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Abstract. We give the hyperbolic analogues of some classical theorems
in spherical geometry due to Menelaus, Euler, Lexell, Ceva and Lambert.
Some of the spherical results are also made more precise.
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1. Introduction

We give the hyperbolic analogues of several theorems in spherical geom-
etry. The first theorem is due to Menelaus and is contained in his Spherics
(cf. [13] [14] [4] [15]). The second one is due to Euler [1]. The third result
was poved by Euler [2] and by his student Lexell [8]. We shall elaborate
in the corresponding sections on the importance and the impact of each of
these theorems. We also include a proof of the hyperbolic version of the
well-known Euclidean theorem of Ceva, because it is in the same spirit as
Euler’s theorem (although the proof is easier), and we prove a hyperbolic
version of a theorem of Lambert, as an application of the hyperbolic version
of a theorem of Euler. We also give more precise versions of some of the
results in spherical geometry. Our goal is to go through some works of some
great mathematicians of the past centuries and to put some of their results
in a modern perspective. Furthermore, putting together results in the three
geometries and highlighting the analogies is mathematically appealing.1

Date: September 16, 2014.
1Since this paper is motivated by classical theorems, a few words on the history are

in order. No Greek manuscript of Menelaus (1st-2nd c. A.D) survives, but only Arabic
translations. This work remained rather unknown (except for the classical “Menelaus the-

orem” which was quoted by Ptolemy) until very recently.2 Between the times of Menelaus
and of Euler, no progress was made in the field of spherical geometry. Euler wrote nearly
twelve papers on spherical geometry and in fact he revived the subject. Several of his
young collaborators and disciples followed him in this field (see the survey [9]). For the
work done before Euler on hyperbolic geometry, Lexell refers to Theodosius, who lived two
centuries before Menelaus, and whose work is much less interesting. He writes in the in-
troduction to his paper [8]: “From that time in which the Elements of Spherical Geometry
of Theodosius had been put on the record, hardly any other questions are found, treated
by the geometers, about further perfection of the theory of figures drawn on spherical
surfaces, usually treated in the Elements of Spherical Trigonometry and aimed to be used

1
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2. A result on right triangles

We start with a result on right triangles which gives a relation between
the hypothenuse of a right triangle and a cathetus, in terms of the angle they
make (Theorem 2.1). This is a non-Euclidean analogue of the fact that in
the Euclidean case, the ratio of the two corresponding lengths is the cosine
of the angle they make. The result in the hyperbolic case is motivated by
a similar result of Menelaus in the spherical case contained in his Spherics.
This result is of major importance from the historical point of view, because
Menelaus gave only a sketch of a proof, and writing a complete proof of it
gave rise to several mathematical developments by Arabic mathematicians
between the 9th and the 13th centuries. These developments include the
discovery of polarity theory and in particular the definition of the polar
triangle in spherical geometry, as well as the introduction of an invariant
spherical cross ratio. It is also probable that the invention of the sine rule
was motivaed by this result. All this is discussed in the two papers [13] and
[14], which contains a report on the proof of Menelaus’ theorem completed
by several Arabic mathematician is reported on.

The proof that we give in the hyperbolic case works as well in the spherical
case, with a modification which amounts to replacing the hyperbolic sine and
cosine functions by the sine and cosine functions. (See Remark 2.3 at the end
of this section.) Thus, in particular, we get a very short proof of Menelaus’
Theorem.

In the statement of this theorem, we refer to Figure 1.

Theorem 2.1. In the hyperbolic plane, consider two geodesics L1, L2 start-
ing from a point A and making an acute angle α at that point. Consider two
points C and E on L1, with C between A and E, and the two perpendiculars
CB and ED onto L2. Then, we have:

sinh(AC +AB)

sinh(AC −AB)
=

1 + cosα

1− cosα
.

In particular, we have

sinh(AC +AB)

sinh(AC −AB)
=

sinh(AE +AD)

sinh(AE −AD)
.

which is the form in which Menelaus stated his theorem in the spherical case
(where sinh is replaced by sin).

To prove Theorem 2.1, we use the following lemma.

Lemma 2.2. In the triangle ABC, let a = BC, b = AC and c = AB. Then
we have:

tanh b = cosα · tanh c.

