
HAL Id: hal-01064444
https://hal.science/hal-01064444v1

Submitted on 16 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPEM Extension with software process architectural
concepts

Fadila Aoussat, Mourad Chabane Oussalah, Ahmed-Nacer Mohamed

To cite this version:
Fadila Aoussat, Mourad Chabane Oussalah, Ahmed-Nacer Mohamed. SPEM Extension with software
process architectural concepts. The 35th Annual International Computer, Software & Applications
Conference, Jul 2011, Munich, Germany. �hal-01064444�

https://hal.science/hal-01064444v1
https://hal.archives-ouvertes.fr

SPEM Extension with software process architectural concepts

Fadila Aoussat

Computer Science Departement,

Saad Dahlab Blida University,

BP 270, route Soumaa,

Blida, Algeria.

Fadila.aoussat@univ-nantes.fr

Mourad Oussalah

LINA Laboratoy,

University of Nantes,

2, Rue de la Houssiniere,

BP 92208, 44322, Nantes, France.

Mourad.oussalah@univ-nantes.fr

Mohamed Ahmed Nacer

LSI laboratory

USTHB University,

BP 32, El Alia,

BabEzzouar, Algeria

Anacer@mail.cerist.dz

Abstract—SPEM is a metamodel adopted by the OMG for
software processes engineering. For the software process ar-
chitectures description, SPEM architectural concepts are very
insufficient. Indeed, the existing concepts disallow describing
configurations and explicit links specific to software process
architectures and finally their deployment.

The objective of this paper is to present an extension of
SPEM (System and Software Process Engineering Metamodel)
with lacking architectural concepts. This extension is an im-
portant step to implement a new approach for software process
reusing based on software architectures.

Keywords-Software process architecural concepts, Method
Plugin Profil, explicit process connectors, software process
styles.

I. INTRODUCTION

The agile methods are defined to treat the traditional

development methods insufficiencies, mainly, the rigidity

and the difficulty to handle continuous changes. These

continuous evolutions concern principally the customer re-

quirements, project planning and development priorities.

The agile methods are described as iterative and incre-

mental, they are carried out in a collaborative spirit implying

developers and customer. It generates a high-quality product

taking account the the customer requirements changes. How-

ever, the agility of these methods can become a disadvantage

if it is not controlled, thus, the success of these methods

depends on two essential points:

• The process quality which must be very flexible and dy-

namic, and at the same time, must handle the probable

deviations, as the project is often based on a confidence

contract between customer and developers than a tra-

ditional contract where the customer requirements are

preliminary fixed.

• Developer’s capacities of communication and interac-

tion as well as their experiment and knowhow concern-

ing the development and project the management.

To increase the flexibility of the used software process

models by exploiting the precedent project development

experiments, modeling SPs as software architectures by

reusing existing SPs models is the proposed solution. We

propose a new approach for SP modeling based on software

architectures, this approach exploits the SPEM metamodel

as basic conceptualization to describe and deploy SP ar-

chitectures. However, SPEM lacks important architectural

concepts to describe SP architectures. In fact, the lack

of ”Process Configuration”, ”Process Style” and ”explicit

Connector” concepts disallow describing and deploying SP

architectures.

This paper presents the SPEM metamodel extension by

the integration of the lacking architectural concepts for SPs

modeling based on software architectures. SPEM being a

UML profile, the objective is not to evaluate the capacities

of UML metamodel to model architectural concepts, but to

extend SPEM for the needs of our approach. The goal is to

exploit UML2.0 concepts and mechanisms without focus-

ing on its insufficiencies concerning software architecture

concepts modeling.

Our paper is organized as follows: section -2 - presents

the SPEM metamodel Insufficiencies, section -3- summa-

rizes our approach for software processes reusing based

on software architectures. Section -4- presents the adopted

approach to the SPEM extension, than we suggest a

generic metamodel for modeling SP architectures, section-

5- presents the effective SPEM extension, the identified

stereotypes and concepts. We conclude the paper by section

-6- that summarizes the carried out and future works.

