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Abstract

Elastic guided waves are of interest for inspecting stmestaue to their ability to propagate over long distances. In
numerous applications, the guiding structure is surrodrgea solid matrix that can be considered as unbounded in
the transverse directions. The physics of waves in suadpanwaveguide significantly diers from aclosedwaveg-
uide, i.e. for a bounded cross-section. Except for trappedeas, part of the energy is radiated in the surrounding
medium, yielding attenuated modes along the axis calld¢/lsedes. These leaky modes have often been considered
in non destructive testing applications, which require @guf low attenuation in order to maximize the inspection
distance. The main fliculty with numerical modeling of open waveguides lies intilounded nature of the geom-
etry in the transverse direction. Thidiitiulty is particularly severe due to the unusual behavioeaky modes: while
attenuating along the axis, such modes exponentially glomgahe transverse direction. A simple numerical proce-
dure consists in using absorbing layers of artificially graywiscoelasticity, but large layers may be required. The
goal of this paper is to explore another approach for the edatipn of trapped and leaky modes in open waveguides.
The approach combines the so-called semi-analytical fhiment method and a perfectly matched layer technique.
Such an approach has already been successfully appliedlar scoustics and electromagnetism. It is extended here
to open elastic waveguides, which raises specifitadilties. In this paper, two-dimensional stratified wavegsiare
considered. As it reveals a rich structure, the numerig@rialue spectrum is analyzed in a first step. This allows
to clarify the spectral objects calculated with the methiadluding radiation modes, and their dependency on the
perfectly matched layer parameters. In a second step, mcahdispersion curves of trapped and leaky modes are
compared to analytical results.
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1. Introduction

1.1. Context and objectives

Elastic guided waves are of interest for inspecting eloegjatructures due to their ability to propagate over long
distances. When the guiding structure is embedded intoi@ sw@trix, the waveguide can usually be considered as
open (unbounded in its transverse direction). The phydiegaves in open waveguides significantlyfdrs from
closed waveguides. The modes that are generally consigdesedh structures are either trapped or of radiation type.
Another category of slightly more artificial objects, cdlleaky modes, can also be considered.

Trapped modes can be seen as perfectly guided waves in tbe &t on the one hand, they propagate without
attenuation along the waveguide axis (their axial waverenigreal) and on the other hand, they decay exponentially
in the transverse directions (their transverse wavenuislire imaginary). Such waves are confined near the core

*Corresponding author
Email addressfabien.treyssede@ifsttar.fr (F. Treysséde)
1POEMS (Propagation d’Ondes: Etude Mathématique et Stinnjeis a mixed research team (UMR 7231) between CNRS (Eéetional
de la Recherche Scientifique), ENSTA ParisTech (Ecole NakoSupérieure de Techniques Avancées) and INRIA {lndtiational de Recherche
en Informatique et en Automatique).

Preprint submitted to Wave Motion March 27, 2014



or the surface of the structure and do not loose energy imfiiréte surrounding medium. They constitute a discrete
set, possibly empty. For scalar waveguides (i.e. for adc@u&iH or electromagnetic waves), trapped modes only exist
when the velocity of waves in the surrounding medium is gnetitan in the core [1]. For elastic waveguides, this
existence criterion is more complex because two kinds ofewalongitudinal and shear waves, are present [2]. In
particular, the coupling between both can lead to the peesehsurface waves, called Stoneley waves [3], which are
trapped at the interface betweelfeient materials. Besides, a phenomenon analogous to tlae saae occurs for
body waves: trapped waves are present when the shear wagityéd greater in the surrounding medium, but no
longer when this velocity is lower. The latter configuratisrwidely encountered in civil engineering applications
(tendons, rockbolts, buried pipes, railways), the outedioma usually consisting of soft materials (cement, coregret
soil).

Unlike trapped modes, radiation modes have an oscillatgigabior in the transverse directions (their transverse
wavenumber is real) and can be either oscillating or evamse the longitudinal direction (real or pure imaginary
axial wavenumber). They constitute a continuous spectrustamding waves [4, 5]. This continuum is intrinsic to
the unbounded nature of the cross-section of the wavegltiakows to represent all radiation phenomena which may
occur in the surrounding medium. In the context of non-desire evaluation (NDE), radiation modes are of less
interest because the continuum hides the key property whiaguired: the ability to propagate over long distances.
Actually, such an information is condensed in the notioreakly modes.

As opposed to trapped modes, leaky modes can be interpretegparfectly guided waves in the sense that they
are waves propagating with attenuation along the wavegai@e This attenuation is due to the leakage of energy
into the surrounding medium. Owing to these radiation Isstee axial wavenumber becomes complex. In practice,
such losses can strongly limit the application of guidedev@chniques. Hence, an accurate determination of leaky
modes appears to be a necessary step for the NDE of embegdstractures based on guided waves.

Leaky modes are true solutions of the equations. Howeveir, tiehavior is somewhat unusual at infinity: while
exponentially decreasing along the axis, leaky modes exutcaily grow along the transverse direction. This behavio
can be readily deduced from the dispersion relatién, k2 = w?/c?,, wherek denotes the axial wavenumblky,is the
transverse wavenumber,is the angular frequency amg, denotes the speed of waves inside the infinite surrounding
medium (one assumes a scalar waveguide for simplicity).imlaginary part of the dispersion relation then yields:

KK, = KK,

where’ and” denote real and imaginary parts respectively. For instasmesidering a leaky wave propagating and
attenuating in the positive directioR’ (> 0, k” > 0) yields the inequalitik;k; < 0, which means that the wave is
necessarily exponentially growing{ < 0) as it radiates toward a given transverse directin-(0).

