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A model based on Galbrun's equation is proposed to address the problem of vibro-acoustic interactions in sheared flows. The use of a displacement-pressure mixed formulation of Galbrun's equation greatly simplifies the coupling condition formulations and avoid the problem of non-zero frequency spurious modes encountered with displacement based acoustic formulations. This model is applied to duct acoustics. Comparisons with analytical models demonstrate the accuracy of the method. The effects of mean flow shear on acoustic wave propagation in elastic duct are then illustrated.

INTRODUCTION

Vibro-acoustic interactions are critical aspects in many practical engineering problems and are often found in conjunction with acoustic wave propagation in complex flows (especially in transport engineering).

On the one hand, acoustics of fluid loaded structures in a quiescent fluid have been widely studied for many years. Standard and efficient tools now exist to solve this class of problems [START_REF] Ben Tahar | Interactions fluides-structures[END_REF].

It has been shown that uniform mean flows can significantly change the vibroacoustic behavior of fluid loaded structures [START_REF] Brazier-Smith | [END_REF]3]: an infinite plate may become unstable for certain mean flow speeds (similar conclusions were obtained for finite plates [START_REF] Sgard | Coupled BEM-FEM approach for mean flow effects on vibro-acoustic behavior of planar structures[END_REF][START_REF] Wu | [END_REF] and finite cylindrical ducts [6]). Such a behavior is often attributed to the negative stiffness added by the acoustic radiation process in the mean flow [START_REF] Wu | [END_REF].

On the other hand, the propagation of linear acoustic waves in a non-uniform flow is governed by the linearized Euler equations. Since this set of equations is quite difficult to solve, a simplified model, the full potential theory, has been heavily studied by many investigators [8]. This theory relies on the hypothesis that the acoustic displacements and mean flows are irrotational. But if refraction effects by mean flow shear are to be described, one has to solve the complete linearized Euler equations [START_REF] Astley | A finite element formulation of the eigenvalue problem in lined ducts[END_REF][10][11].

The influence of sheared mean flows on vibro-acoustic interactions have only been seldom investigated. Pagneux and Aurégan extended Pridmore-Brown's model to infinite ducts with vibrating walls [START_REF] Pagneux | Acoustic modes in duct with parallel shear flow and vibrating walls[END_REF]. To address this problem, the present paper introduces an original method based on Galbrun's model [START_REF] Galbrun | Propagation d'une onde sonore dans l'atmosphère terrestre et théorie des zones de silence[END_REF] for describing acoustic waves in a non-uniform mean flow. The coupling conditions are easily formulated since, with a mixed formulation of Galbrun's equation, the acoustic displacement and pressure are explicit variables of the model.

The present paper is organized as follows. Section 2 is intended to introduce the underlying theory of Galbrun's equation. In Section 3, the hypotheses and model for the vibro-acoustic interaction problem are presented and the corresponding variational formulation is derived. The model is then solved in Section 4 with a finite element method. In Section 5, a first group of results is presented to validate the numerical model against an analytical one, then examples illustrate the capabilities of the model.

GALBRUN'S EQUATION

With the Lagrangian specification, the cinematic of a fluid flow is described by the trajectories x (a, t) of the fluid elements. The latter are identified by their positions a in a reference state so that the independent variables are related to fluid elements.

With the Eulerian specification, the velocity field observed for all locations y in the fluid provides the kinematic of the flow. The independent variables are then associated with a spatial location.

To analyze linear perturbations of fluid dynamic equations, one considers two almost identical flows: a standard one (described by x 0 (t)) and a perturbed one (described by x(t)). A quantity (scalar or tensor) measured in the base flow is denoted by ψ 0 while ψ denotes the same quantity measured in the perturbed flow.

