
HAL Id: hal-01064447
https://hal.science/hal-01064447

Submitted on 30 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DOMAIN ONTLOGY FOR SOFTWARE PROCESS
REUSING

Fadila Aoussat, Mourad Chabane Oussalah, Mohamed Ahmed-Nacer

To cite this version:
Fadila Aoussat, Mourad Chabane Oussalah, Mohamed Ahmed-Nacer. A DOMAIN ONTLOGY
FOR SOFTWARE PROCESS REUSING. Computing and Informatics, 2014, 33 (1), pp.35-60. �hal-
01064447�

https://hal.science/hal-01064447
https://hal.archives-ouvertes.fr


A DOMAIN ONTLOGY FOR SOFTWARE PROCESS
REUSING

Fadila Aoussat

LSI Laboratory, University of Sciences and Technology Houari Boumediene,

BP 32, Bab Ezzouar, Algeria.

e-mail: a zahoua@yahoo.fr

Mourad Oussalah

LINA Laboratoy, University of Nantes, CNRS UMR 6241,

2, Rue de la Houssinière,BP 92208, 44322, Nantes, France.

e-mail: Mourad.oussalah@univ-nantes.fr

Mohamed AhmedNacer

LSI Laboratory, University of Sciences and Technology Houari Boumediene,

BP 32, Bab Ezzouar, Algeria.

e-mail: anacer@mail.cerist.dz

Abstract. Reuse the best practices and know-how capitalized from existing Soft-
ware Process Models is a promising approach to model high quality Software Pro-
cesses.

This paper presents a part of an approach for software processes reuse based on
software architectures. This contribution is based on exploiting Software Process

know-how and the solution proposed after the study of existing work on software
process reuse field, our study focuses on approaches for reusing based on software
architectures and based on domain ontology.

AoSP (Architecture oriented Software Process) approach, deals with the engi-
neering ”for” and ”by” reusing Software Processes, it exploits the progress of two



research fields that promote reusing for the Software process reusing: domain on-

tologies and software architectures. AoSP exploits an domain ontology to retrieve,
describe and deploy software process architectures. This article details the engi-
neering ”for” reusing SPs step of AoSP, it explains how the software process archi-
tectures are described and discusses the software process ontology conceptualization
and Software Process knowledge acquisition is done.

Keywords: Software process (SP) reuse; SP architecture; SP structural styles; SP
execution style; data flow connectors, control flow connectors; domain ontology, Sys-
tem and Software Process Engineering Metamodel (SPEM), ATL transformations,
SP knowledge acquisition.

1 INTRODUCTION

The quality of the software product depends on the quality of the software pro-
cess models that is used for the development and the maintenance of this software
product [20].

Software Process (SP) models are complex structures used to define the steps
performed during the software development. Many kinds of information must be
integrated to describe these steps (resources, roles, input and output products...).
Therefore, an important number of concepts, paradigms and languages are devel-
oped to cover the different development aspects. However, there are always difficul-
ties to model SPs that deal with the software development preoccupations such as
flexibility, dynamicity and executability [8].

Reuse SPs, is one of the promised approaches used to improve SPs. The objective
is to exploit best practices and know-how capitalized from the precedent SP modeling
and execution experiments. However, the diversity and the wide range of SP models
in addition to the SP rigidity make SP model reusing very difficult. A number of
studies are being conducted nowadays in order to provide better support regarding
SP reuse. Unfortunately, no reusing method has emerged as reference in the SP
reusing domain.

This article presents a part of an approach for reusing SPs: AoSP (Architecture
oriented Software Process); this approach focuses on the insufficienciesod the exist-
ing approaches for reusing SP and suggests a pertinent solution to reuse SP models.
In order to cover engineering ”by” reusing SPs, we focus our researches on the SP
reuse approaches based on software architectures. We believe that the reusability,
flexibility and abstraction of software architecture combined with the software ar-
chitecture deployment techniques are relevant characteristics that can be used to
provide a pertinent reusing approach to model high quality SP models. Thus, we
describe and deploy SP architectures. Moreover, In order to cover the engineering
”for” reusing SPs, we focus our researches on the SP reuse approaches based on
domain ontology. Our aim is to share common understanding among Stakeholder



by capitalizing the best practices and know-how from heterogeneous SP models. We
think that using a domain ontology can manage not only the heterogeneity of the
used concepts, but also the heterogeneity of the used terminology.

In order to suggest a standard solution, the domain ontology must be coherent,
not ambiguous and commonly accepted. It must not only capitalize heterogeneous
knowledge extracted from different SP models, but also, must retrieve the required
SP architecture knowledge in order to deploy the SP architectures.