The exponential growth of leaky modes is rather well-knowreliectromagnetism (see [1] for instance). This
particularity has sometimes been mentioned in elastodigs®, 7, 8, 9, 10]. From a mathematical point of view,
leaky modes are complex poles that do not belong to the peigenvalue spectrum because such poles are located
on a forbidden Riemann sheet [11, 1]. These modes consditliserete set which is actually not part of the complete
modal set constituted by the discrete set of trapped modktharcontinuous spectrum of radiation modes representing
the contribution of body waves [4, 12, 5, 13]. However, leakydes have the potential to give a good representation
of the continuum over an area close to the core or the surfatieeovaveguide. From a physical point of view,
leaky modes are then able to resemble the transverse giadtgdse of a wave beam, which occurs over a limited
transverse distance inside the surrounding region, asstm Ipropagates far from the excitation zone [6, 7, 13].

The concept of leaky modes have turned out to be meaningftiheoNDE of solid waveguides [14, 15, 16, 17,
18, 19], where the problem consists in looking for modestglow attenuation in order to maximize the inspection
distance. Analytical tools have been developed for modadjpen elastic waveguides, based on the Thomson-Haskell
method [20, 21] or the global matrix method [22, 23]. Methbdsed on Debye series [24] have also been proposed.
Analytical techniques are yet limited to simple geomet(®ates, cylinders).

For complex geometries, a classical approach relies onrthie élement (FE) discretization of the eigenproblem
in the transverse direction, which is often referred to &ssbmi-analytical finite element (SAFE) method (see for
instance [25, 26, 27, 28]). Yet for open waveguides, fAdlilty arises because the geometry is unbounded in the
transverse direction. Thisfdiiculty is particularly severe due to the exponential growftteaky modes. A simple
procedure that can be used with existing codes has beengmopo [19, 29], which consists in using absorbing
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layers (AL) of artificially growing viscoelasticity. In pctice, large layers may be required in order to reduce aific
reflections by the absorbing layer. Other methods have beecifically developed in order to deal with the FE
modeling of open waveguides. Hladky-Hennion et al. [30]ehpvesented a procedure based on a non-reflecting
condition together with an original change of variable, the approach has been limited to structures immersed in
fluids. Recently, Mazzoti et al. [31] have coupled the SAFEhud with a boundary element technique, which yields
nonlinear eigenproblems and requires higher computaitiogst

Instead of AL, an alternative technique consists in usirrfgely matched layers (PML). Contrary to the approach
developed in [31], the PML approach has the advantage totéeadinear eigenvalue problem (same for AL). This
technique has already been applied to the scalar wave eguatiacoustic waveguides [32, 33] as well as electro-
magnetic waveguides [34, 35]. Closely linked to such pnoislea mathematical analysis has been reported in [36] for
the FE computation of acoustic resonances in open caviittesRMLs.

The main goal of this work is to compute trapped and leaky madeopen waveguides by applying a SAFE-
PML approach to the equilibrium equations of elastodynartion-scalar). The numerical eigenspectrum, including
radiation modes, is analyzed in order to clarify the inflené the various PML parameters. Theoretically, the
PML technique allows to strongly attenuate any type of waithaut reflection, thanks to an analytical continuation
of equations into complex spatial coordinates. CompareflLtoone expects that the perfectly matched property
will allow reduction of the artificial layer size. Anotherftérence between the two approaches is seldom mentioned:
computing leaky modes with PMLs is mathematically releyaimice both leaky modes and PMLs are defined through
analytic extensions. Conversely, the ability of AL to appnaate leaky modes has, up to our knowledge, no theoretical
explanation.

In this paper, one-dimensional modal problems are corsifjére., two-dimensional elastic waveguides corre-
sponding to stratified planes. For clarity, Sec. 1.2 re¢hlsmathematical definition of the various kind of modes in
the continuous problem. In Sec. 2, the SAFE-PML approachdsgmted. The eigenvalue spectrum of the method is
analyzed in Sec. 3. In Sec. 4, numerical dispersion cunesa@nputed and validated thanks to analytical results of
the literature.

1.2. Mathematical definition of the various kinds of modes

One considers a two-dimensional waveguiile R in the (X 2) plane, wherez is the waveguide axisx i the
transverse direction arfl c R represents the cross-section of the waveguide. The tiltation will be explained
later in section 2.3 with the introduction of the PML methdthe waveguide is filled by a linearly elastic material
and we assume small plane strains and displacements ir,t)ela@ne. The time-harmonic dependence is chosen as
e !, As this paper is restricted to the study of propagation rapdeoustic sources and external forces are dropped.
Consider the two-dimensional elastodynamic equationsfiat by the displacement vect®f(X, 2) :

V.o(U)-*pU=0 inSxR,

whereg'is the mass density ardU) is the stress tensor, which is related to the strain tes(dd) = (VU+(VU)T)/2
by the linear relatiow(U) = C : e(U) whereC is the stifness tensor. The superscriptienotes the matrix transpose.
When$S # R, a free or fixed boundary condition is added to the above eopsti
We assume that both andg depend only on the transverse coordingteliich means that we consider uniform
rectilinear waveguides. The modes we are interested inaatiplar solutions of the above equations which have the
form:
U% 2) = (X € forkeC. (1)

The equations which are satisfied Byare simply deduced from those @f by replacing derivative®/dz with
products byik. We are thus led to a one-dimensional problenifarhich can be written formally as a linear equation:

LK) G=0, ()

where£(k) has a quadratic dependencekon

In the case of a closed waveguide, that is, a bounded cretiss8, it is well known that this problem has non-
zero solutiondi only for a discrete infinite set of values kfe C. For real values ok, the associated solutiotis
correspond to guided waves which propagate without atteua thez-direction.
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On the other hand, the case of an open waveguide, that is,lmunded cross-sectidh is more involved. The
different kinds of modes that can be considered depend on theibeb&li(X) at infinity (as|X| — o). This behavior
can be easily expressed if we assume that outside a boundeaf ffze cross-section, our waveguide is made of an
isotropic homogeneous medium. In this case, following teéholtz decomposition method (see [37] for instance),
the displacement field appears as a superposition of lafigabiand shear waves:

=)+ (o ) 7 @

whereyg andgs are scalar potentials which satisfy:

0% w* o). 8ps [(* )~
622'}‘?'—'( g0|—0 and 952 +(C—§—k)tps—0,

wherec, andcs are the longitudinal wave and shear wave velocities res@dgtHencey is a linear combination of
two exponential functions expikiX) wherek? = w?/c? — k?, and the same fapswith k3 = w?/c2 — k?:

P1s(X) = AiJr/seXF(”kl/s)N() + A expl—ikisK),

whereA; € C. If no condition ong and¢s is imposed, then for ak € C, one can always find a non-zero solution
0 to (2). For non-real values d&§ andks, this solution is in general exponentially increasing usld® associated
codficientsAy, vanish.

