
HAL Id: hal-01064439
https://hal.science/hal-01064439v1

Submitted on 30 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

REUSING APPROACH FOR SOFTWARE
PROCESSES BASED ON SOFTWARE

ARCHITECTURES.
Fadila Aoussat, Mohamed Ahmed-Nacer, Mourad Chabane Oussalah

To cite this version:
Fadila Aoussat, Mohamed Ahmed-Nacer, Mourad Chabane Oussalah. REUSING APPROACH FOR
SOFTWARE PROCESSES BASED ON SOFTWARE ARCHITECTURES.. 12th International Con-
ference on Enterprise Information Systems, Jun 2010, Funchal, Madeira, Portugal. �hal-01064439�

https://hal.science/hal-01064439v1
https://hal.archives-ouvertes.fr

REUSING APPROACH FOR SOFTWARE PROCESSES BASED

ON SOFTWARE ARCHITECTURES.

 Fadila Aoussat, Mohamed Ahmed Nacer,
Department of computer science, Saad Dahlab Blida University, BP270, Route Soumaa, Blida, Algeria.

Department of electronique and computer science, University of Sciences and Technology Houari Boumediène

BP32,ElAlia, BabEzzoua, Algeria.

A_zahoua@yahoo.fr, Anacer@cerist.dz

Mourad Oussalah,
LINA Laboratoy, CNRS UMR 6241, 2, Rue de la Houssinière, BP 92208, 44322

University of Nantes, France.

Mouard.oussalah@univ-nantes.fr

Keywords: reuse based component, software processes domain ontology, SPEM metamodel, software architecture

concepts.

Abstract: Capitalizing and reusing the knowledge in the field of software process engineering is the objective of this

work. In order to ensure a high quality for software process models, regarding to the specific needs of new

development techniques and methods, we propose an approach based on two essential points: The

Capitalization of the knowledge through a domain ontology, and the reusing of this knowledge across

handling software process models as software architectures.

1 INTRODUCTION

The fast growth of technology and development

tools added to the continuous change of

development practices and traditions (component-

oriented development, pair programming,...), often

suggests new methods and new development

processes (UP, XP, 2TUP....). Modeling software

processes with high-quality requires experience and

a confirmed expertise, regarding years of reflexion

and refinement. Reusing software processes that

have been previously developed, tested, used and

that have proven their efficiency is the main

objective of our work.

Several approaches for modeling software

processes based components have been proposed

(Gary,1998),(Avrilionis,1998),(Dami,1998),

(Hiltomi,1996),(Thu,2000), (Drai,2008), (Belkhatir,

1996), Most of these approaches use the concept of

"Component Software Process" described as a

fragment or a part of a software process. However,

as reusing components approaches, each approach

offers its own solution, addressing a particular

aspect of modeling and executing software

processes.

The major weakness of these approaches is that

the developed software process components are

specific to the environment; the use of the software

process components is still limited to the

environment itself. Indeed, these environments

operate independently and do not reuse software

process components developed in other

environments. In the same context of reuse scope,

the concept of software process component On The

Shelf "ready for use” has not yet appeared; so the

immaturity and newness of this area is a logical

justification for this work.

Based on the richness of the field in terms of

concepts and experiences, as well as the limitation of

existing approaches (software processes components

weakly reusable, architectural abstraction not taken

into account), we propose a new approach that has

as main goal to expand and to facilitate a relevant

reuse of software process models in term of

knowledge. Our solution is based on the use of a

mailto:A_zahoua@yahoo.fr
mailto:Anacer@cerist.dz
mailto:Mouard.oussalah@univ-nantes.fr

domain ontology which capitalizes this knowledge

to allow an inference of new software process

models. By focusing on the architectural abstraction

and addressing the software process as pure software

architecture, solutions can be proposed for more

efficient reuse. Therefore, the software processes

that we develop are software processes based on

software architecture. So, for handling and

describing software architectures processes we will

inspire from the existing ADL (Architecture

Description Language).

The paper is organized as follows: Section 2

summarizes existing approaches for modeling

processes based on software components; the

objective is to focus on the strengths of these

approaches, and particularly, to detect their lacks.

Section 3 presents the general outlines of our

approach to modeling software process based

software architecture. Our approach is based on the

use of a domain ontology that contains software

process knowledge. Section 4 details the essential

points for creating the ontology and discusses the

encountered problems and the possible solutions.

We conclude the paper summarizing the work with

the future research.