To present the adopted solution to generate this domain ontology, our article
is organized as follows: Section-2- presents AoSP approach and adopted the steps
to model reusable SPs. AoSP describes SP architectures, thus, Section-3- provides
the adopted semantics to describe SP architectures. We present briefly the explicit
connectors and architectural styles defined for the SP architectures. Section-4- de-
tails how our domain SP ontology is designed and generated. To describe and
deploy SP architectures, our ontology must capitalize different kinds of knowledge,
thus, section-5- details how heterogeneous SP knowledge are capitalized. Section-6-
presents a first evaluation of our contribution and details remaining work. Section
-7- concludes the article and announces the future work.

2 AOSP (ARCHITECTURE ORIENTED SOFTWARE PROCESS AP-
PROACH)

AoSP exploits the progress of two research fields for the SPs reusing: Ontology and
software architectures. The proposed approach is constituted of two steps [4]:

• Knowledge capitalization by reverse engineering applied to existing SPs models.
For this aim we use domain ontology that capitalizes the pertinent knowledge.
The capitalized knowledge is used to do the SP pre-modeling.

• The effective knowledge reusing across describing and deploying the extracted
software processes knowledge such as software architectures. This step consti-
tutes the SP final modeling.

The main objective of AoSP is:

• Suggest a general solution: that can be applied for different kinds of SP models.

• Increase the SP reuse: by exploiting the precedent SP modeling and enactment
experiences.

• Increase the SP re-usability: by modeling reusable SP models and handling SP
models complexity.

• Increase the SP quality: by giving the essential characteristics for the SP model,
such as comprehension, modeling and analyzing facilities, agility and execution
control. These characteristics are often difficult to obtain as SPs are described
as complex and depend on the comprehension of the used Process Modeling
Language (PML) and terminology.



An Architecture oriented Software Process (AoSP) approach suggests a new
vision to model SPs; describing SP architectures offers the possibility to separate
the SP preoccupations: the execution control, the interaction and the SP model
structure. Also, it allows greater flexibility: separating the process content from the
process structure and exploiting the configuration deployment mechanism reduce
the SP models dependency on their environment and PMLs. Our objective is not to
propose a new PML but to reuse existing tools and PMLs. According to software
architectures specificities, AoSP suggests a particular SP modeling approach: SP
modeling is decomposed of two steps:

• Pre modeling: Model the different SP preoccupations separately (structure, in-
teraction and treatment). This step increases SP model comprehension and has
a direct impact on SP modeling, analyzing and execution control facility.

• Final modeling: Deploy the SP architecture that can be done with different
PMLs specific to different SPs kinds. The deployment must be in an automatic
way by developing deployment programs. This possibility gives to our approach
a generic aspect and increases the modeling facility.

3 SOFTWARE PROCESS ARCHITECTURE DESCRIPTION

3.1 Insufficiencies of the Reusing Approaches Based on Software Archi-
tectures

To describe SP architectures, we study existing approaches that exploits architec-
tural elements to model SPs. Our SP architectural concepts identification is based
on ADL (Architecture Description Language) approach [23][2], as the ADLs have
a more pertinent semantics than the traditional architectures modeling approaches,
the ADLs introduce explicitly architectural concepts, techniques and tools that allow
describing software architectures rigorously. Our interest is to use existing software
architectures tools to describe our SP architectures.

We study the next architectural elements commonly accepted by the software
architecture community: component, connector, configuration, interface component,
interface connector and architectural style.

In most reusing approaches based on software architectures [6] [7] [11] [13] the
central concept is the ”SP Component”. A SP component in an activity (Works
Unit) or an activities sequence. The SP Component is explicit in most approaches,
the SP component interface is the Work Product required or given by the SP com-
ponent [24]. Configuration is in general implicit and not exploited formally, partic-
ularly, in the approaches based on components. Formal rules that describe the SP
component assembling are not defined explicitly.

For the connector concept there is no consensus on its interpretation, the idea
that emerges is that the connector is a dependency between activities, it can be a
precedence link or a delegation link, and often depends on the used PML.



Approach category the used architectural element

PYNODE [6] Component
oriented.

Component, interface component, implicit
connector.

APEL [14] Component
oriented.

Component, interface component (signa-
ture), implicit connectors.

RHODES [11] Component
oriented.

component, interface component, compos-
ite component, implicit connectors (func-
tion call).

SPEM [24] component
oriented.

Component (Activity), interface compo-
nent (Work Product Ports), implicit con-
nectors (Work Product Port Connectors.

Connectors for
bridging SP models
[22]

connector ori-
ented

Predefined connectors, implicit compo-
nent (SP models).

Supporting intensive
SPs [1]

connector ori-
ented

component, explicit connector, explicit
configuration,

Acquisition process

architectures [10]

Architecture

oriented

Component (software process model), in-

terface component, explicit connector
(communication module), implicit config-
uration.

App. based on evo-

lution process com-
ponents [13]

Architecture

oriented.

, component, predefined connectors (con-

current, selection, sequence), configura-
tion.

Table 1. Architectural elements of the studied approaches based on Software Architecture.

