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We report on experimental and theoretical studies of the fluctuation-induced escape time from
a metastable state of a nanomechanical Duffing resonator in cryogenic environment. By tuning
in situ the non-linear coefficient γ we could explore a wide range of the parameter space around
the bifurcation point, where the metastable state becomes unstable. We measured in a relaxation
process the distribution of the escape times. We have been able to verify its exponential distribution
and extract the escape rate Γ. We investigated the scaling of Γ with respect to the distance to
the bifurcation point and γ, finding an unprecedented quantitative agreement with the theoretical
description of the stochastic problem. Simple power scaling laws turn out to hold in a large region
of the parameter’s space, as anticipated by recent theoretical predictions.

PACS numbers: 85.85.+j, 05.40.-a, 05.10.Gg, 05.70.Ln

Transition from a metastable to a stable state is a
phenomenon of ubiquitous interest in science: in ther-
mal equilibrium it is the essence of the activation law
in chemistry [1], it underlies nucleation in phase transi-
tions, magnetization reversal in molecular magnets [2],
biological switches in cells behavior [3], transitions of
Josephson junctions [4] or fluctuations in SQUIDs [5],
the list being obviously non-exhaustive. More recently
the study of escape statistics has been possible also for
out-of-equilibrium dynamical systems like Penning traps
[6], Josephson junctions [7], and nano-electromechanical
systems [8–12]: the state-switching effect is extensively
used in bifurcation amplifiers, with for instance state-
of-the-art quantum bit readout schemes [13]. In most
of these cases the escape time distribution is exponential
and the rate Γ characterizes completely the phenomenon.
Analytical solutions [14] of the dynamical equations show
that its value depends exponentially on a parameterD−1,
that coincides with the (inverse of the) temperature for
equilibrium systems and more generally is related to the
power spectrum of the relevant fluctuations. One can
then write:

Γ = Γ0 exp
−Ea/D, (1)

where the prefactor Γ0 is assumed to depend very weakly
on D, and Ea in analogy with a potential system can
be called activation energy: it parametrizes the distance
to the unstable point. For out-of-equilibrium systems a
central theoretical result is the paper by Dykman and
Krivoglaz [15], that found an explicit expression for Ea

and Γ0 for a generic dynamical system close to the bi-
furcation point, where the line of metastable states joins
the line of unstable ones. It predicts universal power laws
dependence of Ea and Γ0 on the distance from the bifur-
cation point in terms of |ω − ωb|, where ω is the driving
frequency of the dynamical system and ωb is its bifur-
cation value. Direct experimental measurement of the
escape time and study of the dependence of Ea and Γ0

over a wide range of the system parameters is not a trivial

task, since the exponential dependence of the escape time
makes it either too long or too short for a reasonable ob-
servation protocol. For dynamical systems the resonating
period fixes a lower bound on the time. Nano-mechanical
resonators with resonance frequency in the MHz range
are thus particularly interesting to investigate the bifur-
cation instability of Duffing oscillators. They are high
frequency resonators with a high quality factor for which
the distance to the bifurcation point can be directly con-
trolled. It is actually in micro and nano mechanical sys-
tems that a measurement of the power law dependence of
Ea has been performed giving the predicted value within
experimental error [8, 9]. Nevertheless, the activation
energy has been claimed to match theory at best within
a factor of 2 due to injected noise calibration [8]. To
our knowledge no attempts have been done to obtain a
more quantitative verification of the predictions of Dyk-
man and Krivoglaz [15], in particular for the scaling law
of the prefactor Γ0 and the dependence to the Duffing
non-linear coefficient γ of both Γ0 and Ea.

In this Letter we report on experimental and theoreti-
cal investigations of the dependence of Ea and Γ0 on the
system parameters for a driven nano-mechanical oscilla-
tor in the non-linear regime in presence of a controlled
noise force. It is well known that for a sufficiently strong
non-linear term the system admits for some values of the
driving frequency a metastable solution. By measuring
the escape rate for a wide range of parameters we could
verify the validity of the power scaling laws predicted by
Dykman and Krivoglaz for both Ea and Γ0. Remark-
ably, we found that the scaling holds experimentally in a
much larger region of the parameter space than the one
for which the theory of Ref. [15] has been derived. Con-
cerning the Ea dependence on detuning, the possibility
of an extended region of scaling was discussed in Refs.
[16, 17]. Performing the full numerical simulation of the
stochastic problem adapted to our device parameters we
found that experiment and theory are in excellent quan-
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FIG. 1: (Color online) Top panel: Schematic of the ex-
perimental setup with the nano-resonator structure. Bottom
panel: Linear and Duffing resonances (respectively grey and
black points, with top-right and bottom-left axes). The lines
show the fit. The nonlinear resonance is for Vg = 9.4 V,
which shifts the resonance frequency and opens an hysteresis
(green arrows highlight upward and downward sweeps). The
relaxations occur at a detuning ω − ωb from the bifurcation
frequency (red point and arrow). Inset: Gaussian distribution
histogram of the measured intrinsic frequency fluctuations.