An Eulerian perturbation ψ E is defined as the discrepancy of the measured quan-tity between the base and perturbed flows at a given spatial location y. On the other hand, a Lagrangian perturbation ψ L is defined as the discrepancy between the two flows for a given fluid element situated in x 0 in the base flow:

ψ E (y, t) = ψ (y, t) -ψ 0 (y, t) .
(1)

ψ L (x 0 , t) = ψ (x, t) -ψ 0 (x 0 , t) . (2) 
Since in equation ( 2), an Eulerian specification of ψ is used to define a perturbation associated with a given fluid element, the quantity ψ L corresponds to a mixed, or Euler-Lagrange, representation.

Assuming small amplitude perturbations, useful properties can be obtained from these definitions. On the one hand, one can derive the following expression relating Eulerian and Lagrangian perturbations valid up to the first order in the perturbation amplitude:

ψ E = ψ L -w • ∇ψ 0 , with w = x (t) -x 0 (t) , (3) 
where w is the displacement Lagrangian perturbation. Equation (3) shows that Eulerian and Lagrangian perturbations are equivalent when ψ 0 is uniform in the base flow. On the other hand, it is known that Eulerian perturbation and derivation operations commute (the perturbation of a gradient is the gradient of the perturbation). This does not hold for Lagrangian perturbations:

∂ψ ∂t L = ∂ψ L ∂t - ∂w ∂t • ∇ψ 0 ∂ψ ∂y j L = ∂ψ L ∂y j - ∂w ∂y j • ∇ψ 0 . (4) 
It is worth noting that Eulerian perturbations can be recovered from Lagrangian ones, thought, in general, the opposite is not possible. An in-depth account on mixed representation can be found in [START_REF] Poirée | Les équations de l'acoustique linéaire et non-linéaire dans les fluides en mouvement[END_REF].

In order to obtain Galbrun's wave equation, the definitions and properties of Lagrangian perturbations are applied to fluid dynamic equations for a perfect fluid undergoing an isentropic flow (viscosity and thermal conductivity are neglected).

The continuity, momentum and constitutive equations are:

∂ρ ∂t + ∂ ∂y j (ρv j ) = 0 , ∂ ∂t (ρv i ) + ∂ ∂y j (ρv i v j ) + ∂p ∂y i = 0 , p = P (ρ, s) .
where ρ is the density, v i the velocity components and p the mechanical pressure.

Applying the rules (3)-( 4) for Lagrangian perturbations to the fluid dynamic equations gives:

ρ L = -ρ 0 ∇ • w , (5) 
ρ L d 0 v 0 dt + ρ 0 d 2 0 w dt 2 + ∇p L -∇p 0 • ∇w = 0 , (6) 
p L = c 2 0 ρ L , (7) 
where d 0 /dt is the material derivative in the mean flow. Combining equations [START_REF] Wu | [END_REF] and [START_REF] Wu | [END_REF] to eliminate pressure and density variables in equation ( 6) leads to Galbrun's equation:

ρ 0 d 2 0 w dt 2 -∇ ρ 0 c 2 0 ∇ • w + ∇p 0 ∇ • w -∇p 0 • ∇w = 0 . (8) 
Similar equations were obtained by Hayes [START_REF] Hayes | [END_REF] and Godin [16]. Galbrun's equation is equivalent to the full linearized Euler equations and has some advantages.

For isentropic perturbations, the linearized Euler equations require the use of p and v (see [17]), while Galbrun's equation is expressed for w only. Moreover, Godin showed that equation ( 8) derives from a Lagrangian density and derived exact expressions for the energy density and flux [18,19]. Such expressions do not exist for the linearized Euler equations.

VIBRO-ACOUSTIC INTERACTION MODEL

The derivation of the model describing vibro-acoustic interactions is now addressed. The problem at hand is an acoustic domain Ω a coupled with an elastic structure Ω s (see Figure 1). These two domains have a common boundary Γ c . Two others boundaries are defined: Γ a = ∂Ω a /Γ c and Γ s = ∂Ω s /Γ c .

The structure is considered linear elastic and isotropic with no initial stress and strain. Thus, the structure vibrations are governed by the following set of equations:

ρ s ∂ 2 u ∂t 2 -∇ • σ = f s on Ω s , (9) 
u = ū or σ • n = -F s on ∂Ω s , (10) 
where ρ s is the material density, u the structural displacement, σ the stress tensor, f s the external force density, F s the boundary forces and n the inward normal on ∂Ω s .

