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Abstract

Elastic guided waves are of interest for inspecting structures due to their ability to propagate over long distances. In
numerous applications, the guiding structure is surrounded by a solid matrix that can be considered as unbounded in
the transverse directions. The physics of waves in such anopenwaveguide significantly differs from aclosedwaveg-
uide, i.e. for a bounded cross-section. Except for trapped modes, part of the energy is radiated in the surrounding
medium, yielding attenuated modes along the axis called leaky modes. These leaky modes have often been considered
in non destructive testing applications, which require waves of low attenuation in order to maximize the inspection
distance. The main difficulty with numerical modeling of open waveguides lies in theunbounded nature of the geom-
etry in the transverse direction. This difficulty is particularly severe due to the unusual behavior of leaky modes: while
attenuating along the axis, such modes exponentially grow along the transverse direction. A simple numerical proce-
dure consists in using absorbing layers of artificially growing viscoelasticity, but large layers may be required. The
goal of this paper is to explore another approach for the computation of trapped and leaky modes in open waveguides.
The approach combines the so-called semi-analytical finiteelement method and a perfectly matched layer technique.
Such an approach has already been successfully applied in scalar acoustics and electromagnetism. It is extended here
to open elastic waveguides, which raises specific difficulties. In this paper, two-dimensional stratified waveguides are
considered. As it reveals a rich structure, the numerical eigenvalue spectrum is analyzed in a first step. This allows
to clarify the spectral objects calculated with the method,including radiation modes, and their dependency on the
perfectly matched layer parameters. In a second step, numerical dispersion curves of trapped and leaky modes are
compared to analytical results.
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1. Introduction

1.1. Context and objectives

Elastic guided waves are of interest for inspecting elongated structures due to their ability to propagate over long
distances. When the guiding structure is embedded into a solid matrix, the waveguide can usually be considered as
open (unbounded in its transverse direction). The physics of waves in open waveguides significantly differs from
closed waveguides. The modes that are generally consideredin such structures are either trapped or of radiation type.
Another category of slightly more artificial objects, called leaky modes, can also be considered.

Trapped modes can be seen as perfectly guided waves in the sense that on the one hand, they propagate without
attenuation along the waveguide axis (their axial wavenumber is real) and on the other hand, they decay exponentially
in the transverse directions (their transverse wavenumberis pure imaginary). Such waves are confined near the core
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or the surface of the structure and do not loose energy in the infinite surrounding medium. They constitute a discrete
set, possibly empty. For scalar waveguides (i.e. for acoustic, SH or electromagnetic waves), trapped modes only exist
when the velocity of waves in the surrounding medium is greater than in the core [1]. For elastic waveguides, this
existence criterion is more complex because two kinds of waves, longitudinal and shear waves, are present [2]. In
particular, the coupling between both can lead to the presence of surface waves, called Stoneley waves [3], which are
trapped at the interface between different materials. Besides, a phenomenon analogous to the scalar case occurs for
body waves: trapped waves are present when the shear wave velocity is greater in the surrounding medium, but no
longer when this velocity is lower. The latter configurationis widely encountered in civil engineering applications
(tendons, rockbolts, buried pipes, railways), the outer medium usually consisting of soft materials (cement, concrete,
soil).

Unlike trapped modes, radiation modes have an oscillating behavior in the transverse directions (their transverse
wavenumber is real) and can be either oscillating or evanescent in the longitudinal direction (real or pure imaginary
axial wavenumber). They constitute a continuous spectrum of standing waves [4, 5]. This continuum is intrinsic to
the unbounded nature of the cross-section of the waveguide.It allows to represent all radiation phenomena which may
occur in the surrounding medium. In the context of non-destructive evaluation (NDE), radiation modes are of less
interest because the continuum hides the key property whichis required: the ability to propagate over long distances.
Actually, such an information is condensed in the notion of leaky modes.

As opposed to trapped modes, leaky modes can be interpreted as imperfectly guided waves in the sense that they
are waves propagating with attenuation along the waveguideaxis. This attenuation is due to the leakage of energy
into the surrounding medium. Owing to these radiation losses, the axial wavenumber becomes complex. In practice,
such losses can strongly limit the application of guided wave techniques. Hence, an accurate determination of leaky
modes appears to be a necessary step for the NDE of embedded civil structures based on guided waves.

Leaky modes are true solutions of the equations. However, their behavior is somewhat unusual at infinity: while
exponentially decreasing along the axis, leaky modes exponentially grow along the transverse direction. This behavior
can be readily deduced from the dispersion relation,k2+k2

x = ω
2/c2
∞, wherek denotes the axial wavenumber,kx is the

transverse wavenumber,ω is the angular frequency andc∞ denotes the speed of waves inside the infinite surrounding
medium (one assumes a scalar waveguide for simplicity). Theimaginary part of the dispersion relation then yields:

k′xk
′′
x = −k′k′′,

where′ and′′ denote real and imaginary parts respectively. For instance, considering a leaky wave propagating and
attenuating in the positive direction (k′ > 0, k′′ > 0) yields the inequalityk′xk

′′
x < 0, which means that the wave is

necessarily exponentially growing (k′′x < 0) as it radiates toward a given transverse direction (k′x > 0).
The exponential growth of leaky modes is rather well-known in electromagnetism (see [1] for instance). This

particularity has sometimes been mentioned in elastodynamics [6, 7, 8, 9, 10]. From a mathematical point of view,
leaky modes are complex poles that do not belong to the propereigenvalue spectrum because such poles are located
on a forbidden Riemann sheet [11, 1]. These modes constitutea discrete set which is actually not part of the complete
modal set constituted by the discrete set of trapped modes and the continuous spectrum of radiation modes representing
the contribution of body waves [4, 12, 5, 13]. However, leakymodes have the potential to give a good representation
of the continuum over an area close to the core or the surface of the waveguide. From a physical point of view,
leaky modes are then able to resemble the transverse gradualincrease of a wave beam, which occurs over a limited
transverse distance inside the surrounding region, as the beam propagates far from the excitation zone [6, 7, 13].