Table-1- resumes the architectural elements used in the existing approaches for
reusing SP based on software architectures. The objective of these approaches is
to reuse their own SP components with their own PML, thus, the proposed se-
mantics are specific to each approach and depend on the used PML that explains
the personal interpretations and the lack of consensus on the architectural elements
interpretations. We resume the insufficiencies of these approaches as follows:

• Limited reuse: The reusable elements such as SP Component, SP connector are
defined to the internal use, they are described with particular PMLs and cannot
be reused by other environments.

• Under exploitation of architectural elements: Configuration and assembling con-
straints are not exploited; architectural styles and explicit reusable connectors
are not proposed.

• No general solution: Every approach deals with a particular problem and uses
a particular PML (simulation [10], evolution [13], distribution [14], interaction
[1]), there is no generic solution that can be applied for a large range of SPs.

• No SP architecture deployment: No deployment mechanism is proposed, even if
there is some assistance; the final version of the SP model is modeled by the SP



developer.

3.2 Software Process Architecture Description

Based on existing SP reusing approaches insufficiencies, combining with ADL ap-
proaches, we define a complete semantic to describe SP architectures. Our objective
is to describe the SP model as software architecture and exploit the advantages of-
fered by the software architecture domain but by respecting the SP characteristics
such as: human dimension [?] and specific executions.

The interactions have a central place in the SP model [1], moreover, the SP
is human centered; thus, it is important to manage the different kinds of the SP
interactions. Our analysis is oriented to give a solution to handle the different kinds
of SP interactions. Defining SP connectors that can adapt and facilitate the SP
interactions is the adopted solution. We define our SP connector as an activity
(Work Unit) that ”facilitate and control” data and control transmissions between
SP activities. SP Connectors do not create new products, but adapt, evaluate and
control existing products.

The distinction between ”creation” activities and ”adaptation and control” Ac-
tivities is the basis of the SP architectural concepts interpretation, thus, we define
our SP architectural elements as follows (figure -1-):

• SP Component: the SP Component is a treatment done on input work products
to ”create” out work products.

• SP Port: The SP Component interface is a set of SP Ports. The SP Port
corresponds to the flow (Data or control) of the SP Component execution. Two
kinds of SP ports are defined: Data Flow Port and Control Flow Port.

• SP Connector: The SP connector is an Activity that adapts or controls the SP
transmissions and execution. It is independent from the SP Method Content
but depends on the execution and the structure of the SP.

• SP Connector Role: The SP Connector interface is set of SP Connector Roles.
It represents the flow (Data Flow or Control Flow) of the SP Connector. Two
kinds of SP Connector Role are defined: Data Flow connector roles and Control
Flow connector roles.

• SP Configuration: as software configuration, it describes an assembly of SP
components and SP connectors by determining explicitly the connection and
the assembly constraints that must be respected.

• SP Style: The SP architecture style is defined as a structural style that the
execution policy can be formalized by combining an adequate execution style.
SP architectural styles allow not only the capture of recurrent structures, but
also the capture of recurrent execution strategies.

Figure-1- depicts the software architecture description according to the adopted
semantics.



Fig. 1. Partial ISPW-6 example [19] described as ISPW-6 architecture according to AoSP
approach.

Fig. 2. Partial ISPW-6 example [19] described with ACME studio according to AoSP
approach.

As the adopted semantics is based on ADL Reasoning, we can use existing ADL
tools to describe SP architectures. Figure -2- depicts the partial view of ISPW6
example [19] described with ACME ADL [17]. As there are no ADLs specific to
SPs we use ACME ADL. This choice is justifies by:

• ACME ADL is a generic ADL not specific to a particular domain.

• It allows the description of explicit connectors.

• It allows the description of architectural styles.



3.3 Explicit Connectors for SP architectures

By analyzing SP models behavior, we notice that some adaptation activities are
recurrent. Work product adaptation activities like Work Products fusion or Work
Products Fragmentation [14] are independent from SP model kind; these activities
can be identified and reused. Thus, the Data Flow Connector manages the data
transmission between SP Components, it represents an activity that adapts the
work product to be used by the connected SP Components.

On the other hand, project management activities are defined to manage and
evaluate the SP model execution; these activities can be, also, considered as SP
connectors: the Control Flow Connector is an activity that manages and Controls
the execution flow (order and quality).

Introducing Control Flow Connectors formalizes explicitly the SP model execu-
tion policy; it allows controlling execution deviations by evaluating the SP execution
flow. As figure -3- there are three kinds of Control Flow connectors:

• Execution order Connectors: These connectors explicit the execution order de-
fined in the traditional SP models (Begin to Begin, Finish to Finish, Begin to
finish and Finish to Begin). They assure the standard execution order without
evaluate the SP execution. In our work, we use the Precedence connector (Finish
to Begin) as basis connector to illustrate the execution order.

• Evaluation Connectors: These connectors assure the execution order and eval-
uate the execution quality by focusing on time, cost or quality aspects. They
evaluate the required parameters and post the results. They are used in the
dynamic execution human oriented (where the human decide the modification
to make).