For the acoustic domain, one considers a perfect fluid undergoing a known, stationary, subsonic flow described by (ρ 0 , p 0 , v 0 ) given at each point in Ω a . On Γ c , this mean flow satisfies the slip condition v 0 •n = 0. The acoustic waves propagating in the mean flow are described by Galbrun's equation (8) which is rewritten:

ρ 0 d 2 0 w dt 2 + ∇p = f a on Ω a , (11) 
p + ρ 0 c 2 0 ∇ • w = s on Ω a , (12) 
where f a is the external force and s the pressure source. The superscript L on the pressure Lagrangian perturbation p is omitted. For the sake of clarity, the influence of mean flow pressure gradients is neglected here but can be easily taken into account. The use of both pressure and displacement variables will be justified later.

The acoustic waves and structural vibrations are coupled by the geometric and mechanic conditions. Since one considers a perfect fluid, the kinematic compatibility condition states the continuity of the normal displacement on Γ c while the mechanic condition implies the normal stress continuity. According to Godin [20],

for a structure without initial stress and strain, these conditions reduce to:

w • n = u • n and pn = -σ • n on Γ c , (13) 
where n denotes the normal pointing toward the structure.

The vibro-acoustic interaction problem defined by equations ( 9) to ( 13) is now expressed as a variational formulation for time harmonic solutions of the form:

(w, p, u) (x, t) = (w, p, u) (x) exp (-iωt) .
The trial functions associated to w, p and u are denoted by w * , p * and u * . After integrating by parts, the following variational formulations are obtained:

Ωa -ρ 0 d 0 w dt • d 0 w * dt + w • ∇p * + ∇p • w * - pp * ρ 0 c 2 0 dΩ + ∂Ωa ρ 0 (v 0 • n) d 0 w dt • w * -p * w • ndΓ = Ωa w * • f a - sp * ρ 0 c 2 0 dΩ ∀ (w * , p * )(14) Ωs σ : ε * -ω 2 ρ s u • u * dΩ + ∂Ωs u * • σ • ndΓ = Ωs u * • f s dΩ ∀u * , (15) 
where the overbar represents the complex conjugate and ε the symmetric strain tensor. Since one considers time harmonic solutions, the material derivative represents

d 0 /dt = -iω + v 0 • ∇.
The boundary integral on Γ c in equation ( 14) is simplified by the slip condition v 0 • n = 0 for the mean flow. And, with the geometric condition (13a), the normal acoustic displacement is replaced by the normal structural displacement. The mechanic condition (13b) is also used in the boundary integral on Γ c in (15) for the structure. Thus, the coupled system variational formulation is obtained:

Ωa -ρ 0 d 0 w dt • d 0 w * dt + w • ∇p * + ∇p • w * - pp * ρ 0 c 2 0 dΩ + Ωs σ : ε * -ω 2 ρ s u • u * dΩ + Γa ρ 0 (v 0 • n) d 0 w dt • w * -p * w • ndΓ + Γs u * • σ • ndΓ - Γc p * u • n + u * • pndΓ = Ωa w * • f a - sp * ρ 0 c 2 0 dΩ + Ωs u * • f s dΓ ∀ (w * , p * , u * ) , (16) 
The use of a mixed pressure-displacement formulation for the acoustic waves is justified by two arguments.

First, the use of acoustic displacement and pressure variables leads to a simple formulation of the coupling conditions. With displacement based formulations, special treatments are required at the fluid-structure interface Γ c in order to take the mechanical coupling condition into account [START_REF] Ben Tahar | Resolution of vibroacoustic problem in the presence of a non-uniform mean flow[END_REF][START_REF] Bermúdez | Finite element computation of three-dimensional elastoacoustic vibrations[END_REF]. This is not the case with the mixed formulation ( 16) since the variables w, p and u involved in equation [START_REF] Galbrun | Propagation d'une onde sonore dans l'atmosphère terrestre et théorie des zones de silence[END_REF] are explicit variables of the model.