The concept of leaky modes have turned out to be meaningful for the NDE of solid waveguides [14, 15, 16, 17,
18, 19], where the problem consists in looking for modes having low attenuation in order to maximize the inspection
distance. Analytical tools have been developed for modeling open elastic waveguides, based on the Thomson-Haskell
method [20, 21] or the global matrix method [22, 23]. Methodsbased on Debye series [24] have also been proposed.
Analytical techniques are yet limited to simple geometries(plates, cylinders).

For complex geometries, a classical approach relies on the finite element (FE) discretization of the eigenproblem
in the transverse direction, which is often referred to as the semi-analytical finite element (SAFE) method (see for
instance [25, 26, 27, 28]). Yet for open waveguides, a difficulty arises because the geometry is unbounded in the
transverse direction. This difficulty is particularly severe due to the exponential growth of leaky modes. A simple
procedure that can be used with existing codes has been proposed in [19, 29], which consists in using absorbing
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layers (AL) of artificially growing viscoelasticity. In practice, large layers may be required in order to reduce artificial
reflections by the absorbing layer. Other methods have been specifically developed in order to deal with the FE
modeling of open waveguides. Hladky-Hennion et al. [30] have presented a procedure based on a non-reflecting
condition together with an original change of variable, butthe approach has been limited to structures immersed in
fluids. Recently, Mazzoti et al. [31] have coupled the SAFE method with a boundary element technique, which yields
nonlinear eigenproblems and requires higher computation times.

Instead of AL, an alternative technique consists in using perfectly matched layers (PML). Contrary to the approach
developed in [31], the PML approach has the advantage to leadto a linear eigenvalue problem (same for AL). This
technique has already been applied to the scalar wave equation for acoustic waveguides [32, 33] as well as electro-
magnetic waveguides [34, 35]. Closely linked to such problems, a mathematical analysis has been reported in [36] for
the FE computation of acoustic resonances in open cavities with PMLs.

The main goal of this work is to compute trapped and leaky modes in open waveguides by applying a SAFE-
PML approach to the equilibrium equations of elastodynamics (non-scalar). The numerical eigenspectrum, including
radiation modes, is analyzed in order to clarify the influence of the various PML parameters. Theoretically, the
PML technique allows to strongly attenuate any type of wave without reflection, thanks to an analytical continuation
of equations into complex spatial coordinates. Compared toAL, one expects that the perfectly matched property
will allow reduction of the artificial layer size. Another difference between the two approaches is seldom mentioned:
computing leaky modes with PMLs is mathematically relevant, since both leaky modes and PMLs are defined through
analytic extensions. Conversely, the ability of AL to approximate leaky modes has, up to our knowledge, no theoretical
explanation.

In this paper, one-dimensional modal problems are considered, i.e., two-dimensional elastic waveguides corre-
sponding to stratified planes. For clarity, Sec. 1.2 recallsthe mathematical definition of the various kind of modes in
the continuous problem. In Sec. 2, the SAFE-PML approach is presented. The eigenvalue spectrum of the method is
analyzed in Sec. 3. In Sec. 4, numerical dispersion curves are computed and validated thanks to analytical results of
the literature.

1.2. Mathematical definition of the various kinds of modes

One considers a two-dimensional waveguideS̃ × R in the (x̃, z) plane, wherez is the waveguide axis, ˜x is the
transverse direction and̃S ⊂ R represents the cross-section of the waveguide. The tilde notation will be explained
later in section 2.3 with the introduction of the PML method.The waveguide is filled by a linearly elastic material
and we assume small plane strains and displacements in the ( ˜x, z) plane. The time-harmonic dependence is chosen as
e−iωt. As this paper is restricted to the study of propagation modes, acoustic sources and external forces are dropped.
Consider the two-dimensional elastodynamic equations satisfied by the displacement vectorU(x̃, z) :

∇ · σ(U) − ω2ρ̃U = 0 in S̃ × R,

whereρ̃ is the mass density andσ(U) is the stress tensor, which is related to the strain tensorǫ(U) = (∇U+(∇U)T)/2
by the linear relationσ(U) = C : ǫ(U) whereC is the stiffness tensor. The superscriptT denotes the matrix transpose.
WhenS̃ , R, a free or fixed boundary condition is added to the above equations.

We assume that bothC andρ̃ depend only on the transverse coordinate ˜x, which means that we consider uniform
rectilinear waveguides. The modes we are interested in are particular solutions of the above equations which have the
form:

U(x̃, z) = ũ(x̃) eikz for k ∈ C. (1)

The equations which are satisfied byũ are simply deduced from those ofU by replacing derivatives∂/∂z with
products byik.We are thus led to a one-dimensional problem forũ which can be written formally as a linear equation:

L(k) ũ = 0, (2)

whereL(k) has a quadratic dependence onk.
In the case of a closed waveguide, that is, a bounded cross-section S̃, it is well known that this problem has non-

zero solutions̃u only for a discrete infinite set of values ofk ∈ C. For real values ofk, the associated solutions̃u
correspond to guided waves which propagate without attenuation in thez-direction.
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On the other hand, the case of an open waveguide, that is, an unbounded cross-sectioñS, is more involved. The
different kinds of modes that can be considered depend on the behavior of ũ(x̃) at infinity (as|x̃| → ∞). This behavior
can be easily expressed if we assume that outside a bounded part of the cross-section, our waveguide is made of an
isotropic homogeneous medium. In this case, following the Helmholtz decomposition method (see [37] for instance),
the displacement field appears as a superposition of longitudinal and shear waves:

ũ =
(

∂/∂x̃
ik

)