II. INSUFFICIENCIES SOFTWARE ARCHITECTURE

CONCEPTS IN SPEM METAMODEL

SPEM is a metamodel (UML profile) adopted by the

OMG proposed to define software systems and processes

developments, it defines the needed concepts to describe

a large range of software processes development without

focusing on a particular type [1]. The SPEM metamodel

conceptual core is constituted on the basic concepts of every

SP (Figure -1-).

The SP is a ”Unit Work” sequence. The ”Unit Work”

requires input products to give output products. As the soft-

ware processes are human centered, a ”Role” is responsible

on ”Unit Works”. The presence of other process concepts as

”Resource”, ”personnel”, ”guidance”...etc depends on the SP

type and orientation (resource oriented, personnel oriented,

Figure 1. Software processes conceptual core.

guidance oriented...etc). SPEM gives an abstract stereotype

”Extensible Element” in order to specialize these different

concepts and to describe different SPs orientation.

SPEM treats SPs reusing based process components

through the Method Plugin profile [1]. The Method Plugin

profile introduces architectural concepts for reusing based

process components through the definition of stereotypes

dedicated for this purpose.

According to SPEM a process component ”Process Com-

ponent” corresponds to exactly one process represented by

exactly one Activity ”Activity”. A component has several

”Work Product Ports”, the ”Work Product Port” is an input

or an output product, and it is described by a ”Work Product

Definition”. A ”Work Product Port” is the port of one and

only one ”Process Component”. The Process Components

are connected by using ”Work Product Port Connector”. The

”Work Product Port Connector” is used to connect the ”Work

Product Ports” of the Process Components.

”Configuration” concept is used but not as architectural

structure of SPs. The ”Configuration Method” is not con-

sidered as ”Process Element”, but as a ”Classifier” that

describes a logical sub set of ”Method Plugins”. A ”Method

Plugins” are packages that describe a physical container

of ”Process Package” and ”Method Content” package [1].

”Method Configuration” do not describes the architectural

abstraction of the SP model but only the content elements

of the SP model.

Important Process Component interconnection problems

were identified [1], we notice:

• Difficulties to manage terminology heterogeneity used

for the ”Work Product Ports”, as to link Process Com-

ponents we associate ”Work Product Ports” instances

manually by doing a correspondence between their

”different” names [1].

• Difficulties to manage the number of ”Process Com-

ponent Ports”, particularly when the ”Work Product

Ports” number of the connected Process components

is different [1].

• The Process components assembly is done from

scratch, in ad hoc way, no life cycle or well-known

structures are formally exploited, that increase the

Stakeholders tacit knowledge dependency [1].

• Manual assembling of the Process Components, that

depends on the experiment of the stakeholder [1].

These problems result from lacking of important ar-

chitectural concepts. By comparing the admitted software

architecture concepts with those of SPEM we notice:

• ”Explicit Process Connector” absence, the connector

”Work Product Port Connector” is an implicit connec-

tor, it’s a simple direct link between ”Work Product

Ports” that assures the precedence or delegation links

between Process Components. It hasn’t any role to

facilitate or adapt connection between Process Com-

ponents; no facilitation or adaptation mechanisms are

integrated.

• ”Role Connector” concept absence, that explains The

direct connection between Work Product Ports.

• According to the cardinalities of SPEM, a connector

can connect several ports without any constraints, no

constraints assembling are used. In addition, other

properties describing the software connector (semantic,

evolution, nonfunctional properties) as an architectural

concept are not taken into account [2].

• ”Configuration” concept absence: Architectural abstrac-

tion of SPs is not supported. ”Method configuration”

concept is defined but not specific for reusing based

Process Components, it’s a ”Classifier” and not consid-

ered as ”Process Element”, it’s a logical description of

sub sets of ”Process” and ”Content” package elements

without structural vision.

• The topological constraints are not formally exploited

for the modeling by reusing SP components. The

well-known and recurrent process structures are not

exploited for SP modeling based components.

Method Plugin being a UML profile, the divergence in

the architectural concepts representation based on UML

explains the insufficiencies noted in this profile [1]. Also,

few approaches for software process architectures modeling

was proposed comparatively with classical software process

modeling approaches.