Secondly, it is worth noting that with no mean flow Galbrun's equation ( 8) reduces to the standard displacement based acoustic equation. A well-known issue concerning displacement based acoustic formulation is the occurrence of non-zero frequency rotational spurious modes which are purely numerical solutions without physical meaning [START_REF] Kiefling | Fluid-structure finite element vibrational analysis[END_REF]. Hamdi et al. proposed a penalty method to overcome this difficulty [START_REF] Hamdi | [END_REF], but the spurious modes are shifted to higher frequencies and not removed [25]. Bermúdez et al. used edge elements to ensure that the displacement field satisfies the irrotationality condition [START_REF] Bermúdez | Finite element computation of three-dimensional elastoacoustic vibrations[END_REF]. Wang and Bathe showed that mixed pressure-displacement finite elements satisfying the so-called inf-sup condition are not polluted by spurious modes [26]. To satisfy this sufficient condition for stability a mixed formulation has to be solved with carefully chosen finite element interpolations (for more informations on this kind of elements see [START_REF] Bathe | Finite element procedures[END_REF] and [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]).

Spurious numerical modes have also been encountered with Galbrun's equation (8). Bonnet et al. [START_REF] Bonnet-Ben Dhia | [END_REF] proposed a regularisation technique for uniform mean flows.

Peyret also proposed the use of edge elements to describe the displacement field [START_REF] Peyret | Mise en oeuvre d'éléments finis d'arêtes pour résoudre l'équation de Galbrun[END_REF]. A penalty method is not applicable here since with sheared mean flows the acoustic displacement may be rotational.

In the present paper, Wang and Bathe's approach is followed by employing a mixed formulation of Galbrun's equation with mean flow together with finite elements satisfying the inf-sup condition. The originality of Galbrun's equation is that the pressure-displacement relationship given by ( 12) is not altered by the pres-ence of flow and is strictly identical to the no-flow case. Furthermore, the infsup condition properties are closely related to the accurate approximation of this pressure-displacement relation. This enables to directly apply the inf-sup condition to a Galbrun-based formulation. Thus, under the assumption that the additional operators introduced by the presence of flow (terms with v 0 • ∇) does not alter convergence properties of elements satisfying the inf-sup condition, it is expected that the proposed mixed method for solving Galbrun's equation is robust. Without structural coupling, these expectations have been confirmed by comprehensive numerical tests detailed in reference [START_REF] Treyssède | [END_REF].

FINITE ELEMENT MODEL

In this section, a finite element model is used to solve the variational formulation ( 16) for axisymmetric ducts. The solutions are written:

(w, p, u) (r, θ, z, t) = (w, p, u) (r, z) exp (imθ -iωt) , ( 17 
)
where m is the azimuthal mode number.

In the (r, z) plane, the computational acoustic domain is approximated with linear triangular elements. After assembling the element contributions, the following linear system is obtained:

         (M a + B a ) D a 0 (D T a + E a ) K a C 0 C T (K s + M s )                   w p u          =          F w F p F u          , (18) 
where w, p and u denote the acoustic displacement, pressure and structural displacement unknown vectors respectively. The matrices introduced in equation ( 18) are defined by:

w * T M a w = Ωa -ρ 0 d 0 w dt • d 0 w * dt dΩ , p * T K a p = - Ωa p * p ρ 0 c 2 0 dΩ , w * T D a p = Ωa w * • ∇pdΩ , w * T B a w = Ωa ρ 0 (v 0 • n) d 0 w dt • w * dΩ , p * T E a w = - Γa p * w • ndΓ , p * T C u = - Γc p * u • ndΓ , u * T K s u = Ωs σ : ε * dΩ , u * T M s u = -ω 2 Ωs ρ s u * • udΩ .
It is worth noting that M a , K a , K s and M s are hermitian matrices. The sparse system (18) can be readily solved to obtain the finite element solution.