ϕ̃l +

(

−ik
∂/∂x̃

)

ϕ̃s (3)

whereϕ̃l andϕ̃s are scalar potentials which satisfy:

∂2ϕ̃l

∂x̃2
+













ω2

c2
l

− k2













ϕ̃l = 0 and
∂2ϕ̃s

∂x̃2
+

(

ω2

c2
s
− k2

)

ϕ̃s = 0,

wherecl andcs are the longitudinal wave and shear wave velocities respectively. Hence ˜ϕl is a linear combination of
two exponential functions exp(±ikl x̃) wherek2

l = ω
2/c2

l − k2, and the same for ˜ϕs with k2
s = ω

2/c2
s − k2:

ϕ̃l/s(x̃) = A+l/sexp(+ikl/sx̃) + A−l/sexp(−ikl/sx̃),

whereA±l/s ∈ C. If no condition on ˜ϕl andϕ̃s is imposed, then for allk ∈ C, one can always find a non-zero solution
ũ to (2). For non-real values ofkl andks, this solution is in general exponentially increasing unless the associated
coefficientsA±l/s vanish.

It is generally admitted that an exponentially increasing behavior of the field is not physically relevant, so that the
potentials ˜ϕl andϕ̃s are naturally chosen either oscillating or exponentially decreasing, depending on whetherkl and
ks take real values or not. The solutions which are exponentially decreasing are referred to as trapped modes since
they remain confined near the core of the waveguide. All otherbounded solutions are called radiation modes for they
represent waves which propagate outside the core. The values of k associated with trapped modes constitute a finite
set which represents the point spectrum of the transverse elastodynamic operatorL(k), whereas those associated with
radiation modes compose its continuous spectrum.

But for non-real values ofkl andks, there is another category of modes which are solutions to Eq. (2) and grow
exponentially at infinity. These solutions, called leaky modes, are of physical interest. They correspond to the case
where each potential ˜ϕl/s only involves one exponential function (i.e., eitherA+l = 0 or A−l = 0, and the same forA±s )
and at least one of these potentials is exponentially increasing. The values ofk associated with such leaky modes make
up a discrete set but are not, strictly speaking, spectral objects. Their mathematical characterization derives from a
complicated analytic continuation process which is out of the goal of the present paper. We refer for instance to the
analytic dilation technique (also called complex scaling)described in [38]. The latter technique is actually very close
to the PML method used here for the numerical computation of modes.

2. Numerical method

2.1. Variational formulation for elastodynamics

The starting point of the SAFE method consists in the variational formulation of the one-dimensional elastody-
namic problem (2). For the sake of simplicity, we use stress and strain vectors instead of tensors. It can be shown that
the variational formulation of (2) can be written as:

∫

S̃
δǫ̃Tσ̃dx̃− ω2

∫

S̃
ρ̃δũT ũdx̃ = 0, (4)

with the stress-strain relationship ˜σ = C̃ǫ̃ and the strain-displacement relations:

ǫ̃ =

(

Lx
∂

∂x̃
+ ik Lz

)

ũ, δǫ̃ =
(

Lx
∂

∂x̃
− ik Lz

)

δũ. (5)

4



(a) (b)

Figure 1: (a) Example of open waveguide, (b) closure by a truncated PML.

The variational formulation (4) holds for any kinematically admissible trial displacement fieldδũ = [δũx δũz]T . δǫ̃
denotes the virtual strain vector [δǫ̃xx δǫ̃zz 2δǫ̃xz]T andσ̃ is the stress vector [ ˜σxx σ̃zz σ̃xz]T . C̃ is the matrix of material
properties. The notationsLx andLz, used to separate transverse from axial derivatives, are defined as follows:

Lx =





















1 0
0 0
0 1





















, Lz =





















0 0
0 1
1 0





















.

2.2. SAFE modeling of closed waveguides

In this subsection, the SAFE formulation is briefly recalledfor closed waveguides (i.e. waveguides in vacuum
with a bounded cross-sectioñS). In this case, the tilde notation introduced in the previous subsection is useless and
can be omitted. For details on the SAFE method, the reader might refer to [25, 26, 27, 28, 39] for instance.

The SAFE method consists in applying a 1D finite element method along the transverse directionx to the varia-
tional problem (4). The displacement is then expressed on each elemente as:

u(x) = Ne(x)Ue, (6)

whereNe(x) is a matrix of nodal interpolating functions andUe contains nodal displacements on the elemente.
The FE discretization of the variational formulation (4) finally yields:

{K1 − ω
2M + ik(K2 −KT

2 ) + k2K3}U = 0 (7)

with the following elementary matrices:

Ke
1 =

∫

e
(LxNe

,x)
TCLxNe

,xdx, Ke
2 =

∫

e
(LxNe

,x)
TCLzNedx,

Ke
3 =

∫

e
NeTLT

z CLzNedx, Me =

∫

e
ρNeTNedx.

(8)

where the notationNe
,x is used for∂Ne/∂x. For each frequencyω, Eq. (7) corresponds to an eigenvalue problem whose

eigensolutions yields the propagation modes (k j,U j).