Proof. The formula is a corollary of the cosine and sine formulae for hyper-
bolic triangles. We provide it for completeness.

in the solution of spherical triangles.” Lexell and Euler were not aware of the work of
Menelaus, except for his results that were quoted by Ptolemy. A French version of the
work of Theodosius is available [19].
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Figure 1. The right triangles ABC and ADE.

From the hyperbolic cosine formula, we have (using the fact that the angle

ÂBC is right)
cosh c = cosh a · cosh b.

By the hyperbolic sine formula, we have

sinh c =
sinh a

sinα
.

As a result, we have

sin2 α =
(sinh a)2

(sinh c)2
=

(cosh a)2 − 1

(sinh c)2

=

(cosh c)2

(cosh b)2
− 1

(sinh c)2
=

(cosh c)2 − (cosh b)2

(cosh b)2 · (sinh c)2 .

Then we have

cos2 α = 1− (cosh c)2 − (cosh b)2

(cosh b)2 · (sinh c)2

=
(cosh b)2 · (sinh c)2 − (cosh c)2 + (cosh b)2

(cosh b)2 · (sinh c)2

=
(cosh b)2 · (cosh c)2 − (cosh c)2

(cosh b)2 · (sinh c)2

=
(sinh b)2 · (cosh c)2
(cosh b)2 · (sinh c)2 .

Since cosα > 0, we get

cosα =
sinh b · cosh c
cosh b · sinh c .

�
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To prove Theorem 2.1, it suffices to write the ratio
sinh(c+ b)

sinh(c− b)
as

sinh b · sinh c+ cosh b · sinh c
cosh b · sinh c− cosh c · sinh b =

sinh b
cosh b

+ sinh c
cosh c

sinh c
cosh c

− sinh b
cosh b

.

Using Lemma 2.2, the above ratio becomes

1 + cosα

1− cosα
.

Remark 2.3. An analogous proof works for the spherical case, and it gives
the following more precise result of Menelaus’ theorem:

sin(AC +AB)

sin(AC −AB)
=

1 + cosα

1− cosα
.

3. Euler’s ratio-sum formula for hyperbolic triangles

Euler, in his memoir [1],3 proved the following:

Theorem 3.1. Let ABC be a triangle in the plane and let D,E, F be points
on the sides BC,AC,AB respectively. If the lines AD,BE,CF intersect at
a common point O, then we have

(1)
AO

OD
· BO

OE
· CO

OF
=

AO

OD
+

BO

OE
+

CO

OF
+ 2.

The following notation will be useful for generalization: Setting α =
AO

OD
, β =

BO

OE
, γ =

CO

OF
, Equation (1) is equivalent to

(2) αβγ = α+ β + γ + 2.

Euler also gave the following construction which is a converse of Theorem
3.1:

Given three segments AOD,BOE,COF meeting at a com-
mon point O and satisfying (1), we can construct a triangle
ABC such that the points D,E, F are as in the theorem.

After the Euclidean case, Euler proved a version of Theorem 3.1 for spher-
ical triangles. Using the above notation, we state Euler’s theorem:

Theorem 3.2. Let ABC be a spherical triangle and let D,E, F be points
on the sides BC,AC,AB respectively. If the lines AD,BE,CF intersect at
a common point O, then

(3) αβγ = α+ β + γ + 2

where α =
tanAO

tanOD
, β =

tanBO

tanOE
and γ =

tanCO

tanOF
.

We now prove an analogous result for hyperbolic triangles:

3The memoir was published in 1815, that is, 22 years after Euler’s death. For various
reasons, there was sometimes a long span of time between the moment Euler wrote his
papers and the moment they were published; see [9] for comments on this matter.
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Figure 2. Triangle.

Theorem 3.3. Let ABC be a triangle in the hyperbolic plane and let D,E, F

be points on the lines joining the sides BC,AC,AB, respectively. If the lines
AD,BE,CF intersect at a common point O, then

(4) αβγ = α+ β + γ + 2,

where α =
tanhAO

tanhOD
, β =

tanhBO

tanhOE
and γ =

tanhCO

tanhOF
.

3.1. Proof of Theorem 3.3. Let ABC be a triangle in the hyperbolic
plane. Suppose that the lines AD,BE and CF intersect at O.

We shall use the cosine and sine formulae in the hyperbolic triangle AFO:

(5) cos ÂFO =
coshAF · coshOF − coshAO

sinhAF · sinhOF
.