III. APPROACH FOR SOFTWARE PROCESSES MODELS

REUSING BASED ON SOFTWARE ARCHITECTURES

Our solution exploits the progress of two research fields

which promote the reusing for the software processes

reusing: Ontology and software architectures. It’s constituted

on two steps:

1) Knowledge capitalization by reverse engineering ap-

plied to existing SPs models. For this main we use

domain ontology that capitalizes the pertinent knowl-

edge.

2) The effective knowledge reusing across describing and

deploying the extracted software processes knowledge

as software architectures.

The purpose of our approach is to offer range choices

to model a high quality SPs, by reusing high quality

knowledge. Our preoccupation is, to answer the specific and

personalized requests of the stakeholders by exploiting the

positive experiments of existing SP models. Also, we aim

to solve difficulties of modeling and execution of SPs by

treating it at the structural level.

This solution is more dedicated for modeling and ex-

ecuting processes with adaptable structures: dynamic, in-

cremental, iterative, heterogeneous or distributed processes.

Handling SP models as software architectures allows greater

flexibility for reusing. Separate the process content from the

process structure reduces the SP models dependency to their

environment and modeling languages.

The paper treats the SPEM metamodel extension with

lacking architectural concepts, it presents a solution for en-

countered problems in the ontology conceptualization. Our

ontology respects the SPEM conceptualization, this choice

is justified by two reasons: the need to exploit conceptual-

ization accepted by the SPs community, and the large range

SP concepts that SPEM covers. It will allow generalizing

the approach to processes that are not necessarily oriented

development.

However, to describe and deploy SP architectures SPEM

lacks important architectural concepts as ”explicit connec-

tor”, ”configuration” and ”style”, so, the SPEM metamodel

extension with lacking architectural concepts is needed.

IV. ADOPTED METHOD FOR THE SPEM METAMODEL

EXTENTION

The lacked architectural concepts of SPEM are identified,

The SPEM extention is the next step, to this purpose we

proceed as follows:

1) Having the SPEM architectural concepts, we col-

lected all the other SP architectural concepts that are

used in the existing approaches for modeling and

executing SPs based architectures and components

[8][11][19][17][20][3][21]. This step has as result the

identification and formalization of the SPs architec-

tural concepts of the existing approaches.

2) We explore formal propositions of software architec-

tures description based on UML. We study the pro-

posed metamodels based UML that regroup the archi-

tectural concepts, and analyze their conceptualization

in order to suggest a generic metamodel based UML

specific to SPs architectures. The SP architectural

concepts identification is based on ADL (Architec-

ture Description Language) approach [3][17][18][19],

as the ADLs have a more pertinent semantic than

the traditional architecutres modeling approaches,the

ADLs introduce explicitly architectural concepts, tech-

niques and the tools that allow describing software

architectures rigorously. This step has as results the

introduction of the lacking architectural concepts, the

semantics refinement of the existing architectural con-

cepts, then the formalization of our metamodel for SP

architectures.

3) Explore the different approaches of UML extension

for software architectures [7]. In our work we extend

an existing profile, we focus on the profile dedicated

to the reusing based process components which is the

”Method Plugin profile”. However, the difficulty of the

extension resides on the manner and the representation

choice for modeling the architectural concepts. In fact,

according to the existing software architecture descrip-

tions based UML [9][10][11][12][14][16][6], there is

no real consensus about the architectural concepts

representation. Various notations and approaches are

proposed, the ”Concept Type”, the ”Concept” itself,

and its ”Instances”, can be stereotyped using different

metaclasses. So, for example, the metaclasses ”Class”,

”Component”, ”Subsystem”, ”Package” are used to

define stereotypes for the ”Component” concept, and

the metaclasses ”Class”, ”Connector”, ”Collabora-

tion”, ”Association” are used to define stereotypes for

the ”Connector” concept.

A. Architectural Concepts of the Existing Approaches

To identify the needed architectural concepts for our meta-

model, we identify first the existing architectural concepts

that were defined in the existing approaches, we note that:

• In the approaches oriented process components the

central concept is the ”process component”. According

to the SPs core concepts The ”Composite Process

Component” is described as software process fragment

that represents activities (Unit works) sequence.