• Decision Connectors: These SP connectors are the same as the Execution Eval-
uation Connectors but emit decision and make modifications after a human
validation. These SP connectors are used to define dynamic execution process
oriented.

Fig. 3. Software process connector’s taxonomy.



The SP connector can be a manual adaptation activity, in fact, some activities
as fusion or fragmentation cannot be done automatically. The distinction between
automatic and manual activities is important; we can formalize the human interac-
tion responsibilities, and anticipate the execution deviations that can be caused by
human errors.

3.4 Architectural styles for SP architectures

For better modeling, existing approaches focus mainly on capturing recurrent SP
structures and identifying best activities sequences. To define a SP architecture
we can exploit these recurrent structures such as lifecycles and process patterns to
define SP styles.

However, the SP has a characteristic that the software product has not: an SP
model can be executed in different ways according to the development conditions.
Indeed, during the SP model execution, the project manager may give priority to
the development time, development cost or to the product quality.

Development priorities in addition to the unexpected events directly affect the
SP model execution policy. Consequently, one SP Model can have multiple execu-
tions instances without being able to differentiate well from bad execution. Without
a clear vision of the desired execution policy, it is difficult to control SP model exe-
cution and make the right adaptation decisions. The problem is that the execution
policy is not explicitly described in the SP; execution policies are nor capitalized or
reused.

In our work an SP architectural style must allow not only the capture of recurrent
structures, but also the capture of recurrent execution policies to capitalize this
expertise and give a tool for better execution control.

An architectural style is a coordinated set of architectural constraints that re-
stricts the role of architectural elements and the allowed relationships among those
elements within any architecture that conforms to that style [16]. In our work, this
definition remains valid, SP Component Types, SP Connector Types and invariants
that are used to describe an architectural style are also used to describe a SP ar-
chitectural style. However, to formalize the execution style, the SP architectural
style is defined as structural style that the execution policy can be identified by
combining a particular execution style. Thus, a structural style can has different
execution styles. We details the structural and the execution styles as follows:

• Structural styles describe recurrent SP structures. They focus on the Work
Products treatments and transmissions that are described independently from
the execution policy. A standard execution is assured by using precedence con-
nector. We inspire from the existing life cycles and process patterns to define
our structural styles.

• Execution styles describe recurrent SP execution policies. Every execution style
is defined by the Control Flow connectors independently from the component



types. They formalize the adopted policy to evaluate and adjust the SP execu-
tion. An execution style are used combined with a structural style.

Fig. 4. Description of SP architectural style with ACME studio.

SP style can be described with ACME studio, to define SP structural style we
follow the same steps as for defining software architecture styles, we define the types
of the style elements, we also define properties, rules that govern this style.

Figure-4- depicts a partial view of the structural style UP described with ACME
studio, we depicts the components types and the connectors types of the UP style,
assembling rules and constraints are also described.

4 SOFTWARE PROCESS DOMAIN ONTOLOGY GENERATION

To capitalize the SP knowledge we use a domain ontology, our aim is to offer a
repository to share the pertinent SP knowledge extracted from precedent successful
SP models. In addition, our aim is to offer a tool to allow the reasoning and the
emergence of new solutions. Our ontology must:

• Be coherent, not ambiguous and commonly accepted.

• Offer a conceptualization to store and retrieve SP architectures knowledge.

• Manage the SP concept heterogeneity: the ontology must have a conceptual-
ization that can be exploited for different SP models, without focusing on a
particular SP kind.



• Manage the heterogeneity at the instance level: Capitalize knowledge from var-
ious SP models can create ambiguities, indeed, even if there is consensus on the
used terminology in the software development [15], the developers can use their
own vocabulary.

• Restore a comprehensible knowledge: A vocabulary reference that represents
the vocabulary of the final user must be defined and stored.

4.1 Insufficiencies of the Reusing Approaches Based on Domain Ontology

To suggest a domain ontology, one of the first steps is to study the existing ones
and consider there extension, fusion or adaptation. Many SP modeling approach
based on domain ontology are defined [18][21][25][?]. These approaches use one or
many ontologies to represent the SP model knowledge. However, these solutions are
specific and deal with particular SP models. They do not suggest a general solution
that can applied for a large range of SPs.

Appoach objective Ontology structure

OnSSPKR Framework
[18]

Deal with CMM, CMMI,
ISO/IEC15504, ISO9001
models.

Three ontologies (Process
experiences, Personal skills,
Knowledge artifacts)

SPO (Software Process
Ontologie)[21]

Mapping between CMMI
models and the ISO/IEC
15504 models

SP basic concepts

PCE based ontology
[28]

Generate SP plans Two ontologies (artifacts and
activities )

Approach based de-
scriptive logic [25]

Framework for software
maintenance

Concepts that affect the soft-
ware maintenance

Flexible PML based on-
tology [26]

Flexible SP models Basic Process elements

Table 2. Approaches for reusing SPs based on domain ontology.