titative agreement.

The experiment is performed on a unique goalpost
(depicted in top graph of Fig. 1) aluminum-coated sili-
con nano-electro-mechanical resonator. It consists in two
cantilever feet of length 3 µm linked by a paddle of length
7 µm, all about 250 nm wide and 150 nm thick for a total
mass m = 1.25 10−15 kg [18]. The experiment is per-
formed at 4.2 K in cryogenic vacuum (pressure < 10−6

mbar). The motion is actuated and detected by means
of the magnetomotive scheme [19], with a magnetic field
B < 1 T and a gate electrode is also capacitively cou-
pled to the nanomechanical device (gap about 100 nm)
[18]. The resonator admits large distortions (in the hun-
dred nm range) to be attained while remaining intrinsi-
cally extremely linear [20], while a well-controlled non-
linearity can be generated by means of a DC gate volt-
age bias Vg [21]. This distinctive feature enables to tune
the global non-linearity of our device without changing
the displacement amplitude. Using an adder we apply
both a sinusoidal drive and a noise voltage from a voltage
source generator. The resulting electric signal together
with a 1 kOhm bias resistor is used to inject an AC cur-
rent through the goalpost and generates both driving and
controllable (zero average) noise forces on the resonator.
More information on the calibration and experimental
details can be found in Refs. [18, 20]. The resulting equa-

FIG. 2: (Color online) Bifurcation parameter space (normal-
ized driving force versus Ω). The grey area is the NEMS
bistability regime where the right edge is the transition from
a high amplitude oscillation to a low one (the left edge is the
opposite) and K is the spinode point where hysteresis starts
to open. We show within the bistability the data points at
different voltages Vg. Inset: typical low Vg relaxation curve
obtained with about 1000 relaxations, and fit with and with-
out fluctuations on ωb.

tion of motion for the resonator displacement x reads:

ẍ+∆ωẋ+ ω2
0x+ γx3 = fd cos(ωt) + fn(t) (2)

with ω0/2π=7.07 MHz the resonance frequency,
∆ω/2π=1.84 kHz the linewidth, and fd and fn the drive
and noise forces divided by the mass of the resonator.
We fix the drive force so that mfd = 65 pN, leading to
a constant maximal displacement amplitude of 100 nm.
The noise force signal is filtered so that the force
spectrum

∫
dteiωt〈fn(t)fn(0)〉ω = 2D is constant over

a bandwidth of 1 MHz around 7 MHz. The Duffing
coefficient γ scales as V 2

g and is for us negative [20]. At
fixed driving force, the system admits two amplitudes
of oscillation for sufficiently large |γ| as shown in Fig. 1
(bistability). By fitting with the standard Duffing
expressions [22] the parameters ∆ω, ω0 and γ together
with the bifurcation frequency ωb can be obtained with
a good accuracy. The experiment is then performed by
sweeping ω from the stable regime (ω > ω0) down to
the edge of the hysteresis at a given value of ω − ωb

in the high amplitude state (see Fig. 1). The escape
time from the metastable state is detected when the
measured displacement amplitude falls below an appro-
priate threshold value. Typically 103 escape events are
recorded for each set of parameters. The experiment
has been repeated for three different values of the noise
forces fn, three different detunings ω − ωb (up to 5% of
the hysteresis), and five different values of Vg (and thus
of γ), for a total of 45 escape histograms. The resulting
settings are summarized in Fig. 2.