(6)
sinhAF

sin ÂOF
=

sinhAO

sin ÂFO
.

Lemma 3.4. We have

sin B̂OD = tanhOF ·
(

sin B̂OF

tanhAO
+

sin ÂOF

tanhBO

)

.

Proof. Combining (5) with (6), we have

tan ÂFO =
sin ÂFO

cos ÂFO
=

sinhAO · sinhOF · sin ÂOF

coshAO · coshOF − coshAO

=
sinhAO · sinhOF · sin ÂOF

(

coshAO · coshOF − sinhAO · sinhOF · cos ÂOF
)

· coshOF − coshAO
,

where we have replaced coshAC by

coshAO · coshOF − sinhAO · sinhOF · cos ÂOF .
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Using the identity,

cosh2 x− 1 = sinh2 x

we simplify the above equality to get

(7) tan ÂFO =
sinhAO · sin ÂOF

coshAO · sinhOF − sinhAO · coshOF · cos ÂOF
.

In the same way, we have

(8) tan B̂FO =
sinhBO · sin B̂OF

coshBO · sinhOF − sinhBO · coshOF · cos B̂OF
.

Since ÂFO + B̂FO = π, tan ÂFO + tan ÂFO = 0. Then (7) and (8)
imply:

sinhAO · coshBO · sinhOF · sin ÂOF

− sinhAO · sinhBO · cosh · sin ÂOF · cos B̂OF

+ sinhBO · coshAO · sinhOF · sin B̂OF

− sinhBO · sinhAO · coshOF · sin B̂OF · cos ÂOF = 0.

Equivalently, we have

sinhAO · coshBO · sinhOF · sin ÂOF + sinhBO · coshAO · sinhOF · sin B̂OF

= sinhAO · sinhBO · coshOF ·
(

sin ÂOF · cos B̂OF + sin B̂OF · cos ÂOF
)

= sinhAO · sinhBO · coshOF · sin B̂OD,

where the last equality follows from the fact that ÂOF + B̂OF + B̂OD = π.
This implies

sin B̂OD =
sinhAO · coshBO · sinhOF · sin ÂOF + sinhBO · coshAO · sinhOF · sin B̂OF

sinhAO · sinhBO · coshOF

= tanhOF ·
(

sin B̂OF

tanhAO
+

sin ÂOF

tanhBO

)

.

�

For simplicity, we denote by p = B̂OF , q = ÂOF and r = B̂OD. Then
p+ q + r = π. We write Lemma 3.4 as

sin r

tanhOF
=

sin p

tanhAO
+

sin q

tanhBO
.

By repeating the proof of Lemma 3.4, we have

sin p

tanhOD
=

sin q

tanhBO
+

sin r

tanhCO
and

sin q

tanhOE
=

sin r

tanhCO
+

sin p

tanhAO
.
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Setting P =
sin p

tanhAO
,Q =

sin q

tanhBO
and R =

sin r

tanhCO
, it follows from

the above three equations that

(9) γR = P +Q,

(10) αP = Q+R,

(11) βQ = R+ p.

Using (9) and (10), we have

R =
P +Q

γ
= αP −Q.

As a result,
P

Q
=

γ + 1

αγ − 1
.

On the other hand, it follows from (10) and (11) that

αP = Q+R = Q+ βQ− P.

Then we have

P

Q
=

β + 1

α+ 1
.

Thus,

γ + 1

αγ − 1
=

β + 1

α+ 1
,

which implies

αβγ = α+ β + γ + 2.

Remark 3.5. In [1], Euler also writes Equation (2) as

1

α+ 1
+

1

β + 1
+

1

γ + 1
= 1,

and this leads, in the hyperbolic case, to the relation:

tanhOa

tanhAa
+

tanhOb

tanhBb
+

tanhOc

tanhCc
= 1.

3.2. The converse.

Construction 3.6. From the six arcs AO, BO, CO, OD, OE, OF satisfy-
ing the relation (4), we can construct a unique triangle ABC in which three
line segments AD,BE,CF are drawn from each vertex to the opposite side,
meeting at a point O and leading to the given arcs.