Table- 2- resumes the objectives and the structures of the used ontologies of
the studied approaches. The domain ontologies defined by these approaches do not
respond to our expectations, they do not deal with the concepts and terminology
heterogeneity. Thus we can not exploit these ontologies.

4.2 Software Process Ontology Conceptualization

To suggest a SP domain ontology that deals with our preoccupations, we exploit
SPEM (Systems and Software Process engineering Metamodel) conceptualization.
SPEM is a standard metamodel adopted by the OMG to describe the concepts of a
large range of software processes, this choice is justified by many reasons:

• SPEM is a standard accepted by the SP community.



• SPEM covers a large range of SP concepts without focusing on a particular SP.

• SPEM is a UML profile so we can use the tools and techniques offered as model
transformation in order to generate our ontology.

However, to describe and deploy SP architectures SPEM lacks important archi-
tectural concepts such as ”Explicit connector”, ”configuration” and ”style”. SPEM
Allows reusing based on components, but does not deal with the reusing based on
SP architectures that justify these lacks. Consequently, SPEM must be extended
with the required SP elements.

4.3 SPEM profile extension

Having a complete semantic to describe a SP architecture, the extension of SPEM
profile can be done, for this purpose, we introduce new stereotypes to describe the
architectural elements of the SP architectures:

The added stereotypes are organized into two categories: stereotypes that de-
scribe the SP style elements and the stereotypes that describe the SP configuration
elements. Consequently, two abstract stereotypes are introduced: ”Process Archi-
tectural Element” and Method ”Content Architectural Element”. These stereotype
describes the common behavior of SP style stereotypes and SP configuration stereo-
types separatly.

We distinguish these two stereotypes as the ”SP Style” is a ”Method Content
Package” and its elements are only a ”Method Content Elements”, however, The
”SP Configuration” is a ”Process Package” and its elements are only a ”Process
Elements” (Figure -5-).

Fig. 5. Extention of Method Plugin profile with SP architectural Elements [5].



Figure-6- depicts classes and associations added to extend SPEM model. Two
kinds of classes are added:

• Classes that describes the SP architecture: A SP Configuration is com-
posed from SP Components and SP Connectors. The SP Component is an
activity (Work Unit) that creates Work Products, its interfaces are a set of SP
Ports. The SP connector is an activity that adapts and controls the SP Flow,
its interfaces are SP connector roles. The SP components assembling are done
via many attachments. An attachment is done between a SP Port and a SP
connector that have the same kind (Data Flow or Control Flow).

• Classes that describes the SP style: the SP style is composed from Activity
Definitions. Activity Definition class identifies the SP connector and the SP
component types at the same time and Work Product Definition describes the
SP ports and the SP Connector role types. The default assembling is described
with Default Activity Definition Parameter.

Fig. 6. SPEM model extention with SP architectural Elements.



4.4 SPEMOntology Generation

SPEM being extended, we can generate our ontology that allows describing and
deploying SP architectures. Our ontology OWL is generated by applying many
model transformations. To achieve this aim, we use ATL (Atlantique Transformation
Language) modules UML2OWL and UML2COPY modules [3].

UML2OWL module is developed to transform an UML model to an OWL
model. As SPEM is an UML profile, we cannot directly use this module; in fact, in
UML2OWL ATL module there are no ATL rules that allow the transformation of
profiles, stereotypes and tagged values to OWL elements.

So, we develop an ATL module ”applySPEMprofile2SPEMmodel” [4] (figure-7-)
that apply the SPEM profile to the SPEM model. The not stereotyped elements
are copied directly with UML2COPY ATL module. The result is used to execute
UML2OWL module and generate our ontology ”SPEMOntology”.

Fig. 7. ”applySPEMprofile2SPEMmodel” ATL transformation.

Figure-7- depicts the ”applySPEMprofile2SPEMmodel” transformation, the source
models are SPEM model (confoms to UML metamodel) and SPEM profile (an UML
profile), the results is a stereotyped SPEM model that constitutes the SPEM meta-
model.

4.5 SPEMOntology Structure

SPEMOntology is the result of successive ATL transformations. It is constitute
from 56 concepts and an important number of data and object properties. In order
to facilitate its understanding, it is important to describe its organization. SPEM
is structured into seven packages [24]. By analyzing the SPEM packages (after the
extension), we notice that every SPEM package has its abstract class that regroups
the common behavior of the packages classes.

Figure -8- depicts the main abstract classes of every SPEM package. We notice
the existence of the concepts introduced to describe SP architectures. In our work we
had not exploited Process Behavior package, thus it is not represented in figure-8-.



Fig. 8. Main abstract SPEM classes that describe the SPEM organisation (after the SPEM
profile extension).

After the ATL transformations we can identify this organization (figure -9-). The
SPEM packages view can be identified through the main concepts of SPEMOntology.
To facilitate the ontology understanding, we have kept the same name as the SPEM
classes; however, we have added the prefix ”pro” to identify the stereotyped elements.
This prefix is added during the execution of ”applySPEMprofile2SPEMmodel” mod-
ule.