For each data measurement, the experimental value
of ωb might slightly differ from the one obtained by the
initial fit. This problem is detected by sweeping rela-
tively rapidly ω (tens of Hz/sec) through the bifurca-
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tion point and measuring the escape value ωb prior to
each relaxation-time acquisition. A typical histogram of
the distribution of ωb is shown in the inset of Fig. 1 for
Vg = 9.4 V. It has gaussian form with a half-width σ in
the range of tens of Hz. We think that this tiny spread
(10−6 to 10−5 of ωb) is due to low-frequency intrinsic
fluctuations of the resonating frequency [25]. Even if ex-
tremely small, due to the high sensitivity of the bifurca-
tion phenomenon the fluctuations of ωb modify slightly
the value of Γ at each measurement, and we have to
take this effect into account. The escape exponential
distribution has thus to be averaged over these fluctu-
ations. For |ω − ωb| ≫ σ one can expand this depen-
dence: Γ(ω − ωb − ǫ) = Γ + Γ′ǫ + . . . , where ǫ is the
gaussian-distributed shift of ωb. This gives the following
distribution for the escape times:

P (t) = Γe−Γt

∫
dǫ

σ
√
2π

e−ǫ2/(2σ2)+Γ′ǫt . (3)

Fitting it to the data with the method of Kolmogorov-
Smirnov [23], to avoid losses of information due to his-
togram binning, the two independent parameters of the
distribution, Γ and the product Γ′σ, can be obtained.
A typical curve is shown in the inset of Fig. 2. Note
that this procedure does not need any hypothesis on the
explicit functional dependence of Γ on ωb. On the other
hand the procedure breaks down for too small detunings,
and we thus need to drop the data for four values of the
detuning. We can then verify the validity of Eq. (1) for
the system at hand by plotting log Γ as a function of 1/D
(see Fig. 3). The linear fit gives Ea and Γ0. The absolute
experimental definition of the noise level is difficult, and
we introduce a calibration factor C (close to 1) between
D and the nominal injected noise power. Note that it
simply amounts to multiply Ea by C, thus leaving the
scaling dependence unmodified. The value of Γ0 is not
affected by this calibration either.
In order to extract the scaling dependence of Ea and

Γ0 on the detuning and the non-linear parameter γ it is
convenient to recall the predictions that can be obtained
following Ref. [15]. Let us rescale the detuning by defin-
ing Ω = 2|ω − ω0|/∆ω with Ωb = 2|ωb − ω0|/∆ω. For

Ωb ≫
√
3 (that holds for all the data of our experiment)

one obtains that Ωb ≈ 3|γ|f2
d/(4ω

2∆ω2) with the param-
eters in Eq. (1) reading [26]:

Ea =
2f2

d

3∆ω

|Ω− Ωb|3/2

Ω
5/2
b

, Γ0 =
∆ω

2

|Ω− Ωb|1/2Ω1/2
b

2π
. (4)

The basic assumptions to obtain these expressions are
that Ea/D ≫ 1 in order to keep the escape a rare event,
and to be able to reduce this two-dimensional problem
(amplitude and phase) into a one-dimensional one. This
second condition (much less appreciated in the literature)
is only verified when the driving frequency ω is in a tiny
region close to the bifurcation point ωb and far from the
frequency for which the amplitude is maximum. In this
region, one of the eigenvalues of the linearized dynamical
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FIG. 3: (Color online) Escape time as a function of D−1 for
Vg = 9.4 V at different detunings ω−ωb from the bifurcation
point.

equations of motion vanishes, which induces a slow mo-
tion in the direction of the relative eigenvector. On the
other hand when ω is such that the amplitude is max-
imal, the two eigenvalues coincide, inducing fully two-
dimensional fluctuations. Thus beyond this point the
approximation used to obtain Eq. (4) breaks down. This
condition reads 4Ωb|Ω− Ωd| ≪ 1.

In the experiment we performed this quantity ranged
uniformly between 0.13 to 71, thus a part of the data
where well outside the range of the expected validity of
Eq. (4), enabling to investigate the behavior of Γ in a
region where no present analytical prediction exists. As
explained, the expressions for Ea and Γ0 in Eq. (4) de-
pend only on the detuning and the non linear coefficient
(through Ωb), the other parameters being the same for all
data points. To test the validity of Dykman-Krivoglaz ex-
pressions, we produce a scaling plot, where the logarithm

of Ea and Γ0 are plotted as a function of |Ω − Ωb|/Ω5/3
b

and |Ω−Ωb|Ωb (see Fig. 4). A remarkable scaling is then
observed in all the experimental range, with a fitted slope
as a function of the detuning of 1.53±0.04 and 0.55±0.2,
for Ea and Γ0 respectively. This matches the analytic
predictions by Dykman and Krivoglaz, and we use this
good agreement to define the noise source calibration fac-
tor C: scaling D by C the prediction of Eq. (4) coincides
with the fitted value for Ea (dashed line in Fig. 4 left
panel). The dependence on the non-linear parameter Ωb

could also be tested for both quantities. It is shown in
the insets of Fig. 4 and gives fitted slopes of −2.43±0.05
and 0.6± 0.1, again in excellent agreement with Eq. (4).