2.3. SAFE-PML method

Open waveguides, that is, unbounded cross-sectionsS̃, are now considered. We assume that outside a possibly
inhomogeneous region representing the core of the waveguide, the medium is homogeneous. In order to account
for the presence of unbounded layers, the basic idea consists in closing the waveguide by replacing the unbounded
homogeneous region with a PML, truncated at some finite distance. For clarity, Fig. 1 gives the example of a bilayer
open waveguide. Throughout this paper,h will denote the PML thickness andd will denote the distance of the PML
interface from the core.a is the core thickness.
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The principle of PMLs is easily understood in our one-dimensional situation. As shown in the introduction, the
modes we are interested in can be expressed outside the core by means of scalar potentials ˜ϕl andϕ̃s which are linear
combinations of exponential functions exp(±ikl/sx̃), wherekl/s denotes the transverse wavenumber, longitudinal or
shear. Here ˜x represents the original transverse coordinate, which is real. Consider for instance the case of longitudinal
waves for ˜x > 0. As mentioned in the introduction, the imaginary part ofkl is negative for leaky modes propagating
and attenuating asz → +∞, so that exp(ikl x̃) increases exponentially as ˜x tends to+∞. The key point is to notice
that this function extends to an entire function for complexvalues of ˜x. Hence, instead of considering real ˜x, one
can choose in the complex plane a particular path ˜x(x) parameterized by a real variablex ∈ (0,+∞) and such that
exp(ikl x̃(x)) decays exponentially asx tends to+∞, which amounts to saying that arg ˜x(x) > − argkl for large enough
x (in this paper, arg denotes the principal argument defined tolie in the interval ]− π,+π]). The principle of PMLs
consists in replacing the initial equations satisfied byũ(x̃) for real x̃ with those satisfied bỹu(x̃(x)), which can be
seen as a simple (but unusual) change of variable ˜x 7→ x. This amounts to considering an infinite PML. As explained
in Ref. [38] for a scalar equation, the effect of such a PML is on the one hand, to rotate in the complex plane the
two parts of the continuous spectrum, associated respectively with longitudinal and shear radiation modes, and on the
other hand, to reveal the leaky modes located in the region covered by the displacement of the continuous spectrum.

From a numerical point of view, the PML domain is truncated ata finite distance (herex = a+ d + h) where an
arbitrary boundary condition, usually of Dirichlet type, is imposed. As leaky modes decay exponentially in the PML,
this truncation should not perturb strongly their computation provided the PML is thick enough. The truncation of the
PML yields a discretization of the rotated continuous spectrum, and the associated radiation modes are oscillating in
the PML. These facts will be made clear in Sec. 3.

In the present paper, we choose:

x̃(x) =
∫ x

0
γ(ξ)dξ, (9)

whereγ is a complex-valued function ofx satisfying:

• γ(x)=1 for x 6 a+ d;

• Im{γ(x)} > 0 for x > a+ d.

Hence, from Eq. (9), the change of variables ˜x 7→ x yields for any functionf̃ :

∂ f̃
∂x̃
=

1
γ

∂ f
∂x
, dx̃ = γdx, (10)

where f̃ (x̃) = f̃ (x̃(x)) = f (x). For instance, the displacement and the mass density are rewritten asũ(x̃) = u(x) and
ρ̃(x̃) = ρ(x). Note thatρ as well as the other physical features involved in matrixC are constant in the PML region.
Hence their respective analytic continuations are simply these constants.

From Eqs. (10) and (5), the strain-displacement relations are expressed as:

ǫ =

(

1
γ

Lx
∂

∂x
+ ikLz

)

u, δǫ =
(

1
γ

Lx
∂

∂x
− ikLz

)

δu.

With Eq. (6), the one-dimensional FE discretization of the variation formulation (4) alongx gives exactly the same
form of eigenproblem as Eq. (7), but with the following elementary matrices:

Ke
1 =

∫

e

1
γ

(LxNe
,x)

TCLxNe
,xdx, Ke

2 =

∫

e
(LxNe

,x)
TCLzNedx,

Ke
3 =

∫

e
γNeTLT

z CLzNedx, Me =

∫

e
ργNeTNedx.

The only difference with the elementary matrices (8) lies in theγ terms, appearing in the expression ofKe
1, Ke

3 and
Me.
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2.4. Solving the eigenvalue problem

The eigenproblem (7) is quadratic fork, which cannot be directly held by standard eigensolvers. This eigensystem
can be transformed into the more suited generalized linear eigensystem [40]:

(A − kB)Û = 0

with:

A =
[

0 I
−(K1 − ω

2M) −i(K2 −KT
2 )

]

, B =
[

I 0
0 K3

]

, Û =
{

U
kU

}

.

Note that in the presence of PMLs,K1, K3 andM are complex symmetric but not hermitian matrices so that neither
A nor B are Hermitian, which makes the numerical treatment of the above eigensystem complicated.

Other linearization forms of the quadratic eigenproblem are possible, as reviewed in Ref. [41]. Our choice is
justified by the fact thatB is non-singular (B is also hermitian and positive-definite without PML). Although it could
be replaced with any invertible matrix (e.g.K3 or M), the identity matrix is chosen in the first row ofA andB in order
to reduce memory allocation.

In this paper, the above eigensystem is solved using the ARPACK library [42], based on the implicitly restarted
Arnoldi method, which allows to compute a specified number ofeigenvalues that are nearest in absolute value to
a user-defined shift. The non-hermitian character of matrices with PML may raise problems with the norm of the
resolvent, which can be quite large far away from poles and yield spurious eigenvalues [36]. Yet this drawback can
be reduced by setting the PML not too far from the core, as willbe shown in Sec. 3.2. The question of eigensolver
accuracy due to non-hermitian matrices is left beyond the scope of this paper. In this paper, the possible loss of
accuracy of the eigensolver appears to be of less importancethan that of FE discretization or PML parametrization,
since it will be shown in Secs. 3 and 4 that leaky and trapped modes can be accurately computed with the SAFE-PML
method.

It is worth noting that, due to the symmetry ofK1, K3 andM, if k is an eigenvalue, then−k is also an eigenvalue.
Hence, the eigenproblem has two sets of eigensolutions (k+j ,U

+
j ) and (−k+j ,U

−
j ) ( j = 1, ..., n), representingn positive-

going andn negative-going wave modes.

2.5. PML parameters

From the definition of the complex coordinate (9), the PML depends on three user-defined parameters: the thick-
nessh, the distanced and the non-dimensional attenuating functionγ(x).