Software process concept Software architectural concept

Process Fragment(Work Units set). Composite Component.

Elementary Activity (Work Unit). Elementary Component.

Product(input/output). Port (required/ given).

Software process structure. Configuration.

Table I
MAPPING CONCEPTS OF THE EXISTING APPROACHES.

• The ”Elementary Process Component” is described as

an ”Elementary activity” (a Unit Work).

• The ”Port” (required or given) is represented by a

”Work Product” (input or output).

• The ”Process configuration” concept represents the

abstract structure of the SP model. it’s defined in the

approaches oriented architectures.

• The ”Role” responsible of the ”Unit Work” and the

other concepts as ”tool”, ”personnel” and ”guidance”

have no direct correspondence with the architectural

concepts, they constitute a part of the SP Component.

• For the ”connector” concept there is no consensus on

its interpretation, however, the idea that emerges is that

the connector is ”a dependency between activities”, it

can be a precedence links or a delegation links. Each

Existing approaches Connector intrepretation Explicit

PYNODE [20] Data asynchronous transfert. No

APEL [8] Transfert links(Control flow or Data
flow).

No

RHODES [21] Function call. No

App. for aquisition
process architectures
[17]

Objects that encapsulate communica-
tion mechanisms.

Yes

Connectors for bridg-
ing SP models [19]

Adaptation activities for particular
products.

Yes

SPEM [1] Links between ”Work Product Ports”. No

App. based on evo-
lution process compo-
nents [3]

Communication unit. Yes

Table II
CONNECTOR CONCEPT INTERPRETATION OF THE EXISTING

APPROACHES.

approach defines its vision of the connector. We notice

that the connector concept have more importance in

the recent years; the recent approaches introduce the

connector as first entity and give them more importance

and functionalities.

Table -I- and table-II- summarize the architectural con-

cepts identified from the discussed approaches.

B. Generic Metamodel For Software Process Architecture

Description

To increase the flexibility of SPs, it is certain that defining

explicit connectors has certainly a determining role on the

SP modeling and execution quality. The possibility offered to

specify, personalize, control, adapt, facilitate the interactions

between SP activities is a major advantage. The transitions

between activities can be controlled and the execution devi-

ations limited.

We notice that process connectors can be identified to

facilitate and adapt the products transfer [19] [17] Also, the

controls flow aspect can be treated by explicit connectors,

thus, it is possible to define connectors which evaluate

the execution then decide changes to operate for better

execution.

In our approach the process connector is treated as first

class entity. We affect capital functionalities to them to allow

specifying various data or control transfer kind. We define

our process connector as an activity that ”facilitate and

control” transitions between the SP activities. The ”process

Connector” does not create new products, but ”adapts and

controls” existing products. The distinction between ”cre-

ation” activities (which will constitute the process compo-

nents) and ”adaptation and control” Activities (which will

constitute the process connectors) modifies the semantics of

the identified concepts. Our interpretation of SP architectural

concepts become as follow:

• Process Component: It corresponds to a ”Work Unit”

of the SP model. We describe a Process Component

Software Process Concepts. Adopted SP architectural concepts.

Activity that creates new
products.

Elementary Component

Input or output flow of a cre-
ation Activity (DataFlow or
ControlFlow).

Process Port(given or required): Can be a
Control Flow Port or a Data flow Port.

Activity that ”adapts or con-

troles” the flow.
Explicit Connectors: Predefined connec-
tor’s taxonomy.

Input or output flow of an
adaptation Activity (DataFlow
or ControlFlow).

Process Connector Role: Can be DataFlow
Role Connector or ControlFlow Role Con-
nector.

A set of ”adaptation” and ”cre-
ation” activities.

Process Fragment: An assembling of Pro-
cess Components and Process Connectors.

Precedence links between a
creation Activity and an adap-
tation Activity.

Attachement: A link between a Process
Port and a Process Connector Role from the
same kind (Control Flow or Data Flow).