Itis generally admitted that an exponentially increasiabdvior of the field is not physically relevant, so that the
potentialsy andgs are naturally chosen either oscillating or exponentiadigréasing, depending on whettkeand
ks take real values or not. The solutions which are exponéntigcreasing are referred to as trapped modes since
they remain confined near the core of the waveguide. All dboeinded solutions are called radiation modes for they
represent waves which propagate outside the core. Thesvaflkeassociated with trapped modes constitute a finite
set which represents the point spectrum of the transveaistoelynamic operatof(k), whereas those associated with
radiation modes compose its continuous spectrum.

But for non-real values df; andks, there is another category of modes which are solutions tqZBand grow
exponentially at infinity. These solutions, called leakydes, are of physical interest. They correspond to the case
where each potentigi s only involves one exponential function (i.e., eit¥r = 0 or A7 = 0, and the same foAg)
and at least one of these potentials is exponentially isangaThe values df associated with such leaky modes make
up a discrete set but are not, strictly speaking, spectijakcth Their mathematical characterization derives from a
complicated analytic continuation process which is outefgoal of the present paper. We refer for instance to the
analytic dilation technique (also called complex scalidggcribed in [38]. The latter technique is actually veryselo
to the PML method used here for the numerical computationaxfes.

2. Numerical method

2.1. Variational formulation for elastodynamics

The starting point of the SAFE method consists in the vamieti formulation of the one-dimensional elastody-
namic problem (2). For the sake of simplicity, we use streskstrain vectors instead of tensors. It can be shown that
the variational formulation of (2) can be written as:

f se' Frd% — w? f pot'idk = 0, (4)
S S
with the stress-strain relationship="Cé and the strain-displacement relations:

~ o . N . a0 . ~
e:(an—)~(+|kLz)u, 65:(Lx6—)~(—|kLz)5u. (5)
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Figure 1: (a) Example of open waveguide, (b) closure by actted PML.

The variational formulation (4) holds for any kinematigagidmissible trial displacement fiefili = [6Tx o, T. o€
denotes the virtual strain vect@idy 6,, 20¢,]T andd is the stress vectotjy 6,5, . C is the matrix of material
properties. The notatioris, andL ;, used to separate transverse from axial derivatives, direedeas follows:
10 00
Ly,=/0 0], L;,=]0 1].
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2.2. SAFE modeling of closed waveguides

In this subsection, the SAFE formulation is briefly recalfed closed waveguides (i.e. waveguides in vacuum
with a bounded cross-secti@). In this case, the tilde notation introduced in the previaussgction is useless and
can be omitted. For details on the SAFE method, the readdrtmreter to [25, 26, 27, 28, 39] for instance.

The SAFE method consists in applying a 1D finite element ntetiong the transverse directiorto the varia-
tional problem (4). The displacement is then expressed om el@ment as:

u(x) = N8(x)U®, (6)

whereN€(x) is a matrix of nodal interpolating functions abi§ contains nodal displacements on the elengent
The FE discretization of the variational formulation (4 )iy yields:

(K1 - w?M +ik(Kz - K3) + K?K3lU = 0 7)

with the following elementary matrices:

Kﬁ:f(LXN?X)TCLXN?de Kezf(LxN?x)TCLZNedx,
e

KE = fNeTLICLZNde, Me = preTNde
e

e

(8)

where the notatioN¢ is used fo@N®/dx. For each frequenay, Eq. (7) corresponds to an eigenvalue problem whose
eigensolutions yields the propagation modgsy;).

2.3. SAFE-PML method

Open waveguides, that is, unbounded cross-secfioase now considered. We assume that outside a possibly
inhomogeneous region representing the core of the wavegthé medium is homogeneous. In order to account
for the presence of unbounded layers, the basic idea cenisistosing the waveguide by replacing the unbounded
homogeneous region with a PML, truncated at some finitertistaFor clarity, Fig. 1 gives the example of a bilayer
open waveguide. Throughout this pagewill denote the PML thickness ardiwill denote the distance of the PML
interface from the cora is the core thickness.



The principle of PMLs is easily understood in our one-dinmenal situation. As shown in the introduction, the
modes we are interested in can be expressed outside theycoredns of scalar potentials andys which are linear
combinations of exponential functions exji,sX), wherek,s denotes the transverse wavenumber, longitudinal or
shear. Here fepresents the original transverse coordinate, whictais @nsider for instance the case of longitudinal
waves forxX> 0. As mentioned in the introduction, the imaginary parkofs negative for leaky modes propagating
and attenuating a& — +co, so that expk X) increases exponentially asténds to+co. The key point is to notice
that this function extends to an entire function for complailues ofx’ Hence, instead of considering realohe
can choose in the complex plane a particular pd#) parameterized by a real variabtes (0, +c0) and such that
exp(k X(x)) decays exponentially astends to+oco, which amounts to saying that ax(x) > — argk; for large enough
x (in this paper, arg denotes the principal argument defindié ia the interval ]- x, +x]). The principle of PMLs
consists in replacing the initial equations satisfiedip¥) for real X with those satisfied bi(X(x)), which can be
seen as a simple (but unusual) change of variglple X. This amounts to considering an infinite PML. As explained
in Ref. [38] for a scalar equation, thé&fect of such a PML is on the one hand, to rotate in the complexeplae
two parts of the continuous spectrum, associated respéctiith longitudinal and shear radiation modes, and on the
other hand, to reveal the leaky modes located in the regieered by the displacement of the continuous spectrum.