VALIDATION

To demonstrate the validity and accuracy of the numerical model, it is tested against two analytical models which are complementary. The first one considers finite length elastic duct with uniform flow and the external solicitation is applied on the structure. On the other hand, the second model [START_REF] Pagneux | Acoustic modes in duct with parallel shear flow and vibrating walls[END_REF] is an extension of Pridmore-Brown's equation and handles infinite elastic duct with sheared flows.

FINITE DUCT WITH UNIFORM MEAN FLOW

One considers an annular duct carrying an uniform axial mean flow (see Figure 2). The duct outer wall is an elastic thin shell while the inner wall is rigid. At both ends of the duct, all rotations and displacement are prescribed to zero except axial displacements and azimuthal rotations. A radial, uniform, harmonic force (1N/m 2 ) is applied on the shell and the acoustic pressure is set to zero at the inlet (z = 0) and outlet (z = L). Thought it does not represent a practical situation, this problem is useful since it is possible to derive an analytical solution. The details of this analytical model are given in Appendix A and Table 1 summarizes the duct and fluid properties.

Axisymmetric solutions (m = 0) are sought in the two following cases: (i) with no flow at 245Hz and (ii) with a 0.3 Mach number flow at 318Hz. These two cases exhibit a strong coupling between an acoustic cavity mode and a structural mode.

The finite element mesh used for the computations is shown on Figure 2. The mesh is refined near the shell in order to better describe its vibrations. The shell is discretized with 80 elements and the acoustic domain with 1000 elements. This corresponds approximately to 13 elements per wavelength in the two cases.

Comparisons of the analytical and numerical results are shown on Figures 3 to 5.

A good accuracy is achieved in the two cases both for acoustic pressures and structural displacement amplitudes. The small deviation of the numerical result from the analytical solution on Figure 5 can be attributed to the very small dissipation added by the numerical schemes. The effect of the numerical dissipation is noticeable here since there is a strong coupling between the acoustical and structural modes.

INFINITE DUCT WITH SHEARED MEAN FLOW

The numerical method is also validated with the model proposed by Pagneux and Aurégan [START_REF] Pagneux | Acoustic modes in duct with parallel shear flow and vibrating walls[END_REF]. It represents an extension of Pridmore-Brown's equation [START_REF] Pridmore-Brown | [END_REF] by providing a boundary condition accounting for the coupling with the elastic duct wall. It is limited to infinite ducts but it takes the duct wall elasticity and the mean flow shear into account. Details on this analytical model are provided in Appendix B.

The computational domain and the finite element mesh are similar to that described on Figure 2 and the problem parameters are also given by Table 1. Here, the same approach as in reference [START_REF] Treyssède | [END_REF] is used to validate the numerical model. At the inlet (z = 0), the displacement is prescribed in order to simulate an incoming acoustic mode provided by the analytical model. The propagation impedance of the acoustic mode is applied at the outlet (z = L) to implement a non-reflecting boundary condition. This method can be inaccurate if other acoustic modes or hydrodynamic disturbances are present. However, the examples presented below are believed not to be polluted by important spurious reflections at the outlet. A more general technique such as a modal decomposition of the solution at the outlet [START_REF] Eversman | Noise control Theoretical models for duct acoustic propagation and radiation[END_REF] should overcome this limitation. At both ends of the duct, the structural displacements and rotations given by the analytical model are imposed.

Results obtained with the analytical model and the finite element method are presented for the normal mode defined by m = 0, n = 1 at 800Hz with uniform and sheared mean flows. For the latter case, downstream and upstream propagations are investigated with a parabolic boundary layer profile (with a 10% thickness). The averaged Mach number in a section is 0.3. In all cases, one finds good agreement between the two models both for the acoustic pressure (Figure 6) and the structural displacement (Figure 7). Thus, the acoustic mode propagation in the sheared flow and the vibro-acoustic coupling with the duct wall are accurately described by the finite element model.