Delegation links (Data Flow or
Control Flow dalguation) be-
tween activities.

Binding: Links between Process Ports or
between Process Connector Roles from the
same kind (Control Flow or Data Flow)

Process structure. Process Configuration: A set of process
components and process connectors that re-
spect assembling constraints.

Software life cycle, recurrent
topological structure or execu-
tion strategy.

Process style: Introduced formally with
type concepts, invariants and constraints.

Table III
ADOPTED SEMANTICS FOR SOFTWARE PROCESS ARCHITECUTRAL

CONCEPTS.

as treatments done on input products to ”create” new

products that are the output Products.

• Process ports: The Process Component interface is

a set of ”Process Ports”, the required Process Port

corresponds to the ”input flow” needed to the execution

of the SP component. The provided Process Ports is the

”provided flow” or the Process Component output flow

[1][3]. So, tow kinds of ports are defined:

– Data Flow Port : That corresponds to the ”Work

Product Port” of the SPEM metamodel.

– Control Flow Port : That is specific to the exe-

cution Control Flow of the SP models.

• Process Connector: A process connector is an Activity

that ”manages, adapts or controls” the execution of the

SP. It is independent from the SP Method Content but

depend on the execution or the structure of the SP.

It facilitates the transmission of the Work Products or

manages the Control Flow of the SPs. Some of our pro-

cess connectors are inspired from APEL environment

[8]. In fact APEL defines ”adaptatives activities” that

correspond to some of our Dataflow connectors (figure-

3-).

• Process Connector Role: A connector interface is set

of Process Connector Roles. It represents the flow (Data

Flow or Control Flow) required or given by the Process

Connector.

• Binding: Is a ”link” between the internal Process Ports

and the external Process Ports of the Process Com-

ponent and Process Configuration. Definition of the

binding concept allows describing the internal structure

of the Process Configuration. As the same manner,

the binding of the connector roles allows us defining

the complex connectors and defining there internal

structure by combining the predefined connector types.

• Process configuration: It describes the coherent as-

sembly of the process components and process con-

nectors by determining explicitly the connection and

the constraints that must be respected. A configuration

can follow a predefined style such as software life cycle

or not.

• Process Style: It provides a partial and logic descrip-

tion of a SP assembly which has a predefined structure

and that recur in a particular SP kind.

Figure 2. Generic metamodel for software process architectures.

We regroup the identified concepts in a generic metamodel

based on UML (figure- 2-), this metamodel is independent

from SPEM metamodel concepts and will be used to extend

SPEM metamodel. We introduce the concepts ”Component

Type”, ”connector Type”, ”Port Type”, ”Role Type”, these

concepts are defined independently of the SPs concepts, and

are introduced to describe SP styles formally.

C. Added Semantics to Process Connectors

By analyzing the SP models behavior we identify the

recurrent activities of adaptation and Flow control. Thus, we

identify taxonomy of explicit connectors for modeling SP

architectures. These process connectors offer the possibility

of managing the interactions independently of the SP kinds

and orientation. These Process Connectors are very inter-

esting for the agile methods that respect processes where

flexibility and dynamicity are very required.

Figure 3. Software process connector’s taxonomy.

According to Process Connector taxonomy, two kinds of

process connectors are identified:

• Data Flow connector: That represents an activity

that adapts the work product to be used by the con-

nected Processe Components. This kind of activities

are independent from the development or management

activities, their preoccupation can be implemented and

reused independently from the Process Components

preoccupation. These connectors connect only Data

Flow Ports.

• Control Flow Connector: They assure and control

the execution quality of the SP model considering

the stakeholders priorities. Defining these connectors

give us the required SP flexibility. Introducing ”Control

Flow Connectors” that formalize the SP execution,

allow not only personalizing the SP style execution,

but also controlling them and handling the execution

deviations by adapting the Process Connector parame-

ters.

D. Added Semantics to Process Styles

Another important contribution is the formal introduction

of SP styles. Defining architectural styles for SPs facilitates

not only their modeling by exploiting the characteristics of

the recurrent structures, but also, allows creating new SP

models by combining different styles.