From a numerical point of view, the PML domain is truncated #inhite distance (here = a + d + h) where an
arbitrary boundary condition, usually of Dirichlet typs,imposed. As leaky modes decay exponentially in the PML,
this truncation should not perturb strongly their compiotaprovided the PML is thick enough. The truncation of the
PML yields a discretization of the rotated continuous speut and the associated radiation modes are oscillating in
the PML. These facts will be made clear in Sec. 3.

In the present paper, we choose:

09 = [ e ©
wherey is a complex-valued function of satisfying:
e y(X)=1forx < a+d,;
e Im{y(x)} >0forx>a+d.

Hence, from Eq. (9), the change of variabjes»x yields for any functionf

of 10f
ﬁ = ;&, dx = de, (10)

wheref(%) = f(X(x)) = f(X). For instance, the displacement and the mass densityarittea asti(X) = u(x) and
p(X) = p(X). Note thato as well as the other physical features involved in mafriare constant in the PML region.

Hence their respective analytic continuations are simpdgé constants.
From Egs. (10) and (5), the strain-displacement relatioa&®pressed as:

1 ) 1 .
€= —LXg +ikL,|u, oe= —LXg —ikL,]ou.
y ToX y ToX

With Eq. (6), the one-dimensional FE discretization of thdation formulation (4) along gives exactly the same
form of eigenproblem as Eq. (7), but with the following elertagy matrices:

1
KS = f;(LXN?X)TCLXN?de KS = f(LXN?X)TCLZNedx,
e e
KE = nyeTLICLZNde, M® = fpyNeTNedX
e e

The only diference with the elementary matrices (8) lies in #hterms, appearing in the expressionkdf, K§ and
ME.



2.4. Solving the eigenvalue problem

The eigenproblem (7) is quadratic farwhich cannot be directly held by standard eigensolvers &ilgensystem
can be transformed into the more suited generalized lirigansystem [40]:

(A-kB)U =0

with: 0 | Lo U

A= —(i-w?M) —iKo-K]) } B‘[ 0 Ks ] U‘{ kU }
Note that in the presence of PMLUS§;, K3z andM are complex symmetric but not hermitian matrices so thahaeei
A nor B are Hermitian, which makes the numerical treatment of tlewaleigensystem complicated.

Other linearization forms of the quadratic eigenproblem possible, as reviewed in Ref. [41]. Our choice is
justified by the fact thaB is non-singularB is also hermitian and positive-definite without PML). Altigh it could
be replaced with any invertible matrix (elgs or M), the identity matrix is chosen in the first rowAfandB in order
to reduce memory allocation.

In this paper, the above eigensystem is solved using the &RF#orary [42], based on the implicitly restarted
Arnoldi method, which allows to compute a specified numbeeigenvalues that are nearest in absolute value to
a user-defined shift. The non-hermitian character of medrigith PML may raise problems with the norm of the
resolvent, which can be quite large far away from poles aettl\spurious eigenvalues [36]. Yet this drawback can
be reduced by setting the PML not too far from the core, asheilshown in Sec. 3.2. The question of eigensolver
accuracy due to non-hermitian matrices is left beyond tlopeof this paper. In this paper, the possible loss of
accuracy of the eigensolver appears to be of less importhacethat of FE discretization or PML parametrization,
since it will be shown in Secs. 3 and 4 that leaky and trappedia®oan be accurately computed with the SAFE-PML
method.

It is worth noting that, due to the symmetrykf, K3 andM, if kis an eigenvalue, therk is also an eigenvalue.
Hence, the eigenproblem has two sets of eigensolutiqn&{) and ¢k, Uj) (j = 1,...,n), representing positive-
going andn negative-going wave modes.

2.5. PML parameters

From the definition of the complex coordinate (9), the PML elegs on three user-defined parameters: the thick-
nessh, the distancel and the non-dimensional attenuating functjgr).

A proper choice of the attenuating function is crucial forefiicient wave absorption inside the layer. In time-
harmonic source problems (excluding modal problems),fthistion has often been chosen as o (X)/w, where
o(X) is a continuous real function increasing inside the PML, [48&, 45]. This particular choice derives naturally
from the use of time-dependent PMLs. However, the probléghty differs for the computation of modes in open
waveguides.

As explained in section 2.3, Ki;s denotes the transverse wavenumber (shear or longitudihalgiven mode,
the dfect of an infinite PML is to transform its actual behavior ékp{X) for real Xinto an exponentially decaying
behavior exgki;sX(X)) asx tends to+ oo, wherex{x) denotes the complex path defined in (9). Hence a truncatdd PM
will act properly if explki;sX(x)) is suficiently small at the end of the PML so that only small reflecsioccur. From
Eq. (9), we have(@ + d + h) = a+ d + yh where:

1 a+d+h
=5 [ w9
a+

denotes the average valueygk) inside the PML. As a consequence, the total attenuatian fhe interface to the
end of the PML is given by:

exp(-Im(kysyh)) = exp(-[kysllylh sin(argk;s + argy)).

This formula tells us on the one hand that the PML can playtiemaating role for leaky modes such that layg >
—argy. The attenuation vanishes if augs becomes close te argy. Of course, increasing asgificreases the region
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of the complex plane were leaky modes can be computed. BedltePML attenuation increases wifih. But for
a givenh, the value ofly| cannot be chosen arbitrarily large. Otherwise the attémuatould be too fast, as well as
the wavelength in the PML region too small (increadiylh also increases Rie(syh)), to be approximated by the FE
discretization. High values df|h indeed require refined meshes. This drawback is well-knewPNIL problems
(see [45] for instance).

