3 andQy=+0.3.

A comparison between semi-analytical and FEM solutions is showngo@ fair
m=-3 (counter-rotating mode) and m=+3 (co-rotating). A good convergericedre
both models is achieved, though small discrepancies can be observed3tnnigar the
modal pressure node (et0.8m). As shown on Fig.4, those numerical discrepancies
almost disappear when the mesh is refinddQ andA/20 meshes have been used for

Fig.3b and 4 respectively). However, analyses of convergence ef FEM

implementation will not be pursued in this paper and are left for further sitfies

It can be observed that the counter-rotating mode fully propagates thierduct
whereas the co-rotating mode is quickly damped near the ductintetating that this
mode is cut-off. This is confirmed by Eq. (4.18), which yields cut-offjdiencies
fc=365Hz for m=3 and 462Hz for m=+3 (the no-swirl mode would have been cut-off
also becaus&=414Hz). This example simply shows the effects of swirl upon cut-off

frequencies, which are well taken into-account by the FEM model.

A second test case concernstd(,0) mode propagating &650Hz in an annular
duct of radiuR;=0.2m andR,=1.0m. The mean flow is assumed to have a sheared axial
velocity with Mo = -0.5 and a 10% boundary layer thicknegs@.08m, the profile is

assumed to be parabolic — see Fig.5). The mean flow also had-hadly rotation with

a free vortex. The azimuthal velocity is explicitly given by:
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Vo, (r)=Mr +0/r (5.5)
M andr are two constants chosen so thfl = 0.32 and Qo = +0.1. Mo and Qo

are the cross-section averagedvwf(r) and Q, (r), defined by:

2Ry

szll f (r)rdrdé (5.6)

Figure 5 illustrates some velocity profiles 110_Aio| =04 and|5o| =0.2.

The outer wall is lined, witd=2040-2040. As seen on Fig.6, this example exhibits
strong differences in attenuation between casesl®=m=10 (no swirl), and m=+10. It

must be emphasised that attenuation is only due to the lining dfémause the
frequencyf=650Hz has been carefully chosen so that #i1€,0) modes are always cut-
on (even for m=+10;=619Hz). This is illustrated by the non-zero intensity, also shown
on Fig.6 and post-processed via Eq. (2.8). Note that the intensity \&ctoir perfectly
tangential to the wall, indicating that some energy is absorbetthébyining. Results
obtained from both semi-analytical and FEM models are stififgatgly in agreement,
though a slight difference may be observed in the counter-rotaasey Moreover, the
conclusion of this example agrees with Cooper and Peake’s tésidtained in lined
ducts: a co-rotating mode may be much more damped than in theirha@zse, a
counter-rotating mode is generally less attenuated. Attenuation bmaguantified
precisely by the semi-analytical solution — see Eq. (4.19). Attemutgtctors found for

m=-10, m=10 (no swirl), and m=+10 are respectively 2.8dB/m, 5.3dB/m and 11.6dB/m.

29



F. Treysséde, Acustica

Consequently, neglecting swirl for acoustic propagation may eaighificant errors,
especially for counter-rotating modes because their attenuatiobewoverestimated. It
must be noted that the uniform case (i.e. uniform axial velocity@ation) would have
given quite different values of attenuations (respectively: 9.1, 11.2 andB2@.5dnot
shown here). The FEM model gives therefore a good accuracy of donvectd

refraction effects due to radial variation of flow velocities.

B. Validation for vibro-acoustic coupling

In this section, the outer wall is now elastic. Material igsmahium. Shell

characteristics are as follows: E=10'°N/m?, p=2700kg/ni, v=0.3,h=0.01m.