The identification of invariants, constraints of the re-

current structure of a given process allows extending this

solution to other processes kinds that are not necessarily

SPs.

Figure - 4- depicts the architectural view of the SP

according to our adopted semantic. The Process Configu-

ration is an assembly of Process Components and Process

Connectors. The Control Flow is ensured by connectors

”Control Flow” (Precedence Connector), on the other hand,

the transfer of the work products is ensured by connectors

Figure 4. Process configuration respecting the ”V life cycle” topological
style.

”Data Flow”(transmission connectors). These two kind of

connectors have their own kind of Process Ports.

The interpretation of the software life cycle as architec-

tural style is undeniable. The added semantics to the SP

architectural concepts, allow not only defining ”topologi-

cal” styles (V life cycles for example), but also, defining

execution styles by adjusting the parameters of the ”Control

Flow” connectors defined in our taxonomy.

Thus, the Process Configuration depicted in figure -

4- respecting the topological style ”V life cycle” can be

combined not only to other topological styles, but also,

with other execution styles by introducing other types of

”Control Flow ” connectors. For example, by introducing

Control Flow connectors ”Quality of execution (QoE)”, this

configuration can be modeled to give the priority to time,

the cost or the quality of the realization according to the

stakeholders requirements.

V. METHOD PLUGIN PROFILE EXTENSION

Having a complete semantic to describe a SP architecture,

the extension of Method Plugin profile can be done, for

this purpose, we introduce new stereotypes to describe the

architectural elements of the SP architectures: Two abstract

stereotypes are introduced (figure-5 -):

• Process Architectural Element: is an abstract ”Pro-

cess Element” that describes the common characteris-

tics of the process architectural elements that compose

the structural view of the SP architecture.

• Method Content Architectural Element : is an ab-

stract ”Method Content Element” that describes the

common behavior of the process style architectural

elements.

Figure 5. Method Plugin profile Extension with the abstract architectural
concepts.

We distinguish these two stereotypes as the ”Process

Style” is a ”Method Content Package” (Figure -6-) and its

elements are only a ”Method Content Elements”, however,

The ”Process Configuration” is a ”Process Package” (figure-

7-) and its elements are only a ”Process Elements”.

Figure 6. Method Plugin profile Extension with Process Architectural
Elements.

The stereotypes specialized from ”Process Architectural

Elements” describe the basic process configuration elements

(Figure-6-). The ”Process Component”, ”Process Connector”

and ”Process Configuration” describe treatements done to

create or adapt process flow (DataFlow or ControlFlow).

The ”Process Connector Roles” and the ”Process Ports” are

interfaces of these treatements units.

The stereotypes specialized from ”Process Architectural

Elements” describe the process style basic elements (Figure

-7-). The ”Process style” stereotype is a ”Method Content

Architectural Element” that describes the characteristics of

Figure 7. Method Plugin profile with Method Content architectural
Elements.

the recurrent structures.

As ”Process Component” and the ”Process Connector”

are activities, so the ”Process Activity Definition” is a

”Method Content Architectural Element” that describes the

process component type and the process connector type.

The ”Default Activity Definition Parameter” Is a ”Method

Content Architectural Element” that describes the defaults

parameter of the Process Activity Definition, it is used

particularly to declare default directions of the Work Product

Definition.

The figure -8- depicts the proposed SPEM metamodel

to describe SP configurations. As software configuration,

a SP configuration is composed from ”Process Compo-

nents”, ”Process Connectors” and its interfaces. A ”Process

Configuration” can respect ”Process Styles”. The ”Process

Components” are connected by using explicit ”Process Con-

nectors”. The link between ”Process Ports” of the ”Process

Components” and ”Process Connector Role” of the ”Process

Connector” is done via ”Attachments”.

We define a ”Process Style” according to its ”Activity

Definition” that describes ”Process Connector Type” and

”Process Component Type”. At this level, only the ”Activity

kind” property distinguish between the ”Process Compo-

nent” and the ”Process Connector”. We Add ”Style kind”

property to ”Process Style” class to differentiate between

”topological style” and ”execution style”.