A proper choice of the attenuating function is crucial for anefficient wave absorption inside the layer. In time-
harmonic source problems (excluding modal problems), thisfunction has often been chosen as 1+ iσ(x)/ω, where
σ(x) is a continuous real function increasing inside the PML [43, 44, 45]. This particular choice derives naturally
from the use of time-dependent PMLs. However, the problem slightly differs for the computation of modes in open
waveguides.

As explained in section 2.3, ifkl/s denotes the transverse wavenumber (shear or longitudinal)of a given mode,
the effect of an infinite PML is to transform its actual behavior exp(ikl/sx̃) for real x̃ into an exponentially decaying
behavior exp(ikl/sx̃(x)) asx tends to+∞, wherex̃(x) denotes the complex path defined in (9). Hence a truncated PML
will act properly if exp(ikl/sx̃(x)) is sufficiently small at the end of the PML so that only small reflections occur. From
Eq. (9), we have ˜x(a+ d+ h) = a+ d+ γ̂h where:

γ̂ =
1
h

∫ a+d+h

a+d
γ(s)ds

denotes the average value ofγ(x) inside the PML. As a consequence, the total attenuation from the interface to the
end of the PML is given by:

exp
(

−Im(kl/sγ̂h)
)

= exp
(

−|kl/s||γ̂|h sin(argkl/s + argγ̂)
)

.

This formula tells us on the one hand that the PML can play its attenuating role for leaky modes such that argkl/s >

− argγ̂. The attenuation vanishes if argkl/s becomes close to− argγ̂. Of course, increasing arg ˆγ increases the region
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of the complex plane were leaky modes can be computed. Besides, the PML attenuation increases with|γ̂|h. But for
a givenh, the value of|γ̂| cannot be chosen arbitrarily large. Otherwise the attenuation would be too fast, as well as
the wavelength in the PML region too small (increasing|γ̂|h also increases Re(kl/sγ̂h)), to be approximated by the FE
discretization. High values of|γ̂|h indeed require refined meshes. This drawback is well-known in PML problems
(see [45] for instance).

As far as trapped modes are concerned (argkl/s = π/2), waves remain exponentially decaying provided that
argγ̂ < π/2. However, the PML can enhance this decay if ˆγ is such that Im(kl/sγ̂) > Im(kl/s), or equivalently
|γ̂| cos arg ˆγ = Reγ̂ > 1.

When considering open waveguide problems, a constant complex function has generally been adopted [35, 32, 33]:

γ(x) =

{

1 if x ≤ a+ d,
γ̂ if x > a+ d,

whereγ̂ is a user-defined parameter. Such a choice somewhat simplifies the mathematical analysis of the problem. In
this paper, the following continuous parabolic function for both the real and imaginary parts ofγ(x) is also considered
and appears to provide better results as will be shown in Secs. 3.2.2 and 4.2:

γ(x) =























1 if x ≤ a+ d,

1+ 3(γ̂ − 1)

(

x− a− d
h

)2

if x > a+ d.

Note that any frequency dependence is dropped in order to avoid the computation of SAFE matrices at each frequency.

3. Analysis of PML effects on the eigenvalue spectrum

As it reveals a rich structure, a better understanding of thenumerical spectrum is required before computing
the dispersion curves of trapped and leaky modes. This section is hence devoted to the study of the eigenspectrum
obtained by the SAFE-PML method. First, a simplified analytical model is proposed to outline the main effects of
PMLs on the elastodynamic spectrum. Second, numerical experiments are performed with the SAFE-PML method.
The influence of PML parameters on leaky and radiation modes is highlighted.

The case of trapped mode is not discussed in this section. As trapped modes naturally decrease in the transverse
direction, their computation is less critical. Trapped modes will be considered in Sec. 4.2.

3.1. Analytical solution

Let us assume a semi-infinite isotropic homogeneous medium in the transverse directionx ∈ [0,+∞[. This
problem can be seen as an open waveguide problem (witha = 0). Let us close the problem with a PML of thicknessh
and positiond. L = d+ h denotes the total thickness of the waveguide. The equationsto be solved are the equilibrium
equations of elastodynamics together with the boundary conditions atx = 0 andL, or equivalently (see (9)) at ˜x = 0
andL̃ given by:

L̃ = x̃(L) =
∫ L

0
γ(ξ)dξ = d+ hγ̂. (11)

which can be referred to as the complex thickness of the medium.
As in the introduction, the Helmholtz decomposition tells us that the displacement field̃u can be expressed as the

superposition (3) of longitudinal and shear waves, where the potentials ˜ϕl andϕ̃s satisfy respectively:

∂2ϕ̃l

∂x̃2
+













ω2

c2
l

+ λ













ϕ̃l = 0 and
∂2ϕ̃s

∂x̃2
+

(

ω2

c2
s
+ λ

)

ϕ̃s = 0, (12)

whereλ = −k2, cl andcs are the longitudinal wave and shear wave velocities respectively.
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For free or fixed boundary conditions, the potentials ˜ϕl andϕ̃s are coupled. However, mixed boundary conditions
yield uncoupled problems leading to analytical solutions.Let us apply the following mixed conditions: ˜ux|0,L̃ = 0,
σ̃xz|0,L̃ = 0. These conditions yield the uncoupled boundary conditions for potentials:

∂ϕ̃l

∂x̃

∣

∣

∣

∣

∣

0,L̃
= 0, ϕ̃s|0,L̃ = 0, (13)

and the eigenvalues of Eqs. (12) and (13) can be readily obtained as:

λ
(n)
l = −

ω2

c2
l

+
n2π2

L̃2
, λ(m)

s = −
ω2

c2
s
+

m2π2

L̃2
,

together with the associated eigenfunctions:

ϕ̃
(n)
l (x̃) = A(n)

l cos
nπx̃

L̃
, ϕ̃(m)

s (x̃) = A(m)
s sin

mπx̃

L̃
, (14)

wheren ≥ 0 andm > 0 denote integers.A(n)
l andA(m)

s are normalization factors. The above derivation of the modes
may not seem rigorous since the Helmholtz decomposition (3)and the differential equations (13) concern a complex
domain{x̃(x) ∈ C; 0 < x < L}. If we rewrite the equations in terms of the real variablex ∈ (0, L), it is clear
that the above formal derivation yields particular solutions of the initial elastodynamic problem. And these are the
only solutions, which is easily justified here, since the problem is one-dimensional, hence we know in advance the
dimension of the space of solutions of the various differential equations.