The first vibro-acoustic example is given by Fig.7-9. The testngéry and flow are
the same that in the first example of the preceding subheadicgindrical rigid wall
duct with uniform flow/rigid-body rotation is considerédye+0.3 andQy=+0.3). One is
interested in thet5,0) mode propagating &500Hz (this mode is always cut-on at this
frequency — for m=+5f.=412Hz). Figure 7 gives a comparison for +b=m=5 (no
swirl), and m=+5. Note that the pressure real part have beenrpdefastead of the
modulus because the latter is almost identical for the thres,cakich would not have
been very useful to show. In addition to the fact that semi-arallgicd FEM solutions

perfectly coincide, it may be observed that mode radial profilasoticehange with the
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sign of Ny (i.e. between co- and counter-rotating cases). However, as expdu
axial wave number is strongly reduced foeGn explaining the axial wavelength
increasing from left to right on Fig.7. As shown on Fig.8, this deeredsk, is
accompanied by a decrease of the axial intensity frof\WWIG for m=-5 to about
0.6x10°W/m? for m=+5 (on the other hand, there is an increase of the azimuthal

component).

Figure 9 shows the real part of the shell radial displacemeninteresting swirl
effect can be viewed: when the mode is counter-rotating, the did@hcement is far
greater than for the no-swirl mode. In the co-rotating caseraitial displacement is
lower, but the difference is rather slight. The shell radigpplacement is multiplied by
about a factor 10 between m=+5 and +h= Note that semi-analytical and FEM
displacements perfectly coincide (for a simpler visibilityFod.9, one has chosen the

same line styles for both models).

Nevertheless, the above result must not be generalised. The oppaosésacde
observed. Figure 10 exhibits the shell radial displacement for areaspropagation
Mo=—0.3 (pressure has not been shown for this example). The co-rotaiohg nadial
displacement is, this time, amplified compared to the counterfigtatie by a factor 4.
The above results simply shows that mean swirl effects mastrbag upon vibro-

acosutic behaviours and need to be included in engineering analyses.
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The last example illustrates the capabilities of the FEM inodadequately include
the effects of radial variations of the mean flow for highegudencies. For that purpose,
Fig.11 gives a comparison between a non-uniform and a uniform flowdiitieis

annular, withR;=0.2m andR,=1.0m. The non-uniform flow is of the same type that the
one used for the second test case of the last subheading, buMwith-0.4 and

Qo =+0.2. The uniform flow corresponds to the same averages, as defin€al@)y
(what must be understood by “uniform” flow is that both axial veloaity rotation are
uniform). Figure 5 exhibits uniform and non uniform flow profiles for théal and
azimuthal velocities. The case of a (+2,3) mode propagatifrgl@00Hz with an inner

lined wall is considered. The impedance wall#2l08-408.

The attenuation due to the lining is slightly more pronounced in the noorunif
case. Attenuations obtained from the semi-analytical solutiond yie values of
1.0dB/m for the non-uniform flow and 2.4dB/m for the uniform case. Thougdialra
variations of bothMg(r) and Qo(r) may generally play a significant role, a further
analysis shows that, for the case being considered, the differeattenuation is mainly
due to the presence of axial flow shear. For an upstream prapaght aerodynamic
boundary layer tends to refract waves away from the walls, a@orethe efficiency of
the lining. This gives a non-negligible difference of about 3dBetuct outletl(=2m).
Given the rather good agreement between both models, the FEM methodegdropos
this paper is able to support the convection/refraction effectsroplex flows. Figure

12 also gives the shell radial displacements in order to observeetitease of the
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structural vibration along the duct. Attenuation difference exisietgieen both kinds of

flow is slight but well represented by the FEM model.

At last, it should be noted that Fig.11a-b and 12 exhibit some smaratitfes
between MS and FEM solutions (however, note that if plots were givelB, errors
between both models would be almost negligible). As explained at thenbwy of
Sec.V, the FEM models have been meshed witil@ length, which constitutes an
estimated finite element length for acceptable convergence. AsfooiRéy.3b and 4,
convergence may be further improved by a mesh refinement (notnshewe for

conciseness of the paper).

VI. CONCLUSION

In this paper, a FEM model based on Galbrun’s equation has been prapeebaet
acoustic and vibro-acoustic problems in the presence of swirling (esadesl) flows.
From a theoretical and numerical point of view, Galbrun’s equation beaattractive
compared to the LEE: boundary conditions are easy to obtain and to impleitre a
FEM method, and an exact intensity expression is available. Morebeeproposed

variational formulation is well suited to enforce the fluid/structure couplomglitions.