The ”Activity” is constituted from a set of ”Break Down

Element” as ”Task Uses”, ”Role Use”...etc. So, by transition,

the ”Process Component” and ”Process Connector” (that are

activities) are described with a set of ”Task Definition”,

”Role Defintion” ,”Tool Definition” and ”Qualification”. So,

the ”Activity Definition” is composed from ”Task Defini-

tion”, ”Role Defintion” ,”Tool Definition” and ”Qualifica-

Figure 8. SPEM classes for describing Process Configurations.

Figure 9. SPEM classes for describing processes styles.

tion” (figure-9-).

The ”Default Activity Definition Parameter” is used to de-

scribe the ”Work Product Definition” (that define the Process

Port type and Process Pole Connector Type)Direction.

VI. CONCLUSION

This paper presents a complete semantic of the basic

architectural concepts needed to describe SP architectures.

It treats also, the SPEM profile extension with the identified

architectural concepts. This work is a necessary step to

implement our proposed approach for reusing SPs based on

software architectures. The proposed approach for reusing

SPs is based on describing SP models as software architec-

tures by exploiting SPEM metamodel conceptualization.

In order to extend the Method Plugin profile, we initially

propose a generic metamodel for SPs architecture concepts.

To identify the needed SP architectural concepts, we have

identified the lacking architectural concept in SPEM meta-

model. Then, we have studied the existing formal metamod-

els describing software architectures. As no complete formal

metamodels for software process architectures is done, we

strongly inspired from existing metamodels dedicated for

software architectures [15] [14].

Through the analysis of SPEM packages and by consider-

ing the existing architectural concepts; we identify all SPEM

concepts that can represent, specify, and specialize the iden-

tified architectural concepts or its properties. We proposed

an extension of the Method Plugin profile. We detailed the

added stereotypes and propose a SPEM extension to describe

the process architectures and their styles.

Our most important contribution is the definition of ex-

plicit SP connectors; these connectors allow facilitating,

adapting, controlling SP interactions.

The distinction between the ”creation” activities and the

”adaptation and control” activities confers the SP a greater

flexibility and dynamicity by controlling and specifying

interactions between activities which are much requested

in the new development processes. It is considered as the

basis of our software architecture definition; this distinction

is motivated by the need to have an explicit execution

model easily identifiable in the process model. This view

allows controlling and SP execution and modifications. A

process connectors’ taxonomy is defined by studying the

SPs behaviors; also, by composition we can create new

connectors useful to specific situation that was not predict.

Other contribution is the definition of architectural styles

specific to SPs, it contributes significantly to the SP mod-

eling and the execution quality; thus, it is possible, not

only to reuse the good practices and the particular strategies

adopted by the processes developers (by formalizing this

knowledge), but also, to combine, personalize, adapt these

practices by ensuring a coherent results. Also, the ”topo-

logical” and ”execution” styles separation allow formalizing

the execution view explicitly independently from the other

views. This possibility is a significant advantage as it ensures

the good execution of the SP model by allowing identifying

errors easily and doing SP modifications rapidly, that ensure

the success of the software development project. Defining

formally invariants and constraints process styles is one

of the perspectives of our work, for this purpose we are

studying software life cycles characteristics to describe it

formally.

By adopting the semantic suggested for the description of

SPs architectures, it is possible to describe SP architectures

in a rigorous way using existing ADLs. Thus, we could use

ACME ADL to describe SPs Architectures without large

difficulties. The suggested semantic formalize explicitly

dependencies between Process Components, it handles the

interconnection problems between Process Components by

using explicit Process Connectors, which is more efficient

compared with the semantic offered by SPEM metamodel.

The integration of these concepts to SPEM metamodel

is done by respecting the SPEM essence, the ”Method

Content” concepts are separated from ”Process Structure”

concepts. Also, it completes the SPEM purpose which is

being a metamodel that describes the most kind of SPs

including SPs architectures.

REFERENCES

[1] Object Management Group, Software Systems Pro-
cess Engineering Meta Model, v2.0. http://www.omg.org/cgi-
bin/docFormal/2008-04-01.