From this result, it can be concluded that:

• two spectra are present for elastodynamics instead of one for acoustics: they are associated respectively to
compressional waves and shear waves;

• in the complex plane (Reλ, Imλ), the poles associated with the compressional wave spectrum and the shear
wave spectrum are located on a half line of origin−ω2/c2

l and−ω2/c2
s respectively, both lines having a rotation

angle equal to−2 argL̃ with respect to the axis Imλ = 0;

• the spectra are getting denser by increasing|L̃|, and become continuous in the limit|L̃| → ∞.

For clarity, Fig. 2a plots an example of spectrum calculatedfor d = 0.1, h = 0.9 andγ̂ = 1+ 2i.
Note that the initial open problem is without PML and can be recovered in the limitL̃ = L → ∞, yielding

two continua of modes both located on horizontal half-lines(the rotation angle being zero). It can be deduced that
the introduction of an infinite PML rotates each continuum inthe complex plane, and that the truncation of the layer
discretizes each continuum. In the truncated PML problem, each of the two spectra can then be viewed as a discretized
continuum of radiation modes, representing standing wavesin the transverse direction.

It can be noticed that the eigenvalues and the rotation angleonly depend on the global PML parameterL̃, function
of d, h andγ̂. From Eq. (11), the angle can be expressed as:

θ = −2 arg (d+ hγ̂). (15)

This result coincides with the mathematical derivation obtained in Ref. [46] for a bilayer scalar waveguide with a
constantγ function, whered should be understood as the distance between the PML and the core of the waveguide.

For a given value ˆγ, the eigenvalues and the rotation angle are not affected by the absorbing function profile
γ(x). However, the eigenfunctions (14) are strongly dependenton that profile. Figure 2b depicts the real part of the
eigenfunctionϕ(5)

l (x) = ϕ̃(5)
l (x̃(x)), wherex̃ has been calculated from Eq. (9) both for a constant and a parabolic profile

(d = 0.1, h = 0.9 andγ̂ = 1 + 2i). With a constantγ function, it can be observed that a slope discontinuity occurs
at the PML interface. With a continuously increasing function, no slope discontinuity occurs but the oscillations are
significantly stretched near the interface and narrowed near the PML end. This will have important consequence in
the SAFE-PML spectrum, as discussed in Sec. 3.2.2.

Note that the present analytical solution does not imply anytrapped or leaky modes. In particular, no Rayleigh
wave occurs because the boundary conditions are mixed at thesurfacex = 0 (Rayleigh waves only occur with a free
boundary condition [47]). PML effects on leaky modes are numerically studied in the next subsection.
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(a) (b)

Figure 2: (a) Analytical spectrum (ω = 17.68, cl = 1.706, cs = 0.909), (b) real part ofϕ(5)
l (x) calculated withγ

constant (continuous line) andγ parabolic (dashed line). PML parameters are:d = 0.1, h = 0.9 andγ̂ = 1+ 2i.

(a) (b) (c)

Figure 3: Description of test cases, (a) Titanium-Alpha-Titanium, (b) Epoxy-Aluminium and (c) Alpha-Titanium
waveguides.

3.2. SAFE-PML numerical experiments

3.2.1. Test case description
In the following, numerical tests are performed for a three layer waveguide taken from the work of Lowe [22].

Figure 3a depicts the structure, a thin core of Alpha case of 0.1mm embedded on both sides by Titanium half-spaces.
Material characteristics are given in Table 1. In this test case, no trapped modes occur. The eigenvalue spectrum
is computed for a single frequencyΩ = 17.68, whereΩ = ωa/cs0 is the dimensionless angular frequency andcs0

denotes the shear wave velocity of the core (Alpha case).
In SAFE-PML simulations, finite elements are quadratic (three-node elements). Both constant and parabolicγ

functions are considered. Choosing the optimized value of ˆγ is a difficulty inherent to PML problems: its modulus
should not be set too low for a proper absorption of waves, andnot too high otherwise numerical reflection will occur.
In this section, the averaged value of absorbing functions is set to ˆγ = 1+ 2i.

Figures 4a and 4b compare the dimensionless spectrum forλa2 obtained for ˆγ = 1 + 0.2i andγ̂ = 1 + 0.5i. A
constantγ function is used. The PML thickness is set toh = 0.9a. The FE size, denoted∆x, is equal to 0.05a. From
these figures, two kinds of modes can be observed.

cl (m/s) cs (m/s) ρ (kg/m3)
Titanium 6060 3230 4460
Alpha 6666 3553 4460
Aluminium 6370 3170 2700
Epoxy 2610 1100 1170

Table 1: Material characteristics
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(a) (b)

Figure 4: Spectrum of Ti-alpha-Ti waveguide computed withγ constant,d = 0.1a, h = 0.9a, ∆x = 0.05a (Ω = 17.68)
for: (a) γ̂ = 1+ 2i, (b) γ̂ = 1+ 0.5i. Crosses: SAFE-PML results, circles: analytical solutions for leaky modes.

(a) (b)

Figure 5: Spectrum of Ti-alpha-Ti waveguide computed withd = 0.1a, h = 0.9a, ∆x = 0.05a (γ̂ = 1+ 2i,Ω = 17.68)
for: (a)γ constant, (b)γ parabolic. Crosses: SAFE-PML results, circles: analytical results for leaky modes.