2 EXISTING APPROACHES FOR

THE REUSE OF SOFTWARE-

BASED METHODS OF

COMPONENTS

We distinguish tow kind of approaches:

approaches of the model level of the OMG modeling

architecture, and approaches of the metamodel level.

2.1 Model level

Several approaches to software process modeling

based components have been developed. Each

approach offers a particular solution, focusing on the

concerns of its user, as the heterogeneity of

languages process modeling software (Gary, 1998)

(Avrilionis,1998), the heterogeneity of execution

platforms (Hiltomi,1996), the distributed execution

(Dami, 1998) or the conformity with SPEM meta-

model(Thu, 2000). The major weakness of these

approaches is that the components are specific and

their use is limited to their original environment.

These systems typically operate so independently

and do not reuse "external" components of their

software processes. The studied approaches use

object-oriented languages for software process

modeling; they implement their components as

classes and use the object mechanisms (inheritance,

instantiation ...) (Table 1-line -2 -).

Table1 : Approach oriented object characteristics

2.2 Metamodel level SPEM (Software and Systems Engineering

Metamodel) (OMG-SPEM, 2008) is a metamodel

Component

Characteristics

Environment

RHODES

Framework OPC PYNODE ENDEAVORS APEL

Creating period Before the

reuse

During the reuse During the reuse Adapted during

the execution.

Before the reuse

Processes Modeling

Language(PML)

PBOOL+

(Object

oriented)

Object oriented

languages

 Object oriented

languages

ObjV based

OOP LISP

Not specific

language.

Heterogeneity Homogeneous Syntaxic Syntaxic Homogeneous Syntaxic/Semantic

Assembling

Static Dynamic and

Incremental.

Dynamic and

Incremental.

Static No assembling

Metamodel Use all concepts of the metamodel

SPEM

Basic elements

(role/activity/

artifact)

Basic elements Basic elements Basic elements

(activity, resource

artifact)

Executing plateformes Same platform Same platform Same platform Multiple Multiple

Component

identification

Not assisted Half assisted

Half assisted No identification.

Reusability scope Internal to the system

Configuration

management

No management

(graphical representation of the assembly)

that describes a large range of software processes. Its

organization into multiple packages offers not only

several view points on the software processes

(method view, structure view, reuse view ...), but

also, facilitate the expansion and integration of new

concepts.

SPEM supports different types of reuse: on one

hand, while specifying "Process Behavior" package

to capture external behavior of software process

models that are not conform to SPEM metamodel,

and on the other hand, while introducing reuse based

on software process Components by providing

another package: “the Method Plugin package”.

However, reusing components in SPEM faces

several "recognized" problems that must be treated.

The most important are the interconnection problems

of components: heterogeneity of the terminology

used for the port component "Work Product Port”,

the management of the number of ports per

component creates difficulties for assembling

components.

3 OUR APPROACH

The main contribution of our approach is that we

model software processes as software architectures.

We model the content of software processes

regardless of their structure, and we model the

logical structure independently from the software

process implementation. This separation is one of the

characteristics of software architectures; that’s

allows us greater flexibility during the modeling

process management and better control when

modeling different kinds of software processes.

3.1 Engineering for reuse

This step attempts to remedy the low reusability of

software process components and to take advantages

of the maturity of the field in terms of experiences

and conceptualization. To capitalize the knowledge

of the domain, the proposed solution is the use of a

domain ontology including most concepts in the

software processes field. The ontology will form a

support that contains the knowledge of this area,

which will be reused regardless of their original

environment. The instantiated ontology becomes a

knowledge base, from which we can infer principally

new software process models based on software

architecture.

3.2 Engineering by Reuse

Engineering by reuse is occurring by the inference of

new software process models from the ontology

knowledge. The query must consider the request of

the process developer and then infers the knowledge

that matches developer requirements.

The query should allow the software process

architecture inference, should identify software

process components and their configuration

(assembly). The assembly can be conform to a

software process architectural style as it cannot be.

Figure 4: Software process modeling based on software architecture inferring.

4 DOMAIN ONTOLOGY FOR

THE INFERENCE OF PROCESSES

BASED SOFTWARE

ARCHITECTURE

To capitalize the knowledge of software process

engineering, our solution is based on a domain

ontology. To collect the concepts of our ontology,

we exploit existing conceptualizations involving the

basic concepts for modeling and executing software

processes. Our work was oriented to the SPEM

Ontology domain
for sortware

processes

Know how for and by
software process

engineering

Request

3- Final
proposition

finale

Result

Software process
developer

2- Negociation

I want … , And …., Particulary … , But not…

I have it

Inferred software process

structure

1- request :
-Basic caracteristics.
-Qualitative requirements
-Qualitative values and accepted level

Software process model
based software

architecture

4- software architecture
modeling

metamodel, that is more general, not specific to an

environment and includes the concepts of several

software process types. To create our ontology, we

generate our ontology SPEMOntology

“automatically” from the SPEM metamodel, we use

the models transformation language ATL (ATL,

2006).