The construction is the same as Euler’s in the case of a spherical triangle.
We are given three segments AOD,BOE,COF intersecting at a common

point O, and we wish to find the angles p = ÂOF , q = B̂OF , r = B̂OD

(Figure 2), so that the three points A,B,C are vertices of a triangle and
D,E, F are on the lines joining the opposite sides.
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Setting

G =
tanhOA

α+ 1
, H =

tanhOB

β + 1
, I =

tanhOC

γ + 1

and using the fact that the angles satisfy the further equation

p+ q + r = π,

we get (by writing the formula for the sum of two supplementary angles):

∆ =

√

(G+H + I)(G+H − I)(I +G−H)(H + I −G)

2GHI

and

∆ =
2M2

GHI
.

A calculation gives then the following formula for the angles:

sin p =
2M2

HI
, sin q =

2M2

IG
, sin r =

2M2

GH
.

From these angles, we can construct the triangle.

3.3. Another proof of Theorem 3.3. We present another proof of The-
orem 3.3, based on the hyperboloid model of the hyperbolic plane.

We denote by R2,1 the three-dimensional Minkowski space, that is, the
real vector space of dimension three equipped with the following pseudo-
inner product:

< x,y >= −x0y0 + x1y1 + x2y2.

We consider the space

H := {x ∈ R2+1 | x0 > 0, < x,x >= −1}
This is one of the two connected components of the “unit sphere” in this
space, that is, the sphere of radius

√
−1. We shall call this component the

pseudo-sphere.
At every point x of the pseudo-sphere, we equip the tangent space TxH

at x with the pseudo-inner product induced from that of R2+1. It is well
known that this induced pseudo-inner product is a scalar product, and the
pseudo-sphere equipped with the length metric induced from these inner
products on tangent spaces is isometric to the hyperbolic plane. This is a
model of the hyperbolic plane, called the Minkowski model. See [20] for
some details.

Let x,y be two points on H. It is well known and not hard to show that
their distance d(x,y) is given by

cosh d(x,y) = − < x,y > .

Up to an isometry of H, we may assume that x = (1, 0, 0) and y = ax+bn,
where n = (0, 1, 0). The equation < y,y >= −1 implies a2 − b2 = 1. We
may also assume that b ≥ 0. See Figure 3. Then we have

cosh d(x,y) = − < x,y >= −a < x,x > −b < x,n >= a.

It follows that

(12) y = cosh (d(x,y))x+ sinh (d(x,y))n
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Figure 3. The hyperboloid model of the hyperbolic plane.

Another proof of Theorem 3.3. Consider a triangle ABC in H, with D,E, F

on the lines BC,CA,AB, respectively. Suppose that the lines AD,BE and
CF intersect at O. Up to an isometry, we may suppose that the point O is
(1, 0, 0).

Let Σ be the plane tangent to H at O = (1, 0, 0). We shall use the
Euclidean metric on this plane. For any point x ∈ H, the line drawn from
0 = (0, 0, 0) through x intersects Σ at a unique point, which we denote by
x′. Consider the points A′, B′, C ′, D′, E′, F ′ obtained from the intersections
of the lines OA,OB,OC,OD,OE,OF with Σ, respectively. By (12),

tan Ô0A =
OA′

1
=

sinhOA

coshOA
.

(Here OA′ denotes the Euclidean distance between O and A′, and OA

denotes the hyperbolic distance between O and A.) As a result, OA′ =
tanhOA. Similarly, OB′ = tanhOB,OC ′ = tanhOC andOD′ = tanhOD,OE′ =
tanhOE,OF ′ = tanhOF .

Since

tanhOA

tanhOD
=

OA′

OD′
= α,

tanhOB

tanhOE
=

OB′

OE′
= β,

tanhOC

tanhOF
=

OC ′

OF ′
= γ,

we have reduced the proof to the case of a Euclidean triangle. �

Remark 3.7. The second proof is inspired from an argument that Euler
gave in a second proof of his Theorem 3.2. Euler’s argument uses a radial
projection of the sphere onto a Euclidean plane tangent to the sphere at the
point O, which we have transformed into an argument that uses the radial
projection of the pseudo-sphere onto a Euclidean plane.

3.4. Ceva’s theorem. We refer again to Figure 2. The classical theorem
of Ceva4 gives another necessary and sufficient relation for the three lines

4Giovanni Ceva (1647-1734) obtained the statement in the Euclidean case, in his De

lineis rectis se invicem secantibus statica constructio, 1678. According to Hogendijk,
Ceva’s theorem was already known to the Arabic mathematician Ibn Hūd, cf. [3].
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AD,BE,CF to meet in a point, and it has also in Euclidean, spherical
and hyperbolic versions. The Ceva identity is different from Euler’s. The
statement is:

Theorem 3.8. If the three lines AD,BE,CF meet in a common point, then
we have

• in Euclidean geometry:

DE

DC
· EC

EA
· FA

FB
= 1;

• in spherical geometry:

sinDE

sinDC
· sinEC

sinEA
· sinFA

sinFB
= 1.