The first kind of modes forms two branches starting from (−ω2a2/c2
s, 0) and (−ω2a2/c2

l , 0) respectively, wherecs

andcl denote the bulk wave velocities of Titanium. Except far fromthe real axis, each branch resembles a straight line
whose rotation angle is approximately equal to−2 arg(d+hγ̂) (about−120◦ in Fig. 4a and−45◦ in Fig. 4b). By analogy
with Sec. 3.1, these branches can be interpreted as a discretized continuum of longitudinal waves and a discretized
continuum of shear waves. Modes belonging to these branchesare hence radiation modes, mainly oscillating in the
surrounding medium, which are strongly dependent on the PMLparameters.

The second kind of modes corresponds to leaky modes. These modes, which are intrinsic to the physics, can
be compared with analytical solutions obtained from a Thomson-Haskell matrix approach [20, 21]. As shown for
γ̂ = 1 + 2i (Fig. 4a), numerical results for leaky modes are in good agreement with Thomson-Haskell results. Yet
for γ̂ = 1+ 0.5i (Fig. 4b), some leaky modes cannot be computed by the SAFE-PML method: as already explained
in Sec. 2.5, the argument of ˆγ is not large enough to attenuate the transversal growth of leaky modes. Indeed, the
rotation of each continuum allows to discover leaky modes (hidden in the original problem without PML), the number
of discovered modes increasing with the rotation angle.

3.2.2. Comparison between constant and parabolic PML functions
Figures 5a and 5b show the spectrum obtained with a constant PML function and a parabolic profile respectively.

In the latter case, the accuracy of leaky modes is improved. This result is due to the fact that the perfectly matched
property satisfied for the continuous problem no longer holds after FE discretization, which yields artificial reflections.
Moreover, the discontinuity of the constant PML function atthe interface between the physical and the PML regions
yields more artificial reflection than continuously increasing absorbing functions. As expected from Eq. (15), note
that the rotation angles remain identical to the constantγ case, becauseh, d andγ̂ have been kept constant for this
comparison.

Concerning higher order radiation modes (further from the real axis), it can be observed that each continuum
deviates from straight lines. This phenomenon is due to the FE approximation, as will be shown in Sec. 3.2.4. With
γ constant, the deviation of the discretized continuum of shear waves occurs a little further than for compressional
waves and is not shown in Fig. 5a.

Note that with a parabolic profile, the deviation of radiation modes from straight lines occurs at a significantly
closer distance from the real axis. As shown in Sec. 3.1, choosing an increasing absorbing profile affects the mode-
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(a) (b)

Figure 6: Same caption as Fig. 5 but withh = 1.8a.

(a) (b)

Figure 7: Same caption as Fig. 5 but withh = 1.8a and∆x = 0.02a.

shapes of radiation modes. In particular, the transverse oscillations are narrowed near the PML end, which the FE
discretization may no longer approximate.

3.2.3. PML thickness effects
Figure 6 gives the spectrum computed by increasing the PML thickness toh = 1.8a, both for the constant and the

parabolic profiles.
Concerning radiation modes, it can be observed that increasing the PML thickness yields a denser discretization

of continua, as expected from Sec. 3.1 (increasingh increases̃L). Note that the deviation limit from straight lines is
left unchanged by the parameterh.

As a side remark, increasing the thicknessh while leavingγ̂ unchanged may not improve the accuracy of leaky
modes when a constant profile is chosen (compare Figs. 5a and 6a). While the parabolic function gets smoother ash is
increased (in the sense that the discontinuity of the secondderivative ofγ at x = a+d decreases), the constant function
keeps the same discontinuity at the PML interface, yieldingartificial reflections that are not reduced by increasingh.

Let us emphasize that the thickness of the PML should not be taken too small, otherwise spurious reflections at
the end of the layer will pollute the results. For a given PML (a givenh and a given absorbing profile), the reflection
coefficients associated to these spurious reflections (which can be easily computed analytically) only depend onλ.
Their magnitude are roughly speaking exponentially decreasing whenλ moves away from the continua. On the
contrary, computing a leaky mode which is located very closeto the continua requires a priori a largerh (together
with an appropriate discretization).

3.2.4. Mesh size effects
Figure 7 gives the spectrum obtained by refining the FE mesh to∆x = 0.02a. Two effects can be observed. First,

refining the FE mesh tends to restore the perfectly matched property: the accuracy of leaky modes increases (compare
Figs. 6 with 7). Second, the deviation occurs at greater distance from the real axis (the continua are also better
approximated). The deviation phenomenon is indeed essentially due to the FE discretization, unable to approximate
higher order modes as in conventional eigenvalue FE problems.
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(a) (b)

(c) (d)

Figure 8: Same caption as Fig. 5 but with: (a)d = a andγ constant, (b)d = a andγ parabolic, (c)d = 3a andγ
constant, (d)d = 3a andγ parabolic.

3.2.5. PML position effects
Figure 8 shows the influence of increasing the distanced between the core and the PML. Asd increases, it can

be observed that the deviation from straight lines approaches the real axis and that the computation of leaky modes is
deteriorated. For instance forγ constant andd = 3a, only two leaky modes are obtained, the other ones being polluted
by sub-branches emanating from continua.

Regarding source PML problems, this phenomenon is unusual.Yet for scalar modal problems [46, 36], it has
been mathematically explained by the increase withd of the norm of the resolvent of the eigenproblem, due to the
non-hermitian character of matrices involved in the discretized problem. From a physical point of view, setting the
PML too far from the core allows leaky modes to exponentiallygrow in the transverse direction before entering the
PML, which can deteriorate their calculation. Therefore, ageneral requirement for the computation of leaky modes is
that the PML interface should be as close as possible to the core.