As far as trapped modes are concerned Kagg= 7/2), waves remain exponentially decaying provided that
argy < n/2. However, the PML can enhance this decay i such that Im,sy) > Im(kys), or equivalently
|y| cosargy’= Rey > 1.

When considering open waveguide problems, a constant exfipiction has generally been adopted [35, 32, 33]:

(x) = 1 if x<a+d,

YW1 5 if x>a+d,

wherey'is a user-defined parameter. Such a choice somewhat sirmpifiianathematical analysis of the problem. In
this paper, the following continuous parabolic functiontfoth the real and imaginary partsy() is also considered
and appears to provide better results as will be shown in. 822 and 4.2:

1 if x<a+d,

x—a-d

_ 2
() = 1+3@_1)(T) if x>a+d.

Note that any frequency dependence is dropped in order td tacomputation of SAFE matrices at each frequency.

3. Analysisof PML effectson the eigenvalue spectrum

As it reveals a rich structure, a better understanding ofntln@erical spectrum is required before computing
the dispersion curves of trapped and leaky modes. Thisoseigtihence devoted to the study of the eigenspectrum
obtained by the SAFE-PML method. First, a simplified anabjtmodel is proposed to outline the maiffieets of
PMLs on the elastodynamic spectrum. Second, numericakienpets are performed with the SAFE-PML method.
The influence of PML parameters on leaky and radiation mazikighlighted.

The case of trapped mode is not discussed in this sectiorrappdad modes naturally decrease in the transverse
direction, their computation is less critical. Trapped e®w@ill be considered in Sec. 4.2.

3.1. Analytical solution

Let us assume a semi-infinite isotropic homogeneous mediuthe transverse directioxn € [0, +oo[. This
problem can be seen as an open waveguide problem &with). Let us close the problem with a PML of thicknéss
and positiord. L = d + h denotes the total thickness of the waveguide. The equatidres solved are the equilibrium
equations of elastodynamics together with the boundargitions atx = 0 andL, or equivalently (see (9)) at= 0
andL given by:

L
[ =)= fo YE)de = d + h. (1)

which can be referred to as the complex thickness of the mediu
As in the introduction, the Helmholtz decomposition teksthat the displacement fieldcan be expressed as the
superposition (3) of longitudinal and shear waves, whegegtttentialsy andys satisfy respectively:

62@ (1)2 . 62&5 (,4)2 .
e @ TP =0 e +(c_§+ﬁ)‘p3:0’ 2

whered = —k?, ¢, andcs are the longitudinal wave and shear wave velocities reis@dyt



For free or fixed boundary conditions, the potentialaridys are coupled. However, mixed boundary conditions
yield uncoupled problems leading to analytical solutiohst us apply the following mixed conditionsi,|; = 0,
Gxdor = 0. These conditions yield the uncoupled boundary conditfonpotentials:

0P -
—_— = = 1
o% of 0, ‘Ps|o,|_ 0, ( 3)

and the eigenvalues of Egs. (12) and (13) can be readilyrodtais:

2 2.2 2 2
n e
A0 =y jzf A = _‘“_2 + _NZ i
¢ L ¢z L
together with the associated eigenfunctions:
~(N) /o X i, . mX
dV(%) = A" cos%, FM(%) = AM sin - (14)

wheren > 0 andm > 0 denote integersA” andA" are normalization factors. The above derivation of the rsode
may not seem rigorous since the Helmholtz decompositioarfd)the diferential equations (13) concern a complex
domain{X(x) € C; 0 < x < L}. If we rewrite the equations in terms of the real variakle (0,L), it is clear
that the above formal derivation yields particular solof§®@f the initial elastodynamic problem. And these are the
only solutions, which is easily justified here, since thelyem is one-dimensional, hence we know in advance the
dimension of the space of solutions of the varioutedential equations.

From this result, it can be concluded that:

e two spectra are present for elastodynamics instead of anacfuustics: they are associated respectively to
compressional waves and shear waves;

¢ in the complex plane (Relm2a), the poles associated with the compressional wave specind the shear
wave spectrum are located on a half line of orig'mz/c,2 and-w?/cZ respectively, both lines having a rotation
angle equal te-2 argL with respect to the axis Imh = 0;

o the spectra are getting denser by increasiihgand become continuous in the linfiif — co.

For clarity, Fig. 2a plots an example of spectrum calculéded = 0.1,h = 0.9 andy = 1 + 2i.

Note that the initial open problem is without PML and can beorered in the limitl = L — oo, yielding
two continua of modes both located on horizontal half-lifteg rotation angle being zero). It can be deduced that
the introduction of an infinite PML rotates each continuunthie complex plane, and that the truncation of the layer
discretizes each continuum. In the truncated PML probleh ef the two spectra can then be viewed as a discretized
continuum of radiation modes, representing standing wiawte transverse direction.

It can be noticed that the eigenvalues and the rotation amiyedepend on the global PML paramekefunction
of d, handy. From Eq. (11), the angle can be expressed as:

0 =-2arg( + hy). (15)

This result coincides with the mathematical derivationaiied in Ref. [46] for a bilayer scalar waveguide with a
constanty function, whered should be understood as the distance between the PML andrefthe waveguide.
For a given valuey,” the eigenvalues and the rotation angle are figtcéed by the absorbing function profile
v(X). However, the eigenfunctions (14) are strongly dependerihat profile. Figure 2b depicts the real part of the
eigenfunctiome)(x) = ¢|(5)(>?(x)), wherex’has been calculated from Eq. (9) both for a constant and &plcgrofile
(d =0.1,h =09 andy = 1+ 2i). With a constany function, it can be observed that a slope discontinuity o&cu
at the PML interface. With a continuously increasing fuoitino slope discontinuity occurs but the oscillations are
significantly stretched near the interface and narrowed theaPML end. This will have important consequence in
the SAFE-PML spectrum, as discussed in Sec. 3.2.2.
Note that the present analytical solution does not imply taagped or leaky modes. In particular, no Rayleigh
wave occurs because the boundary conditions are mixed autfecex = 0 (Rayleigh waves only occur with a free
boundary condition [47]). PMLféects on leaky modes are numerically studied in the next stibge
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Figure 3: Description of test cases, (a) Titanium-Alphtailium, (b) Epoxy-Aluminium and (c) Alpha-Titanium
waveguides.