• in hyperbolic geometry:

sinhDE

sinhDC
· sinhEC

sinhEA
· sinhFA

sinhFB
= 1.

Proof. We give the proof in th case of hyperbolic geometry. The other proofs
are similar. Assume the three lines meet at a point O. By the sine formula,
we have

sinhDB

sin D̂OB
=

sinhOB

sin ÔDB

and
sinhDC

sin D̂OC
=

sinhOC

sin ÔDC
.

Dividing both sides of these two equations, we get:

sinhDB

sinhDC
=

sinhOB

sinhOC
· sin D̂OB

sin D̂OC
.

In the same way, we have

sinhEC

sinhEA
=

sinhOC

sinhOA
· sin ÊOC

sin ÊOA

and

sinhFA

sinhFB
=

sinhOA

sinhOB
· sin F̂OA

sin F̂OB
.

Multiplying both sides of the last three equations and using the relations

sin D̂OB = sin ÊOA, sin D̂OC = sin F̂OA, sin ÊOC = sin B̂OF ,

we get the desired result. �

Remark 3.9. The classical theorem of Ceva is usually stated with a minus
sign at the right hand side (that is, the result is −1 instead of 1), and
the length are counted algebraically. In this form, the converse also of the
theorem holds. The proof is also easy.
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3.5. A theorem of Lambert. We present now a result of Lambert,5 con-
tained in his Theory of parallel lines [10], §77. This result says that in an
equilateral triangle ABC, if F is the midpoint of BC and D the intersec-
tion point of the medians, we have DF = 1

3AF (respectively DF > 1
3AF ,

DF < 1
3AF ) in Euclidean (respectively spherical, hyperbolic geometry). In

fact, we shall obtain a more precise relation between the lengths involved.
The hyperbolic case will follow from the following proposition:

Proposition 3.10. Let ABC be an equilateral triangle in the hyperbolic
plane and let D,E, F be the midpoints of BC,AC,AB, respectively (Figure
2). Then the lines AD,BE,CF intersect at a common point O satisfying

tanhAO

tanhOD
=

tanhBO

tanhOE
=

tanhCO

tanhOF
= 2.

In particular,
AD

OD
=

BE

OE
=

CF

OF
< 3.

Proof. The fact that the lines AD,BE,CF intersect at a common point O
follows from the symmetry of the equilateral triangle.

Let us set

α =
tanhAO

tanhOD
, β =

tanhBO

tanhOE
, γ =

tanhCO

tanhOF
.

Then, again by symmetry, α = β = γ. By Euler’s Theorem 3.2, we have

α3 = 3α+ 2.

This implies that α = β = γ = 2.
To see that AD

OD
< 3 (or, equivalently, AO

OD
< 2), it suffices to check that

tanhAD = 2 tanhOD < tanh(2 ·OD). This follows from the inequality

2 tanhx < tanh(2x), ∀ x > 0.

�

5Johann Heinrich Lambert (1728-1777) was an Alsatian mathematician (born in Mul-
house). He is sometimes considered as the founder of modern cartography, a field which
was closely related to spherical geometry. His Anmerkungen und Zusätze zur Entwerfung

der Land- und Himmelscharten (Remarks and complements for the design of terrestrial
and celestial maps, 1772) [5] contains seven new projections of the sphere, some of which
are still in use today, for various purposes. Lambert is an important precursor of hyper-
bolic geometry; he was probably the mathematician who came closest to that geometry,
before this geometry was born in the works of Lobachevsky, Bolyai and Gauss. In his
Theorie der Parallellinien, written in 1766, he developed the bases of a geometry in which
all the Euclidean postulates hold except the parallel postulate which is replaced by its
negation. His hope was to arrive to a contradiction, which would show that Euclid’s par-
allel postulate is a consequence of the other Euclidean postulates. Instead of leading to
a contradiction, Lambert’s work turned out to be a set of results in hyperbolic geometry,
to which belongs the result that we present here. We refer the reader to [10] for the first
translation of this work, together with a mathematical commentary. Lambert was self-
taught (he left school at the age of eleven), and he eventually became one of the greatest
and most universal minds of the eighteenth century. Euler had a great respect for him,
and he helped him joining the Academy of Sciences of Berlin, where Lambert worked
during the last ten years of his life. One of Lambert’s achievements is that π is irrational.
He also conjectured that π is transcendental (a result which was obtained a hundred years
later).
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The same proof shows that in the Euclidean case, and with the same
notation, we have AD

OD
= 3 and that in the spherical case, we have AD

OD
> 3.