[2] N. Medvidovic, R.N. Taylor, A Classification and Comparison
Framework for Software Architecture Description Languages.
IEEE Trans. Software Eng. 26 (1): 70-93. 2000.

[3] F. Dai, T. Li, N. Zhao, Y. Yu, B. Huang , Evolution Pro-
cess Component Composition Based on Process Architecture.
ternational Symposium on Intelligent Information Technology
Application Workshops, Vol.00, pp. 1097-1100, 2008.

[4] B. Combemale, X. Cregut, A. Caplain, B. Coulette Towards, a
Rigorous Process Modeling with SPEM.ternational Conference
Entreprise Information System ICEIS’06. 2006. PP. 530-533

[5] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, R. Madachy,
Using the WinWin Spiral Model: A Case Study. Computer, vol.
31, no. 7, pp. 33-44, July 1998.

[6] A. Alti, T. Khammaci and A. Smeda, Integrating Software
Architecture Concepts into the MDA Platform with UML
Profile.Journal of Computer Science 3 (10): 793-802.2007.

[7] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles and J.
E. Robbins, Modeling Software Architectures in the Unified
Modeling Language.ACM Transaction on Software Engineer-
ing and Methodology, Vol.11, N1, page 2-57. January 2002.

[8] S. Dami, J. Estublier, M. Amiour, APEL: a Graphical
Yet Executable Formalism for Process Modeling. journal of
Automated Software Engineering, vol 5,pp 61-96. 1997.

[9] C. Hofmeister, R. L. Nord, D. Soni, Describing Software
Architecture with UML. Proc. of 1st Working IFIP Conference
on Software Architecture, pp 145-160,1999.

[10] M. Graiet, T. M. Bhiri, J.P. Giraudin, N. Belkhatir, Archi-
tecture des systmes avec la norme UML2.0 et l’ADL Wright.
CAL2006, pp 83-100, 2006.

[11] J. Enrique, P. Martinez, Heavyweight extensions to the
UML metamodel to describe the C3 architectural style. ACM
SIGSOFT Software Engineering notes, vol 28, Issue 3, 2003.

[12] M. Goulao, F.B. Abreu, Bridging the gap between Acme and
UML 2.0 for CBD. SAVCBS’03 Specification and Verification
of Component-Based Systems, Workshop at ESEC/FSE, 2003.

[13] Object Management Group(OMG),
Unifed Modeling Language.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/.

[14] M. Mancona Kand ,A. Strohmeier, Towards a UML Profile
for Software Architecture Descriptions. Proc. of the 3rd interna-
tional conference on The unified modeling language, pp:513–
527, 2000.

[15] A. Alti, A. Boukerram, A. Smeda, S. Maillard, M. Oussalah,
COSABuilder and COSAInstantiator: An Extensible Tool for
Architectural Description. J. of Software Engineering and
Knowledge Engineering, pp 423-455, 2010.

[16] A. Hudaib, C. Montangero, A UML Profile to Support
the Formal Presentation of Software Architecture. th
Annual International Computer Software and Applications
Conference, pp.217, 2002.

[17] J. Choi, W. Scacchi, Modeling and Simulating Software
Acquisition Process Architectures. Journal of Systems and
Software,vol 59, pp 343-354, 2000.

[18] N. Belkhatir, J. Estublier, Supporting Reuse and Configura-
tion for Large Scale Software Process Models. th Interna-
tional Software Process Workshop, 1996.

[19] N. Medvidovic, P. Grünbacher, A. Egyed, B.W. Boehm,
Bridging models across the software lifecycle. J. System Soft-
ware, vol 8, pp 199-215, 2003.

[20] D. Avrilionis, N. Belkhatir, P.Y. Cunin,A unified framework
for software process enactment and improvement. ICSP ’96
Proceedings of the Fourth International Conference on the
Software Process (ICSP ’96), pp 102-108, 1996.

[21] B. Coulette, T. D. Thu, X. Crgut, , B. T. Dong Thi, RHODES:
A Process Component Centered Software Engineering Envi-
ronment. ICEIS’00, Second International Conference on En-
terprise Information Systems, pp 253-260, 2000.