3.2. SAFE-PML numerical experiments

3.2.1. Test case description

In the following, numerical tests are performed for a thigel waveguide taken from the work of Lowe [22].
Figure 3a depicts the structure, a thin core of Alpha caselohth embedded on both sides by Titanium half-spaces.
Material characteristics are given in Table 1. In this teste; no trapped modes occur. The eigenvalue spectrum
is computed for a single frequen€y = 17.68, whereQQ = wa/cy is the dimensionless angular frequency agd
denotes the shear wave velocity of the core (Alpha case).

In SAFE-PML simulations, finite elements are quadraticgghnode elements). Both constant and parabholic
functions are considered. Choosing the optimized valug isfd dificulty inherent to PML problems: its modulus
should not be set too low for a proper absorption of wavespantbo high otherwise numerical reflection will occur.
In this section, the averaged value of absorbing functissei toy™= 1 + 2i.

Figures 4a and 4b compare the dimensionless spectrunafasbtained fory"= 1 + 0.2i andy = 1 + 0.5i. A
constanty function is used. The PML thickness is sette 0.9a. The FE size, denotefix, is equal to 0.0&8. From
these figures, two kinds of modes can be observed.

a(m/s) cs(m/s) p(kg/nP)

Titanium 6060 3230 4460
Alpha 6666 3553 4460
Aluminium 6370 3170 2700
Epoxy 2610 1100 1170

Table 1: Material characteristics

10
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The first kind of modes forms two branches starting frerva?/c2, 0) and (w?a?/c?, 0) respectively, wheres
andc denote the bulk wave velocities of Titanium. Except far friv@ real axis, each branch resembles a straight line
whose rotation angle is approximately equatfarg@d+hy) (about-12C in Fig. 4a and-45° in Fig. 4b). By analogy
with Sec. 3.1, these branches can be interpreted as a disdrebntinuum of longitudinal waves and a discretized
continuum of shear waves. Modes belonging to these braraskdsence radiation modes, mainly oscillating in the
surrounding medium, which are strongly dependent on the pstameters.

The second kind of modes corresponds to leaky modes. Thedesmwhich are intrinsic to the physics, can
be compared with analytical solutions obtained from a Thumridaskell matrix approach [20, 21]. As shown for
y = 1+ 2i (Fig. 4a), numerical results for leaky modes are in good@gent with Thomson-Haskell results. Yet
fory = 1+ 0.5i (Fig. 4b), some leaky modes cannot be computed by the SAFE+R&thod: as already explained
in Sec. 2.5, the argument ¢fi§ not large enough to attenuate the transversal growthasfylenodes. Indeed, the
rotation of each continuum allows to discover leaky modétdgn in the original problem without PML), the number
of discovered modes increasing with the rotation angle.

3.2.2. Comparison between constant and parabolic PML fanst

Figures 5a and 5b show the spectrum obtained with a congtéinfihction and a parabolic profile respectively.
In the latter case, the accuracy of leaky modes is improvéis fEsult is due to the fact that the perfectly matched
property satisfied for the continuous problem no longer $iafter FE discretization, which yields artificial reflectio
Moreover, the discontinuity of the constant PML functiontet interface between the physical and the PML regions
yields more artificial reflection than continuously incriegsabsorbing functions. As expected from Eq. (15), note
that the rotation angles remain identical to the consfardse, because d andy have been kept constant for this
comparison.

Concerning higher order radiation modes (further from @ axis), it can be observed that each continuum
deviates from straight lines. This phenomenon is due to thapproximation, as will be shown in Sec. 3.2.4. With
vy constant, the deviation of the discretized continuum ofsheaves occurs a little further than for compressional
waves and is not shown in Fig. 5a.

Note that with a parabolic profile, the deviation of radiatimodes from straight lines occurs at a significantly
closer distance from the real axis. As shown in Sec. 3.1, slhgan increasing absorbing profilfects the mode-
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Figure 6: Same caption as Fig. 5 but with- 1.8a.

0 ! # T Fo— 0 + T o
ad"( %o o off ©o o s o ad”d( %o o of ©o o o o
-100f & 1 -100f &
& & Fullh @ & ++1— Fullh s L}
© + ++ s © hy + ®
=< -200r 4 il =< -200r R A
E ++ ++ E 3._ ++
-300 o & 300 £, >
+ + + 4
+ + + o+ 4
-40 + . . + -40 i+ T+ + . .
-800 -600 -400 -200 0 200 -800 -600 -400 -200 0 200
Re(’a?) Re(’a?)

@) (b)

Figure 7: Same caption as Fig. 5 but witl= 1.8a andAx = 0.02a.

shapes of radiation modes. In particular, the transverslai®mns are narrowed near the PML end, which the FE
discretization may no longer approximate.

3.2.3. PML thicknesgffects

Figure 6 gives the spectrum computed by increasing the Phdkribss tch = 1.8a, both for the constant and the
parabolic profiles.

Concerning radiation modes, it can be observed that inicrgdse PML thickness yields a denser discretization
of continua, as expected from Sec. 3.1 (increasiimpreased). Note that the deviation limit from straight lines is
left unchanged by the parameter

As a side remark, increasing the thicknéssghile leavingy unchanged may not improve the accuracy of leaky
modes when a constant profile is chosen (compare Figs. 5aeand/@ile the parabolic function gets smoothehas
increased (in the sense that the discontinuity of the sederidative ofy atx = a+d decreases), the constant function
keeps the same discontinuity at the PML interface, yiel@iriiicial reflections that are not reduced by increaging

Let us emphasize that the thickness of the PML should notkenttoo small, otherwise spurious reflections at
the end of the layer will pollute the results. For a given PMlgjvenh and a given absorbing profile), the reflection
codficients associated to these spurious reflections (which earabily computed analytically) only depend.an
Their magnitude are roughly speaking exponentially dexirggwhent moves away from the continua. On the
contrary, computing a leaky mode which is located very closthe continua requires a priori a large(together
with an appropriate discretization).