(Notice that 2 sinx > sin(2x) when 0 < x < π.) Thus we recover the results
of Lambert.

4. Hyperbolic triangles with the same area

In this section, we will study the following question:

Given two distinct points A,B ∈ H2, determine the set of
points P ∈ H2 such that the area of the triangle with vertices
P,A,B is equal to some given constant.

The same question in the case of a spherical triangle was solved by Lexell
[8] and Euler [2].6 The proof for the case of a hyperbolic triangle, which we
will give below, is similar in spirit to that of Euler.

Let us note that the analogous locus in the Euclidean case is in Euclid’s
Elements (Propositions 37 and its converse, Proposition 39, of Book I).
In this case, the locus consists of a pair of lines parallel to the basis. In
spherical and hyperbolic geometries, the locus does not consist of lines (that
is, geodesics) but of two hypercycles (equidistant loci to lines). Also note
that these hypercycles are not equidistant to the line containing the base of
the triangle. The two hypercycles are equidistant to two distinct lines.

This theorem has an interesting history. Both Euler and his student Lexell
gave a proof in [2] (published in 1797) and [8] (published in 1784).7 Jakob
Steiner published a proof of the same theorem in 1827 [17], that is, several
decades after Euler and Lexell. In 1841, Steiner published a new proof
[18]. In the same paper, he says that Liouville, the editor of the journal,
before he presented the result at the Academy of Sciences of Paris, looked
into the literature and found that Lexell already knew the theorem. Steiner
mentions that the theorem was known, “at least in part”, by Lexell, and then
by Legendre. He does not mention Euler. Steiner adds: “The application
of the theorem became easy only after the following complement: the circle
which contains the triangles with the same area passes through the points
antipodal to the extremities of the bases”. In fact, this “complement” is
contained in both Lexell’s and Euler’s proof. Legendre gives a proof of the
same theorem in his Éléments de géométrie, [7] Note X, Problem III. His
solution is based on spherical trigonometry, like one of Euler’s solutions. In
1855, Lebesgue gave a proof of this theorem [6], which in fact is Euler’s
proof. At the end of Lebesgue’s paper, the editor of the journal adds a
comment, saying that one can find a proof of this theorem in the Éléments
de Géométrie of Catalan (Book VII, Problem VII), but no reference is given
to Euler.

In the rest of this this section, we prove the hyperbolic analogue of this
theorem. We shall use the unit disc model of the hyperbolic plane.

6Despite the difference in the dates of publication, the papers of Euler and Lexell were
written the same year.

7We already noted that the two memoirs were written in the same year. Euler says
that the idea of the result was given to him by Lexell.
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Up to an isometry, we may assume that the two vertices A and B are on
the real line, with 0 < A = −B < 1 (that is, A and B are symmetric with
respect to the origin). This will simplify the notation and will make our
discussion clearer. We denote the hyperbolic distance between A and B by
2x.

4.1. Example: A family of triangles with increasing areas. Let us
denote the center of the unit disc by O. We first consider the case where
the vertex P lies on the geodesic that goes through O perpendicularly. We
denote the hyperbolic distance between O and P by y, and the hyperbolic
distance between A and P by c. See Figure 4.

Figure 4. The example APB

Since the distances x = d(O,A) = d(O,B) are fixed, we may consider the
area of the triangle APB as a function of y. This area is the double of the
area of APO. We start with the following:

Proposition 4.1. The area of APO is an increasing function of y.

Proof. We use again trigonometry. By the cosine formula for a hyperbolic
triangle, we have

cos ÂOP =
coshx · cosh y − cosh c

sinhx · sinh y .