An ATL transformation is composed of ATL

modules. For our generation we use three existing

transformation modules: UML2OWL OWL2XML

and UML2Copy. However, for our work, this

transformation is not sufficient as it does not

transform a "stereotyped" UML model conforms to a

UML profile into an OWL model. The

transformation UML2OWL does not contain

transformation rules applied to profiles and their

constituents (stereotypes, constraints and tagged

values). Therefore, we define a new transformation

(ATL1) which applies the profile SPEM model

SPEM. Finally, the successive transformation

(ATL1, ATL2) generate our SPEMOntology.

5 CONCLUSION

In this paper we explore the problem of limited

reuse for software processes. We first identified the

shortcomings of existing approaches; in fact, many

approaches was proposed for modeling software

processes based components, focusing however on a

particular problem. Also, as the reasoning on the

architectural abstraction level is not being a priority;

the representation of architectural concepts is

insufficient. The classification of these approaches

in engineering “for” reuse can justify the absence of

some concepts such as the logic configuration;

however, it does not justify the low representation of

other concepts.

Our paper introduces the general outlines of a

new approach to modeling software processes based

components. Our approach tempts to remedy the

shortcomings of existing approaches (low reusability

of software components, architectural concepts

poorly exploited) and to exploit the reuse to its

extreme: in fact, due to the rigidity and the

dependency of software process to their

development environment, high quality process

models are developed and are not "re" exploited.

We believe that the exploitation of the

architectural level of software processes will not

only allows the effective reuse of knowledge in

software process domain, but also, contributes

significantly to facilitate and to resolve the modeling

problems, the execution and the simulation of

different software process structures.

The validation of our proposition is underwork.

Mutiple points remain to be developed: the

extension of the ontology and the extension of

SPEM with architectural concepts for software

processes are the next targets of our work.

REFERENCES

Gary, K., Lindquist, T., Koehnemann, H., Derniame, J.-C.

1998. Component-based software process support.

13th IEEE AS E’98. Page(s):196- 199.

Avrilionis, D., Belkhatir, N., Cunin, P.-Y, 1996. A unified

framework for software process enactment and

improvement. ICSP’96. Page(s):102 – 111.

Dami, S., Estublier J., Amiour, M. January 1998. APEL:

A Graphical Yet Executable Formalism for Process

Modeling. ASE’98. Vol. 5, No. 1, pp. 61-96.

Hitomi, A. S., Bolcer G. A., Taylor, R. N., 1996.

Endeavors: A Process System Infrastructure. ICSE’96.

Thu, T. D., Bich Thuy, D. T., Coulette B., Cregut X.,

2000. Process component modeling: integration in the

RHODES environment. Journées francophones

d'ingénierie des connaissances, Toulouse, France.

pp.165-173.

Object Management Group, Software & Systems Process

Engineering Meta Model, v2.0

http://www.omg.org/cgi-bin/doc?Formal/2008-04-01.

Zamli, K. Z., Mat Isa. N. A., 2004. A survey and analysis

of process modeling languages. Malaysian Journal of

Computer Science, Vol.17 No. 2 , pp. 68-89

Dai, F., Li, T., Zhao, N., Yu, Y., Huang B., 2008.

Evolution Process Component Composition Based on

Process Architecture, ISIITA Workshops. Volume 00,

Pages 1097-1100.

Borsoi, B. T., Becerra J. L. R., 2008. A Method to Define

an Object Oriented Software Process Architecture.

ASWEC’08, pages: 650-655.

 Boehm, B., 1996. An Open Architecture for Software

Process Asset Reuse. ISPW’96.
ATLAS group LINA & INRIA ATL: Atlas

Transformation Language, 2006. ATL User Manual,

version 0.7, Nantes.

Belkhatir, N., Estublier, J., 1996, Supporting Reuse and

Configuration for Large Scale Software Process

Models. ISPW’96.

http://www.omg.org/cgi-bin/doc?formal/2008-04-01
http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES429&coll=portal&dl=ACM
http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES429&coll=portal&dl=ACM