Fig. 9. Main abstract SPEMOntology concepts.



5 SOFTWARE PROCESS KNOWLEDGE AQUISITION

The concepts heterogeneity finds solution by exploiting a standard metamodel. The
heterogeneity at instance level deals with separating every kind of knowledge. In-
deed, our ontology must store four kinds of knowledge:

• The SP Architecture Knowledge: our ontology must allow retrieving SP
architectures. The capitalized knowledge concerns SP configuration and SP
styles.

• The Used Knowledge: our ontology must allow to reuse exiting SP models.
The capitalized knowledge concerns the know-how of existing SP models.

• The Reference Vocabulary: Our ontology must retrieve a comprehensible
knowledge. The capitalized knowledge concerns the vocabulary used by the
final stakeholders.

• The Instance heterogeneity management: our ontology must manage the
heterogeneous vocabulary. Thus, we must do the correspondence between the
used knowledge and the reference vocabulary.

We exploit the structure of SPEM to deal with the instances heterogeneity.
Every SPEM package is used to store a kind of knowledge. In the next sections we
detail how we capitalize every kind of SP knowledge.

5.1 The SP Architectures Knowledge Capitalization

The SP expert stores the SP configurations and the SP styles of the company. This
step is very important as it allows describing formally the company development
strategies and practices. The knowledge can be recurrent SP configurations, well-

Fig. 10. SP architectural concepts of SPEMOntology.

known life cycles or particular processes that the company may use as SCRUM or
XP processes.



The instantiation is done on the Process Architectural Element concepts and the
Method Content architectural concepts (figure-10-). These concepts are the added
concepts to describe the SP architecture elements. This step is done manually by
a SP expert of the company. However, the advantage is that it is done once and it
will be reused independently from the SP expert intervention.

5.2 The Used Knowledge Aquisition

We instantiate the concepts of ”Process with Method” and ”Process Structure”
packages. In SPEM these packages are used to describe -respectively- the effective
use of the content methods and the SP fragments independently from particular
development method [24]. In our ontology, these concepts are used to capitalize the
used knowhow that are collected from the existing SP models (Figure - 11-).

Fig. 11. The Used knowledge concepts of SPEMOntology.

This step is done automatically; we apply a reverse engineering on every SP
model that will be reused. For each PML we develop an instantiation program
that identifies the pertinent concepts and allows the extraction of the pertinent
knowledge.

As example we develop an instantiation program for EPF (Eclipse Process
Framework) models[15] and another for PBOOL+ models [12]. The knowledge
aquisition from EPF models is direct as these models are conform to SPEM, how-
ever, for PBOOL+ models these is no ”Task Use” concept, then, we suppose that
every elementary activity of PBOOL+ model is constituted from one ”Task Use”
and do the instantiation.



5.3 The Reference Vocabulary Capitalization

In SPEM the Method Content package is dedicated to describe development methods
independently from their use: ”...The Method Content package defines the core
elements of every method such as Roles, Tasks, and Work product Definitions...”
[6]. We use these concepts, to describe the vocabulary reference (figure-12-).

Fig. 12. The Vocabulary Reference concepts of SPEMOntology

The Method content concepts are solicited to describe many kinds of knowl-
edge: Method Content Elements, Vocabulary Reference and Architectural Types.
To distinguish between these kinds of knowledge, for each Method Content con-
cept we add a data type property ”concept role” that can have the next values:
”MC” for Method Content knowledge, ”VR” for Vocabulary Reference and ”AT”
for Architectural Type.

The weakness of this step is that the instantiation is done manually, it depends
on the experience of the SP expert and on the users groups. Every company has its
own vocabulary and its own abbreviation and terminology convention.

However, the advantage of this manual step is that allow to define formally
the glossary of the company. It allows not only a better comprehension of the SP
models, but also, constitutes a contribution to capitalize company know-how, that
will be used and reused formally independently from the SP experts and its tacit
knowledge.

5.4 The Instance Heterogeneity Management

To manage the instances heterogeneity, we must do a correspondence between the
Used Knowledge and the Reference Vocabulary. This correspondence is done by
using existing associations between Method Content Concepts and Process With
Method concepts (figure -13-).



Fig. 13. SPEMOntology concepts.

Moreover, we define new associations to do the correspondence between the
SP Architectural Concepts and the Vocabulary Reference concepts. The added
associations are specific to our ontology and are not integrated on SPEM as we did
with the SP Architectural concepts. Thus we add:

• An association between ”SP Port” and ”Work Product Definition”.

• An association between ”SP connector role” Work Product Definition”.

6 AOSP APPROACH EVALUATION

The initial

goal

to this aim we have... as future work we can...

Suggest a gen-
eral solution

used a standard metamodel that de-
scribes concepts of a large range of
SPs

optimize the instantiation
program to integrate new SP
models that are described

with other PMLs.