Since ÂOP = π
2 , cos ÂOP = 0. We have

coshx = coshx · cosh y.
Denote ÂPO = α, P̂AO = β. Using again the cosine formula for hyper-

bolic triangles, we obtain
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cosα =
cosh y · cosh c− coshx

sinh y · sinh c , cosβ =
coshx · cosh c− cosh y

sinhx · sinh c .

Using the sine formula for hyperbolic triangles, we have (note that sin ÂOP =
1)

sinα =
sinhx

sinh c
, sinβ =

sinh y

sinh c
.

Applying the above equations, we have

sin(α+ β) = sinα · cosβ + sinβ · cosα

=
sinhx

sinh c
· coshx · cosh c− cosh y

sinhx · sinh c +
sinh y

sinh c
· cosh y · cosh c− coshx

sinh y · sinh c

=
(cosh c− 1)(coshx+ cosh y)

(sinh c)2

=
(coshx · cosh y − 1)(coshx+ cosh y)

(coshx · cosh y)2 − 1

We set t = cosh y > 1 and write the right-hand side of the above equation
as

f(t) =
(coshx · t− 1)(coshx+ t)

(coshx · t)2 − 1

=
coshx · t2 + (sinhx)2 · t− coshx

(coshx)2 · t2 − 1

By a calculation, we have

f ′(t) = −(sinhx)2 · coshx · t− 1

coshx · t+ 1
< 0.

This shows that sin(α + β) is a decreasing function of y. Since the area
of APO is given by π

2 − (α+ β), it is an increasing function of y. �

More generally, let Γ(t), t ∈ [0,∞) be an arbitrary geodesic ray initiating
from the real line perpendicularly. Geodesics are parameterized by arc-
length. We denote by F ∈ (−1, 1) the foot of Γ(t) and by a the (hyperbolic)
distance between O and F . Consider the case where F ∈ [B,A]. Then
the proof of Proposition 4.1 shows that the area of hyperbolic triangle with
vertices A,B,Γ(t) is an increasing function of t.

The triangle is naturally separated into two right triangles. (When P

coincides with A or B, we consider that one of the triangles is of area 0.)
Denoting by ∆1(t) and ∆2(t) the areas of these two right triangles, we have

(13) ∆1(t) = arccos

(

(cosh(x− a) · cosh t− 1)(cosh(x− a) + cosh t)

(cosh(x− a) · cosh t)2 − 1

)

(14) ∆2(t) = arccos

(

(cosh(x+ a) · cosh t− 1)(cosh(x+ a) + cosh t)

(cosh(x+ a) · cosh t)2 − 1

)
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As we have shown, both ∆1(t) and ∆2(t) are increasing functions of t.
By letting t → ∞, we have

lim
t→∞

(∆1(t) + ∆2(t)) = arccos

(

1

cosh(x− a)

)

+ arccos

(

1

cosh(x+ a)

)

.

The limit is the area of the ideal triangle with vertices A,B,Γ(∞).

4.2. The locus of vertices of triangles with given base and area. As
in §4.1, we assume that A,B ∈ H are on the real line and symmetric with
respect to the imaginary axis. For any P ∈ H, we denote by ∆(P ) the area
of the hyperbolic triangle APB. Let L(P ) be the set of points Z in H such
that the area of the triangle AZB is equal to ∆(P ).

We recall that a hypercycle C in H is a bi-infinite curve in H whose points
are equidistant from a given geodesic. In the unit disc model of the hyper-
bolic plane, C is represented by an arc of circle that intersects the boundary
circle at non-right angles. (This angle is right if and only if the hypercycle
coincides with the geodesic.) The geodesic to which the points of C are
equidistant intersects the boundary circle in the same point, but with right
angles. We shall denote this geodesic by G. There is another hypercycle, on
the other side of G, with the same distance, which will be denoted by C′.
We need only consider hypercycles that are symmetric with respect to the
imaginary axes.

With the above notation, we can state our main result.

Theorem 4.2. For any P ∈ H, there is a unique hypercycle C that passes
through A,B such that C′ is one of the two connected components of the
locus L(P ) of vertices Z of triangles ABZ having the same area as ABP .

Theorem 4.2 is illustrated in Figure 5.

Figure 5. The hypercycle C and C′. When the point P

describes the hypercycle C′, the area ∆(P ) is a constant.
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Figure 6. The triangle PRB and QRA have the same area.

Figure 7. The foliation consists of leaves as locus of vertices
with the same triangle area.