3.2.4. Mesh sizeffects

Figure 7 gives the spectrum obtained by refining the FE mealxte 0.02a. Two efects can be observed. First,
refining the FE mesh tends to restore the perfectly matchmaepty: the accuracy of leaky modes increases (compare
Figs. 6 with 7). Second, the deviation occurs at greateadis from the real axis (the continua are also better
approximated). The deviation phenomenon is indeed esdlgrdue to the FE discretization, unable to approximate
higher order modes as in conventional eigenvalue FE prablem
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Figure 8: Same caption as Fig. 5 but with: ¢} a andy constant, (bd = a andy parabolic, (c)d = 3a andy
constant, (dg = 3a andy parabolic.

3.2.5. PML position gects

Figure 8 shows the influence of increasing the distahbetween the core and the PML. Aldncreases, it can
be observed that the deviation from straight lines apprestte real axis and that the computation of leaky modes is
deteriorated. For instance fprconstant and = 3a, only two leaky modes are obtained, the other ones beingteadll
by sub-branches emanating from continua.

Regarding source PML problems, this phenomenon is unustelifor scalar modal problems [46, 36], it has
been mathematically explained by the increase ditif the norm of the resolvent of the eigenproblem, due to the
non-hermitian character of matrices involved in the dikzeel problem. From a physical point of view, setting the
PML too far from the core allows leaky modes to exponentighgw in the transverse direction before entering the
PML, which can deteriorate their calculation. Thereforgeaeral requirement for the computation of leaky modes is
that the PML interface should be as close as possible to ttee co

As observed in Fig. 8b, results obtained from a paraboliction are less féected by the parametdrthan with
a constant profile. But fod = 3a, Fig. 8d shows again the pollution by sub-branches emanétimg continua.

It should also be noticed that the rotation angle of contifmeasured near the real axis) is significantly decreased
compared to previous figures. This is also well explained ¢py(E5): increasingl decreasel argd + hy)|.

4. Computation of dispersion curves

This section focuses on the computation of dispersion aun¥éeaky and trapped modes. In order to assess the
efficiency of the SAFE-PML method, three test cases taken frenfitdrature are considered. Results are compared
with analytical solutions obtained from a Thomson-Haskeltrix approach.

4.1. Modal filtering of radiation modes

As shown in Sec. 3, the SAFE-PML method does not only providpped and leaky modes, but also many
radiation modes related to the rotated continuous spectriuthe initial physical problem (see Sec. 3.1). These
numerous modes are non intrinsic to the physics becausarthiy resonate inside the PML. It is desirable to get
rid of them in the visualization of dispersion curves. A ppgicessing step must hence be applied, consisting in
identifying and removing modes resonating mainly in théieil layers.
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Our filtering process is based on an adapted notion of kieetcgy. By analytical continuation into the complex
coordinatex; the averaged kinetic energy in the regiam; [x,] can be defined ak = % fx)l(z ﬁﬁdf(, whereV = dii/dt
is the velocity vector, bars denote time averaging over @ns(.

From the change of variable (10), the relations —iwu andvTv = %zu*u, the kinetic energy expression becomes:

wZ X2
E= —f pu uydx (16)
4 Jy

The superscript refers to the complex conjugate transpose.
Let us define the total kinetic energy,: from Eq. (16) with bounds; andx, corresponding to the whole cross-
section (including PMLs). From the interpolation of thepdé&cement vector (6), the FE expressioregf is:

2
Eior = %U*M u. (17)

Without PML (y=1), this expression coincides with the results standawliynd for closed waveguide problems [48,
49]. With PMLs,M is complex andE is no longer real.

We also define the PML kinetic enerdsem, obtained from Eq. (16) with bounds and x; restricting the
integration to the PML region only. The filtering criteriosad for our tests is based on the ratio of kinetic energy in
the PML region over the kinetic energy in the whole domainydttal modes are then identified if this criterion is
smaller than a user-defined valoig.y:

E
Bew < Pmax (18)
|Eto

Note that since the kinetic energy is complex, the moduldgradtic energy is used.

4.2. Results

Numerical tests are realized for three multilayer wavegsijghown in Fig. 3 and taken from the work of Lowe [22,
14, 15]. The first one has already been considered in Sec. 8rdpdhvolves leaky modes. The second test case is
an Epoxy layer of 10&m on an Aluminum half-space, for which the first two modes aapped. The third one
corresponds to a thin Alpha case layer of @ on a Titanium half-space. This last case is of particulterest
because the first mode is trapped in a low frequency range ecahies leaky mode at higher frequencies. Material
characteristics are given in Table 1.

The thickness of PML layers is set lb= 0.9a. Following the suggestion of Sec. 3.2.5, the PML interfece i
set close to the coral(= 0.1a) in order to reduce thefiects of the exponential growth of leaky modes. Note that it
could be possible to usg = 0 instead. However a small but non zero value is preferretiyaslds a more general
configuration that will typically occur when extending thetimod to three-dimensional waveguides of arbitrary cross-
section. A Dirichlet condition is chosen at the PML end (zeisplacement in both directions). Numerical tests, not
presented here for conciseness, have shown that Neumarirest boundary conditions yield negligibleftérences
on leaky and trapped modes (such modes mainly resonateleuts PML). Finite elements are quadratic (three-
node elements) and sized in order to satisfy the critefinrS 1s/5, whereds = Cs/ fmax denotes the minimum shear
wavelength.