Furthermore, structural displacements (Figure 7) provide interesting insight on the effect of acoustic refraction by mean flow shear on vibro-acoustic coupling. It is well-known that flow shear modifies downstream acoustic propagation by deviating the acoustic energy towards duct walls. For upstream propagation in shear flow, the acoustic energy is concentrated near the duct axis [START_REF] Mungur | Propagation and attenuation of sound in a soft-walled annular duct containing a sheared flow[END_REF]. This effect explains the fact that the vibration amplitude is much larger in the downstream propagation case.

Due to the acoustic energy deviation near the duct, the coupling with the elastic duct wall is more important.

EXAMPLES

In this section, the capabilities of the numerical method to solve realistic problems with higher order modes (m = 0) and complex geometries is illustrated. The following examples also represents situations where it is necessary to describe accurately both vibro-acoustic interactions and wave propagation in sheared flows.

A cylindrical elastic duct which carries an axial flow is placed between two infinite rigid ducts (see Figure 8). The computational domain comprises the 1 meter long elastic duct and two portions of the rigid ducts (half a meter each). The duct boundary conditions are the same as for the validation problem. At the inlet, an incoming acoustic mode is simulated by prescribing the corresponding displacement field, the pressure is not imposed. The acoustic mode displacement profiles at the inlet section are obtained with Pridmore-Brown's model for a rigid duct [START_REF] Pridmore-Brown | [END_REF]. At the outlet, the non-reflecting condition based on the modal impedance is used.

In the following results, the incoming acoustic mode defined by m = 4, n = 1 at 570Hz is considered. Other parameters of the problem are given in Table 2. Figure 8 shows the finite element mesh. The shell is discretized with 60 elements and the acoustic domain with 2300 elements.

To demonstrate the influence of the elastic duct on the acoustic mode propagation with no flow, Figure 9 compares pressure amplitudes obtained with rigid and elastic ducts. The acoustic mode, otherwise propagating, is reflected when interacting with the elastic duct. The last example is presented to demonstrate that the proposed model can handle arbitrary geometry. The duct and acoustic mode are the same as above except that the elastic duct radius is given by (see figure 12): R (z) = 0.9 -0.1cos [π (z -0.5)] for 0.5 < z < 1.5 .

Figure 13 shows pressure modulus at 1015Hz with no flow and with an upward incompressible irrotational flow (with a 0.2 Mach number at the inlet). Thought this irrotational mean flow does not generate refraction effect (by boundary layer for instance) it is found to have a noticeable impact on the acoustic propagation.

SUMMARY

To model vibro-acoustic interactions with shear mean flow, a method based on Galbrun's equation is proposed. To avoid spurious numerical modes, Galbrun's equation is rewritten as a mixed displacement-pressure problem and a finite element discretization satisfying the inf-sup condition is chosen. The mixed formulation also afford a simple way to take the fluid-structure coupling conditions into account.

Compared to similar models based on the full potential theory, the present approach has the ability to describe refraction effects by the mean flow shear. It has been shown that the small modifications of a ducted acoustic mode introduced by the flow shear can significantly change the behavior of the coupled fluid-elastic duct system.

Though the method has been applied to duct acoustics only, it is applicable to a wide range of problems.

APPENDIX A: ANALYTICAL MODEL FOR A FINITE DUCT

An analytical model can be derived for axisymmetric solutions m = 0 of the validation problem in Section 5.1. The duct outer wall is a thin shell: h/R 2 ≪ 1.