Proof of Theorem 4.2. Consider any hypercycle C passing through A,B and
intersecting the imaginary axis perpendicularly. As we noticed before, there
is a unique geodesic G equidistant to C. There is another hypercycle C′

symmetric to C with respect to G.
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It is a simple fact that any geodesic arc connecting a point in C and a
point in C′ is cut by G into two sub-arcs of the same hyperbolic length. In
particular, as shown in Figure 6, for any two points P,Q on C′, the geodesic
arcs PA (and also QB,QA,PB) are separated by G into equal segments.
It follows that the area of PRB is equal to the area of QRA. Here R

denotes the intersection of PA and QB, which necessarily lies on G. It is
not hard to see that the triangles PAB and QAB have the same area, that
is, ∆(P ) = ∆(Q). Since the points P,Q are arbitrarily chosen in C′, we
conclude that the area ∆(P ) of the triangle PAB, with vertex P varying on
C′, is constant.

If the hypercycle C intersects the imaginary axis at a point which has
distance y to the center of the unit disc, then we showed in §4.1 that ∆(P ),
for any P ∈ C′, is equal to

2 arccos

(

(coshx · cosh y − 1)(coshx+ cosh y)

(coshx · cosh y)2 − 1

)

.

Moreover, we showed that the area is a increasing function of y.
With the above description, we have a fairly clear picture of the locus

of vertices with the same triangle area. For if we move the hypercycle C

continuously in that disc, we get a family of hypercycles C′. Such a family
forms a foliation filling the unit disc. On each leaf, the area ∆(·) is constant.
On any two distinct leaves which are not symmetric with respect to the real
axes, the areas are different. The theorem follows since any point P ∈ H

lies on a unique leaf of the foliation, and the locus L(P ) consists of two
components, which are symmetric with respect to the real axes. �

Remark 4.3. A limit case is when both A and B are on the ideal boundary
of the unit disc. In this case, it is easy to see that on any hypercycle C

asymptotic to the geodesic AB, the area ∆(·) is a constant.
In fact, given such a hypercyle and any point P on it, the perpendicular

distance between P and AB is a constant c. the geodesic arc realizing the
distance between P and AB divides the triangle PAB into two isometric
right triangles, each of which has area

π

2
− arctan

(

1

sinh c

)

.

In this case, the foliation whose leaves are loci of vertices with the same
triangle area consists of hypercycles asymptotic to the geodesic AB, see
Figure 8. This foliation can be seen as a limit of the foliations constructed
in the proof of Theorem 4.2.

4.3. How to determine the hypercycle. We conclude by setting up a
construction of the hypercycle passing through P .

As illustrated in Figure 9, when P lies on the imaginary axis, we draw the
geodesics from P to A and B. To determine the hypercycle through P , we
only need to determine the midpoint of the geodesics PA and PB. There
is a unique geodesic passing through these two midpoints, and it has two
endpoints on the ideal boundary. The hypercycle with the same endpoints
is the one we want.
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Figure 8. The limit case

When P does not lie on the imaginary axis, we take the point P ′ which is
symmetric to P with respect to the imaginary axes. We draw the geodesics
connecting P to A and P ′ to B. To determine the hypercycle through P , we
only need to determine the midpoints of the geodesics PA and P ′B. There
is a unique geodesic passing through the two midpoints, with two endpoints
on the ideal boundary. The hypercycle with the same endpoints is the one
we want.

Figure 9. To find the hypercycle.

We then have the following complement to Theorem 4.2:

Proposition 4.4. The midpoints of the variable triangles that are on a
given side of the line joining A,B are all on a common line, and the locus
of the vertices that we are seeking is a hypercycle with basis that line.

Problem 4.5 (A’Campo). Work out the three-dimensional analogue of Lex-
ell’s theorem, in the non-Euclidean cases.
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In conclusion, and independently of the proper interest of the theorems
presented, we hope that this paper can motivate the working mathematician
to read the original sources.
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[6] H. Lebesgue, Démonstration du théorème de Lexell, Nouvelles annales de
mathématiques, 1re série, tome 14 (1855), p. 24–26.
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I: Ibn ‘Irāq, Arabic Science and Philosophy (Cambridge University Press), vol. 24
(2014), pp. 1–68.

[14] R. Rashed and A. Papadopoulos, On Menelaus’ Spherics III.5 in Arabic mathematics,
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