To better understand this remarkable scaling in such a
large parameter region we solved numerically the stochas-
tic problem. This can be done by introducing the com-
plex slow amplitude z(t) defined as x(t) = z(t)eiωt +
z(t)∗e−iωt and then convert the Langevin Eq. (2) to a
Fokker-Planck equation ∂τP = LP for the probabil-
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FIG. 4: (Color online) Scaling plots for Ea (left) and Γ0 (right) with respect to detuning. The full circles indicate the
experimental points, the open (blue) triangles the prediction of the full numerical simulation, the (red) full lines the linear fit
to the data, and the dashed (blue) lines the prediction of Eq. (4). Insets: scaling with the non-linear parameter Ωb.

ity density P (u, v, τ) of the real and imaginary part of
z = (3|γ|/∆ω)1/2(u+ iv) as a function of the dimension-
less time τ = t∆ω. The escape rate from a given domain
can be calculated by solving the equation L†τ(u, v) = −1
with zero boundary condition at the border of the domain
[14]. This gives the average time needed to reach the bor-
der starting at (u, v). The equation reads explicitly:

[D(∂2
u + ∂2

v)− fu∂u − fv∂v]τ = −1 , (5)

with D = 3|γ|D/(8ω3∆ω), fu = u+ v(u2+ v2)−Ω, fv =
v−u(u2+v2)−Ω−Fd, and Fd = fd(3|γ|)1/2/[2(ω∆ω)3/2].
Eq. (5) can be solved numerically [24] to obtain the av-
erage escape time that coincides with the inverse of the
sought Poissonian rate. The numerical results for Ea and
Γ0 are shown in Fig. 4 in open (blue) triangles.
One can see that the exact (numerical) result has the

same power law dependence as the analytical results
(dashed line), even where the approximate theory is not
supposed to hold. Quantitative agreement between ex-
periment and theory on Ea is obtained with C ≈ 1.3,
thus validating the experimental noise amplitude calibra-
tion to within 15 % which is remarkable. Note that the
simulation does not contain any other free parameter,
which are all experimentally known to better than 5 %.
Concerning Γ0, we are not aware of previous attempts to
compare this quantity to the theoretical predictions. The
agreement with the full theory is within a factor of about
3, which is remarkable given the logarithmic precision on
this parameter.

In conclusion, we have investigated the escape dynam-
ics close to the bifurcation point for a nanomechanical
resonator in the Duffing non-linear regime measured at
cryogenic temperatures. The escape rate Γ has been mea-

sured as a function of the noise amplitude D, the detun-
ing to the bifurcation point ω − ωb, and the nonlinear
parameter γ. Using the linear dependence of the loga-
rithm of Γ on 1/D we could extract Ea and Γ0 as defined
by Eq. (1). Expressing Ea and Γ0 in terms of γ and
the detuning we could verify that the universal scaling
initially predicted for a tiny region around the bifurca-
tion point holds actually in a region up to two orders
of magnitude larger than the original one. We verified
by solving numerically the exact problem, that the ob-
servation is in quantitative agreement with the behavior
expected for a driven Duffing oscillator. The scaling of
Ea as a function of |Ω − Ωb| is consistent with the pre-
dictions of Refs. [16, 17]. Due to the generality of the
Duffing model, these results are of interest for a wide class
of systems. A deeper and quantitative understanding of
the escape process is a necessary step towards the use of
the high-measurement sensitivity of the bifurcation phe-
nomenon. Specifically to nano-mechanical devices we can
regard also the experiment presented as a first demon-
stration of fine detection of resonance frequency intrinsic
fluctuations σ. At the moment we can only speculate on
their microscopic origin, one candidate being the elusive
NEMS internal fluctuating two-level systems. A detailed
study of the statistics of these fluctuations by the escape-
time detection could be a promising research direction.
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