Increase the
reuse of ex-
isting SP

models

developed a domain ontlogy ”SPE-
MOntology” that capitalizes SP
knowledge from most of existing

SP models independently from their
PML or metamodel.

infer new solutions and new
SP architectures.

Increase the
reusability of

the modeled
SPs

Exploited the abstract structure
at the modeling step, - Defined

reusable SP connectors, - Defined
SP styles, - Defined execution styles,

Many SP architecture deploy-
ments such us: dynamic, dis-

tributed and using different
PMLs.

Increase the
SP Model
quality

- Used the SP architectures that al-
low modeling flexible, comprehen-
sible SP models. - Used a do-

main ontology that allows exploit-
ing the precedent SP modeling ex-
periments.

Retrieve optimal solution ac-
cording to the development
context (time, cost or quality

oriented)

Table 3. AoSP approach evaluation.

In this paper we presents only the engineering ”by” reusing SPs of AoSP ap-



proach, the engineering ”for” reusing SPs is not presented, thus, SP architecture
retrieving, SP architecture inference and SP architecture deployment are not de-
tailed. However, we can do a first evaluation of AoSP.

Both resuing approaches based on software architecture and approaches based on
ontology suggest particular solutions for particular problems (simulation, evolution,
interaction, software maintenance...), however our solution is generale and can be
used for many kinds of SPs. Also, unlike existing approaches, AoSP exploits all the
opportunities offered by the software architecture domain and domain ontologies to
model and execute SPs.

According to table -3- we had achieved globally our primary goals, in fact,
to increase the SP reusing and reusability, we have defined an ontology that can
capitalize heterogeneous SP models and we have exploited the software architecture
principles to model reusable SPs. Describe SP architectures give the SP model more
flexibility, comprehension and dynamicity.

The engineering ”by” reusing SPs is not presented and can give more advantages
to our approaches. The SP architectures knowledge retrieving, the SP architecture
deployment and SP knowledge inference increase, also, the SP reusing.

7 CONCLUSION

AoSP is a SP reusing approach that offers a standard solution to increase the reuse
and the reusability of SP models in order to model high quality SPs.

This paper presents the engineering ”for” reusing SPs of AoSP (Architecture
oriented software Process) approach. AoSP exploit the software architecture princi-
ples to model SPs. By separating the SP modeling preoccupations: Work Product
treatments (Components), Work Product transmissions (Data Flow connectors) and
execution control (Control Flow connectors), AoSP offers an innovative vision of the
SP modeling. TIt allows modeling more comprehensible, flexible and controllable
SP models.

Based on existing approaches insufficiencies, we define a complete semantics to
describe SP architectures. We model SP architecture as software architectures but
we respect the SP specificities such as human dimension and the characteristics of
the SP execution. In addition, we define explicit connectors and architectural styles
specific to the SP architectures. On the other hand, AoSP exploits the precedent
good modeling and enactment experiments to model high quality SP models. AoSP
uses a domain ontology to capitalize the best practices of the software development
domain. It exploits the capitalized knowledge to retrieve and deploy SP architec-
tures.

The ontology conceptualization is discussed; it is based on SPEM. We extend
SPEM by introducing required architectural concepts. Indeed, SPEM deals with
SP reusing based on components and lacks important architectural elements to de-
scribe SP architectures. The ontology was generated by transformation model tech-
niques; to this aim, we use ATL (Atlantique Transformation Language) modules



(UML2OWL and UML2COPY) and we develop an ATL module ”applySPEMpro-
file2SPEMmodel” to apply SPEM profile to SPEM model.

To describe and deploy SP architectures, SPEMOntology must store different
kinds of knowledge: The used know-how, the SP Architecture Knowledge and a
Reference Vocabulary, in addition, it must do a correspondence between these kinds
of knowledge. We exploit the SPEM structure (organized into packages) to store
separately these kinds of knowledge. We add adequate properties to have to keep
the knowledge coherence.

Actually we are working on the engineering ”by” reusing; we are working on
defining inference rules to infer tow kinds of knowledge: ”equivalent SP configura-
tion” to identify the SP configurations that can replace the required configuration
and ”equivalent SP components” to identify the components that can replace the re-
quired SP component. Also, first results of retrieving and deploying SP architectures
are obtained, but must be refined before their publishing.

REFERENCES

[1] Alloui, I. Oquendo, O.: Supporting Decentralised Software-Intensive Processes
Using ZETA Component-Based Architecture Description Language’, International
Conference on Entreprise Information Systems, 2001, pages 207-218

[2] Atli, A. Khammaci, T., Smeda, A.: Integrating Software Architecture Concepts
into the MDA Platform with UML Profile, J. of Computer Science, Vol 3, 2007, N
10 , pp 793-802.

[3] Atlas Transformation Language, ATL: ATL transformations list. 2007,
http://www.eclipse.org/m2m/atl/atlTransformations/.

[4] Aoussat, F. Ahmed-Nacer, M. Oussalah, M.: Reusing Approach for Software
Processes based on Software Architectures. International Conference on Entreprise
Information Systems , 2010, pp 366-369.