At both ends of the duct all rotations and displacement are prescribed to zero except axial displacements and azimuthal rotations. Assuming that the duct axial displacement is small compared to the radial displacement, it can be shown that the duct radial displacement u is governed by the following equations:

D ∂ 4 u ∂z 4 + Eh R 2 2 u + ρ s h ∂ 2 u ∂t 2 = f e + p with D = Eh 3 12 (1 -ν 2 ) , u = 0 , ∂ 2 u ∂z 2 = 0 , for z = 0, L .
The acoustic pressure in the duct is governed by the convected wave equation:

1 c 2 0 ∂ 2 p ∂t 2 + 2 M c 0 ∂ 2 p ∂z∂t + M 2 ∂ 2 p ∂z 2 -∆p = 0 , p = 0 , for z = 0, L ,
where M is the Mach number of the axial, uniform mean flow in the duct. The geometric coupling condition is expressed by:

∂p ∂r = 0 for r = R 1 , ∂p ∂r = -ρ 0 d 2 0 u dt 2 for r = R 2 .
For an harmonic force f e , acoustic pressure and radial structural displacement can be written:

p(r, z, t) = ∞ a=0 ∞ b=1 α ab p ab (r, z)e -iωt , u(z, t) = ∞ c=1 β c u c (z)e -iωt , (A.1)
where a and b are the radial and axial mode number, respectively. The modes are given by:

p ab (r, z) = A a S 0 (k ra r) sin bπz L exp -ikM z 1 -M 2 a > 0, b > 0 , p 0b (r, z) = A 0 sin bπz L exp -ikM z 1 -M 2 b > 0 , u c (z) = 1 πR 2 L sin cπz L c > 0 , A 0 = 2 √ 1 -M 2 πL R 2 2 -R 2 1 , A a = 2 √ 1 -M 2 πL R 2 2 S 2 0 (k ra R 2 ) -R 2 1 S 2 0 (k ra R 1 )
,

with k = ω/c 0 and S 0 (k ra r) = J 0 (k ra r) - J ′ 0 (k ra R 1 ) Y ′ 0 (k ra R 1 )
Y 0 (k ra r) .

J 0 and Y 0 are the zeroth order Bessel functions of the first and second kind, respectively. The radial wave numbers k ra are the solutions of the caracteristic equation:

J ′ 0 (k r R 1 ) Y ′ 0 (k r R 2 ) = J ′ 0 (k r R 2 ) Y ′ 0 (k r R 1 ) .
The generalized variables α ab and β c are defined by a set of linear equations:

Ω A ab α ab + c C A abc β c = 0 ∀a, b , Ω S c β c + a,b C S abc α ab = f c ∀c . (A.2)
The coefficients of this linear system are given by:

Ω A ab = k 2 ra + b 2 π 2 L 2 1 -M 2 - k 2 (1 -M 2 )
,

Ω S c = D cπ L 4 + Eh R 2 2 -ρ s ω 2 .
For a > 0, one has the following expressions:

C A abc = 2πρ 0 R 2 A a S 0 (k ra R 2 ) √ 1 -M 2 √ πR 2 L 2iωc 0 M cπ L L bc + ω 2 + c 2 0 M 2 cπ L 2 K bc , C S abc = 2πR 2 √ πR 2 L A a S 0 (k ra R 2 ) K bc ,
where

K bc = 2iπ 2 Bbc L e i(A + -B) -1 A 2 + -B 2 A 2 --B 2 , L bc = πB L 1 -e i(A + -B) A + A --B 2 A 2 + -B 2 A 2 --B 2 , A ± = (b ± c) π , B = kM L 1 -M 2 .
For the case a = 0, the expressions above are replaced by:

C A 0bc = 2πρ 0 R 2 A 0 √ 1 -M 2 √ πR 2 L 2iωc 0 M cπ L L bc + ω 2 + c 2 0 M 2 cπ L 2 K bc , C S 0bc = 2πR 2 √ πR 2 L A 0 K bc .
With no mean flow, K bc is given by:

K bc = L 2 δ bc .
The right-hand side of equations (A.2) is given by: 

f c = 2πR 2 L 0 u c (z)f e (z)

APPENDIX B: EXTENSION OF PRIDMORE-BROWN'S EQUATION

Pagneux and Aurégan have extended Pridmore-Brown's equation [START_REF] Pridmore-Brown | [END_REF] by deriving a boundary condition which accounts for the duct wall elasticity [START_REF] Pagneux | Acoustic modes in duct with parallel shear flow and vibrating walls[END_REF]. When seeking for normal modes defined by (u r , u z , p) (r, z, t) = (u r , u z , p) (r) exp (ik z ziωt) ,