Through comparisons with semi-analytical solutions based on a dseeéral

Pridmore-Brown equation, the swirl effects upon acoustic and vibro-acbeasiaviours
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have been outlined and the FEM method was tested. The agreement¢nbéivte

models tends to prove that the proposed method is efficient to study such applications.

Results also show the importance of taking into account swirlingsflamd
therefore, the limitations inherent to a full-potential formulatiohjclv assumes that
both acoustic and aerodynamic velocities are irrotational. Thisigesthe use of more
general equations, such as the LEE or Galbrun’s equation. In particalaotating
(resp. counter-rotating) modes are likely to be more (resp. dessped along a lined
duct than in the no-swirl case. The presence of swirl may sitemgly affect the
structural vibrations by sometimes increasing, sometimes afege their radial

displacement amplitudes.
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FIGURE CAPTIONS:

FIG.1: Geometry of a vibro-acoustic duct carrying flow withnedi central body and an

elastic outer walll ;. denotes the fluid/structure interface.

FIG.2: A/10 FEM meshes for an annular duct @®50Hz: (a) without, (b) with

refinement at walls.

FIG.3: Pressure modulus in Pa of ti#3,) mode aft=400Hz, M¢=+0.3 andQo=+0.3
(rigid wall). (a) semi-analytical and (b) FEM solutions for=—3 (counter-rotating

mode), (c) semi-analytical and (d) FEM solutions for m=+3 (co-rotatiogden

FIG.4: Pressure modulus in Pa of th&,0) mode aft=400Hz, M¢=+0.3 andQo=+0.3

(rigid wall). FEM solution with mesh refinement.

FIG.5: Axial velocity profiles for sheared and uniform mean Homith |Vo| =0.4, and

azimuthal velocity profiles for rigid-body and rigid-body/freetesarmean rotations with

|§o| =0.2.

FIG.6: Pressure modulus in Pa of thel@0) mode atfi=650Hz, Mo =-0.5 and

Qo = +0.1, with an outer lined wallz=2040-2040). (a)-(b)-(c) semi-analytical solutions

40



F. Treysséde, Acustica

for m=10, m=10 without swirl Qo=0), and m=+10 respectively. (d)-(e)-(f) FEM
solutions for m=10, m=10 without swirl, and m=+10. Enlargements of intensity vectors

calculated from the FEM model are also shown at walls.

FIG.7: Real part of pressure in Pa of tt6,0) mode at=500Hz,My=+0.3 andQ,=+0.3
(elastic wall). (a)-(b)-(c) semi-analytical solutions for+b, m=5 without swirl, and

m=+5 respectively. (d)-(e)-(f) FEM solutions for r; m=5 without swirl, and m=+5.

FIG.8: Axial intensity in W/rh (computed from FEM solutions) of the50) mode at

f=500Hz,M=+0.3 andQ,=+0.3 for: (a) m=5, (b) m=5 with no swirl, (c) m=+5.

FIG.9: Real part of the shell radial displacement (in meter)the ¢5,0) mode
propagating at=500Hz,M=+0.3 andQ,=+0.3. Semi-analytical and FEM solutions for

m==5 (dashed lines), m=5 without swirl (dot-dash lines), and m=+5 (solid lines).

FIG.10: Real part of the shell radial displacement (in mefar)the ¢5,0) mode
propagating at=500Hz,My=—-0.3 (upstream propagation) afdg=+0.3. Semi-analytical
and FEM solutions for m=5 (dashed lines), m=5 without swirl (dot-dash lines), and

m=+5 (solid lines).
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FIG.11: Pressure modulus in Pa of the (+2,3) modé=3000Hz, Mo =-0.4 and

Qo =+0.2 (lined inner wall withZz=408-408, elastic outer wall). (a) semi-analytical and
(b) FEM solutions for the sheared/rigid-body/free vortex flow.s@ni-analytical and

(d) FEM solutions in the uniform/rigid-body case.

FIG.12: Real part of the shell radial displacement (in mefar)the (+2,3) mode

propagating at=1000Hz, M = -0.4 and Qo = +0.2. Semi-analytical (dashed) and FEM
solutions (solid) for the sheared/rigid-body/free vortex flow, samalytical (dotted) and

FEM solutions (dot-dash) for the uniform/rigid-body flow.
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FIG.3
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FIG.7
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