[5] Aoussat F., Oussalah M. and Ahmed Nacer M., SPEM extention with software pro-
cess Architectural concepts, COMPSAC, 2011, pp. 215-225.

[6] Avrilionis, D. Belkhatir, N. Cunin, P.-Y. : A unified framework for software
process enactment and improvement, 4th International Conference on the Software
Process, 1996, pages 102-108.

[7] Belkhatir, N. Estublier, J.: Supporting reuse and configuration for large scale
software process models. 10th International Software Process Workshop, 1996, page
35-40.

[8] Bendraou,R. Gervais, M.P. Blanc, X. :”UML4SPM: An Executable Software
Process Modelling Language Providing High-Level Abstractions”, 10th IEEE Inter-
national Enterprise Distributed Object Computing Conference, 2006, pp. 297-306.

[9] Bermejo-Alonso, J. Sanz, R. Rodriguez, R. Hernandez, C.: Ontology-Based
Engineering of Autonomous Systems. In Proceedings of the 2010 Sixth International
Conference on Autonomic and Autonomous Systems (ICAS ’10). IEEE Computer
Society, 2010.



[10] Choi J. , Scacchi W.: Modeling and Simulating Software Acquisition Process

Architectures, J. of Systems and Software, vol 59, 2000, pp 343-354.

[11] Coulette, B. Thu, T. D. Crgut, X. Thuy, D. T. B.: Rhodes, a process com-
ponent centered software engineering environment. In International Conference on
Entreprise Information System, 2000, pages 253-260.

[12] Cregut, X., Coulette, B.: PBOOL: an Object-Oriented Language for Definition
and Reuse of Enactable Processes. J. Software - Concepts and Tools, vol. 18, 1997,
No. 2, pp. 47-62.

[13] Dai F., Li T., Zhao N., Yu Y., Huang B.: Evolution Process Component Com-
position Based on Process Architecture: International Symposium on Intelligent In-
formation Technology Application Workshops, 2008, pp. 1097-1100.

[14] Dami S., Estublier J., Amiour M.: APEL: a Graphical Yet Executable Formalism
for Process Modeling. j. Automated Software Engineering, vol 5, 1997, pp 61-96

[15] EPF Composer: Eclipse Process Framework Composer.
http://www.eclipse.org/epf/downloads/tool/tooldownloads.php

[16] Fielding, R. T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. on Information and Computer Science, University of California,
Irvine, USA., 2000.

[17] Garlan D., Wang Z.: Acme-Based Software Architecture Interchange. Third In-
ternational Conference on Coordination Languages and Models, 1999, 340-354.

[18] He, J. Yan, H. Liu, C. Jin, M.:A framework of ontology supported knowledge rep-
resentation in software process. 2007, http://www.atlantispress.com/php/download
paper.php?id=1180.

[19] Kellner, M. I. Feiler, P. H. Finkelstein, A. Katayama, T. Osterweil, L.
J. Penedo, M. H. Dieter Rombach, H. : ISPW-6 Software Process Example.
ISPW ’90, 5th international software process workshop on Experience with software
process models, 1990.

[20] Li, J. Li, J. Li, H.: Research on software process improvement model based on
CMM. 2008, http://www.waset.org/journals/waset/v39/v39-70.pdf.

[21] Liao, L. Yuzhong Q. Leung H. K. N.: Software process ontology and its appli-

cation. 4th International Semantic Web Conference Galway, 2005.

[22] Medvidovic, N., Grunbacher, P., Egyed, A., Boehm, B. W.: Bridging models
across the software lifecycle. J. Syst. Softw., vol 68, 2003, pages 199-215.

[23] Medvidovic, N. Rosenblum, D. S. Redmiles, D. F. Robbins, J. E.: Modeling
Software Architectures in the Unified Modeling Language. j. ACM Transaction on
Software Engineering and Methodology, Vol.11, 2002, N1, pp 2-57.

[24] Object Management Group (OMG): Software Systems Process Engineering
Meta Model (SPEM), v2.0, 2008, http://www.omg.org/cgi-bin/docFormal/2008-04-
01.

[25] Rilling, J. Zhang, Y. Meng, W. J. Witte, R. Haarslev, V. and Charland,
P.: A Unified Ontology-Based Process Model for Software Maintenance and Com-
prehension. In Models in Software Engineering: Workshops at MoDELS, Vol 4364,
2007, pages 56-65.



[26] Shen, B. Chen, C.: The design of a flexible software process language, In

SPW/ProSim, 2006, pages 186-194.

[27] Sommerville, I. Rodden, T.: Human, Social and Organizational Influences on the
Software Process, rends in Software: Software Process, 1996, 89-100.

[28] Tomohiko, K. M. Mori, K. Shiozawa, T.:Process-centered software engineering
environment using process and object ontologies. Second Joint Conference on Knowl-
edgeBased Software Engineering, 1996,pages 226-229.