SAFE-PML dispersion curves are presented after modalifijesnd compared with the reference solutions ob-
tained from the Thomson-Haskell matrix method. The uséirdd filtering thresholgmax is specified for each test.
Note that a proper choice pfax depends on the absorbing profile, since the PML kinetic gngegends on(X).

Let us first consider the first test case (Ti-Alpha-Ti). Fig@rcompares the phase velocity and attenuation curves
computed withy constant and’ parabolic fory"= 1 + 4i. In order to reduce the number of eigenvalues to solve,
the computation has been centered around the wavenunjlbgrwherec, denotes the longitudinal velocity in the
surrounding medium (this partly avoids the computationpgasite-going modes). 50 modes have been solved.

Figure 9 shows that the parabolic function gives betterltetiuan the constant function, as can be observed in the
high frequency range. This confirms the trends already fausec. 3.2. Therefore in the remainder, all PML results
will be obtained withy parabolic. It can be observed that numerical results obtaivithy constant yield additional
modes in a higher frequency range. Though unfiltered by titeriom (18), these modes are not of leaky type.
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Figure 9: Comparison between SAFE-PML (circlesconstant, crossesy parabolic) and analytical (continuous
lines) solutions for Ti-Alpha-Ti waveguide, (a) phase gty and (b) attenuation. PML parameters ate= 0.1a,
h=0.9a,y = 1+ 4i, pmax = 0.8 fory constant angmnax = 0.9 for y parabolic Ax = 0.05a).
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Figure 10: Same caption as Fig. 9, but without filigr{x = 1, y parabolic only).

In order to illustrate thef@ciency of the filtering method based on Eq. (18), Fig. 10 dsgite numerical results
without filtering pmax=1). The radiation modes yield many dispersion curves andeptea proper visualization of
leaky mode curves. Another benefit of the filtering procefisdasleaky modes can be filtered out in the low-frequency
range, indicating waves infliciently absorbed by the PML.

Figure 11 represents the phase velocity as a function otinecy for the Epoxy-Al waveguide. 30 modes have
been solved, centered arounftcs. One focuses on the first two trapped mod«lé/g E 0, /s> 0, k” = 0), represented
by continuous lines in figures. Numerical results also shtivelomodes, of less interest here (these modes are leaky
modes of high axial attenuation or higher order trapped mpde

Note that in the complex plane (RdmJ), trapped modes in the original problem (without PML) wolle
located on the real axis. Hence, trapped modes do not neesldistovered by spectrum PML rotation (increasing
the imaginary part of is useless). For a proper computation of trapped modes,tadi#s is to increase the value
of d in order to let the trapped modes naturally decrease in Hresterse direction. Yet increasindgcould lead
to numerical problems as previously mentioned in Sec. 3. Merésting alternative technique consist in increasing
Rey instead (see Sec. 2.5), which is equivalent to stretch Hrestwerse direction and therefore to increase the PML
thickness. Comparing the results obtained with 4 + i and 20+ i confirms that increasing Rejive more accurate
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Figure 11: Comparison between SAFE-PML (crosses) and ticall{continuous lines) phase velocities for Epoxy-Al
waveguide for (y = 4 + i (omax = 0.6), (b)y = 20+ i (omax = 0.9). PML parameters arad = 0.1a, h = 0.9a,
parabolic functionf4x = 0.2a).

dispersion curves.

Figure 12a represents the attenuation as a function of érexyufor the Alpha-Ti bilayer withy = 10+ 10i. 20
modes have been computed around,. In this test case, one focuses on the computation of theriwge (the less
attenuated one). As shown in Fig. 12b, this mode is trappetb @pdimensionless frequency close to 4 and then
becomes leaky beyond. Therefore, the real pat isf chosen as high as the imaginary part in this example. Good
agreement with the analytical solution is found.

From Fig. 12a, it is observed that the second mode is filtenédtdow frequencies, due to indicient attenuation
by the PML. Besides, the highest mode is not accurately céedpiNumerical tests (not shown for conciseness) have
shown that setting fo a lower valuey ™= 4 + 4i, gives more satisfying results for higher order modes. Suealue
is yet less suitable for the first mode.

5. Conclusion

A SAFE-PML technique has been proposed to compute the @lastpagation modes of open waveguides. The
method yields three kinds of modes: leaky and trapped madesh are intrinsic to the physics, and radiation modes,
which are located along two branches corresponding to antamh of compressional waves and a continuum of shear
waves respectively. The PML rotates both branches fromdhkaxis, with a rotation angle approximately equal to
—2 argl whereL is the so-called complex thickness of the semi-infinite tafiée truncation of the PML discretizes
both continua and also controls the modal density along beafich (increasingf_| yields a denser discretization).
Furthermore, the rotation angle must be large enough irr toddiscover the leaky modes of interest.

In this study, parabolic absorbing functions have shownigétdymore accurate results than constant functions.
Besides, the PML interface should be set close to the conalier ¢o avoid the deterioratingfects of the exponential
growth of leaky modes. A comparison with analytical dispmrsurves obtained from a Thomson-Haskell approach
has been conducted. The SAFE-PML method gives satisfysujteeboth for leaky and trapped modes. Afiaéent
filtering criterion based on the ratio of kinetic energy desthe PML over the whole domain has been proposed in
order to eliminate radiation modes in the visualizationigpdrsion curves.

The main drawback of the approach is the optimization of PMtameters (inherent to any PML method). For
a given PML thickness and a given mesh size, the PML absofbimgion cannot be arbitrarily large due to the FE
approximation. However, relatively thin PML layers allowdbtain accurate results.
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Figure 12: (a) Comparison between SAFE-PML (crosses) aatytical (continuous lines) attenuation for Alpha-Ti
waveguide, (b) zoom on the first mode. PML parametersare0.1a, h = 0.9a, ¥ = 10+ 10i, pmax = 0.8, parabolic
function (Ax = 0.1a).
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