Pridmore-Brown's equation in an axisymmetric duct with axial mean flow v 0 = v 0 (r)e z can be written:

∂ 2 p ∂r 2 + 1 r + 2k z ω -k z v 0 ∂v 0 ∂r ∂p ∂r + ω -k z v 0 ω 2 -k 2 z p = 0 . (B.1)
It is worth noting that this equation can be obtained from Galbrun's equation (8). Equation (B.1) is generally supplemented by rigid-or lined-wall boundary conditions. The boundary condition proposed in [START_REF] Pagneux | Acoustic modes in duct with parallel shear flow and vibrating walls[END_REF] is obtained directly from the equations for an axisymmetric thin shell based on Kirchhoff theory: 

ω 2 c 2 s -k 2 z u z + ik z ν R u r = 0 , (B.2) ik z ν R Eh 1 -ν 2 u z + Eh 1 -ν 2 1 R 2 + k 4 z D -ρ s hω 2 u r = p , (B.3) with c 2 s = E/ρ s /(1 -ν 2 ).
ρ s h ν 2 k 2 z c 2 s R 2 + ω 2 c 2 s -k 2 z ρ s h R 2 c 2 s -ρ s hω 2 + Dk 4 z ∂p ∂r = ρ 0 (ω -k z v 0 ) 2 ω 2 c 2 s -k 2 z p.
By solving Pridmore-Brown's equation with this boundary condition at r = R, one can determine the normal modes of an infinite elastic duct carrying an axial sheared mean flow. In this paper, the normal modes are normalized by the integral over a section of the squared pressure. 

Figure 10 shows the solutions obtained with uniform and parabolic flows at a 0. 2 averaged

 2 Figure 10 shows the solutions obtained with uniform and parabolic flows at a 0.2 averaged Mach number. Compared with the no flow case, the uniform mean flow clearly modifies the pressure distribution in the duct by changing the acoustic axial wave number and so weakening the coupling of acoustic and structural modes. The results obtained with the parabolic flow are slightly different from the uniform flow case. The solutions obtained with uniform and parabolic flows with a -0.2 averaged Mach number (the fluid flows downward) are given on Figure 11. Compared to the downstream propagation case, the upstream propagation is less influenced by the uniform mean flow. On the contrary, the upstream propagation is much more influenced by the flow shear. It can be noted that results obtained for the upstream

  dz . The infinite sums in equation (A.1) are truncated and the finite dimensional linear system (A.2) is solved for the generalized variables α ab and β c . Acoustic pressures and structural displacements are then recovered by means of the modal decompositions (A.1).

  Furthermore, the pressure gradient can be related to the structure displacement by means of Euler equations and the normal displacement continuity: ∂p ∂r = ρ 0 (ωk z v 0 ) 2 u r . (B.4) Upon eliminating u r and u z in equations (B.2), (B.3) and (B.4), one can obtain the following boundary condition for the pressure in the duct:
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  The structure Ω s corresponds to the duct walls which are thin shell described with Mindlin's theory. The duct walls are approximated by linear elements. On each element, displacements and rotations are described with linear functions. A complete description of this shell element is given in[32, p.100].

The pressure interpolation is linear while the displacement interpolation uses linear functions plus a 'bubble' function (this element is known as P + 1 -P 1 or 4 -3c). With no mean flow, Wang and Bathe have demonstrated the stability of this element which satisfies the inf-sup condition [27, p.300].

TABLE 1

 1 Parameters of the validation test

		Parameter	Symbol	Value
	Duct	Inner radius	R 1	0.2m
		Outer radius	R 2	1m
		Length	L	2m
		Thickness	h	1mm
		Material		aluminum
		Density	ρ s	2700kg/m 3
		Young's modulus	E	7.1 × 10 10 N/m 2
		Poisson's ratio	ν	0.3
	Fluid	Density	ρ 0	1.2kg/m 3
		Sound speed	c 0	340m/s