As observed in Fig. 8b, results obtained from a parabolic function are less affected by the parameterd than with
a constant profile. But ford = 3a, Fig. 8d shows again the pollution by sub-branches emanatingfrom continua.
It should also be noticed that the rotation angle of continua(measured near the real axis) is significantly decreased
compared to previous figures. This is also well explained by Eq. (15): increasingd decreases|2 arg(d+ hγ̂)|.

4. Computation of dispersion curves

This section focuses on the computation of dispersion curves of leaky and trapped modes. In order to assess the
efficiency of the SAFE-PML method, three test cases taken from the literature are considered. Results are compared
with analytical solutions obtained from a Thomson-Haskellmatrix approach.

4.1. Modal filtering of radiation modes

As shown in Sec. 3, the SAFE-PML method does not only provide trapped and leaky modes, but also many
radiation modes related to the rotated continuous spectrumof the initial physical problem (see Sec. 3.1). These
numerous modes are non intrinsic to the physics because theymainly resonate inside the PML. It is desirable to get
rid of them in the visualization of dispersion curves. A post-processing step must hence be applied, consisting in
identifying and removing modes resonating mainly in the artificial layers.
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Our filtering process is based on an adapted notion of kineticenergy. By analytical continuation into the complex

coordinate ˜x, the averaged kinetic energy in the region [x1; x2] can be defined asE = 1
2

∫ x̃2

x̃1
ρ̃ṽT ṽdx̃, whereṽ = dũ/dt

is the velocity vector, bars denote time averaging over one period.
From the change of variable (10), the relationsv = −iωu andvTv = ω

2

2 u∗u, the kinetic energy expression becomes:

E =
ω2

4

∫ x2

x1

ρu∗uγdx. (16)

The superscript∗ refers to the complex conjugate transpose.
Let us define the total kinetic energyEtot from Eq. (16) with boundsx1 andx2 corresponding to the whole cross-

section (including PMLs). From the interpolation of the displacement vector (6), the FE expression ofEtot is:

Etot =
ω2

4
U∗MU. (17)

Without PML (γ=1), this expression coincides with the results standardly found for closed waveguide problems [48,
49]. With PMLs,M is complex andEtot is no longer real.

We also define the PML kinetic energyEPML, obtained from Eq. (16) with boundsx1 and x2 restricting the
integration to the PML region only. The filtering criterion used for our tests is based on the ratio of kinetic energy in
the PML region over the kinetic energy in the whole domain. Physical modes are then identified if this criterion is
smaller than a user-defined valueρmax:

|EPML|

|Etot|
< ρmax. (18)

Note that since the kinetic energy is complex, the modulus ofkinetic energy is used.

4.2. Results

Numerical tests are realized for three multilayer waveguides, shown in Fig. 3 and taken from the work of Lowe [22,
14, 15]. The first one has already been considered in Sec. 3 andonly involves leaky modes. The second test case is
an Epoxy layer of 100µm on an Aluminum half-space, for which the first two modes are trapped. The third one
corresponds to a thin Alpha case layer of 50µm on a Titanium half-space. This last case is of particular interest
because the first mode is trapped in a low frequency range and becomes leaky mode at higher frequencies. Material
characteristics are given in Table 1.

The thickness of PML layers is set toh = 0.9a. Following the suggestion of Sec. 3.2.5, the PML interface is
set close to the core (d = 0.1a) in order to reduce the effects of the exponential growth of leaky modes. Note that it
could be possible to used = 0 instead. However a small but non zero value is preferred as it yields a more general
configuration that will typically occur when extending the method to three-dimensional waveguides of arbitrary cross-
section. A Dirichlet condition is chosen at the PML end (zerodisplacement in both directions). Numerical tests, not
presented here for conciseness, have shown that Neumann or mixed boundary conditions yield negligible differences
on leaky and trapped modes (such modes mainly resonate outside the PML). Finite elements are quadratic (three-
node elements) and sized in order to satisfy the criterion∆x 6 λs/5, whereλs = cs/ fmax denotes the minimum shear
wavelength.

SAFE-PML dispersion curves are presented after modal filtering and compared with the reference solutions ob-
tained from the Thomson-Haskell matrix method. The user-defined filtering thresholdρmax is specified for each test.
Note that a proper choice ofρmax depends on the absorbing profile, since the PML kinetic energy depends onγ(x).

Let us first consider the first test case (Ti-Alpha-Ti). Figure 9 compares the phase velocity and attenuation curves
computed withγ constant andγ parabolic forγ̂ = 1 + 4i. In order to reduce the number of eigenvalues to solve,
the computation has been centered around the wavenumberω/cl , wherecl denotes the longitudinal velocity in the
surrounding medium (this partly avoids the computation of opposite-going modes). 50 modes have been solved.

Figure 9 shows that the parabolic function gives better results than the constant function, as can be observed in the
high frequency range. This confirms the trends already foundin Sec. 3.2. Therefore in the remainder, all PML results
will be obtained withγ parabolic. It can be observed that numerical results obtained withγ constant yield additional
modes in a higher frequency range. Though unfiltered by the criterion (18), these modes are not of leaky type.
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Figure 9: Comparison between SAFE-PML (circles:γ constant, crosses:γ parabolic) and analytical (continuous
lines) solutions for Ti-Alpha-Ti waveguide, (a) phase velocity and (b) attenuation. PML parameters are:d = 0.1a,
h = 0.9a, γ̂ = 1+ 4i, ρmax= 0.8 for γ constant andρmax= 0.9 for γ parabolic (∆x = 0.05a).
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Figure 10: Same caption as Fig. 9, but without filter (ρmax= 1, γ parabolic only).

In order to illustrate the efficiency of the filtering method based on Eq. (18), Fig. 10 depicts the numerical results
without filtering (ρmax=1). The radiation modes yield many dispersion curves and prevent a proper visualization of
leaky mode curves. Another benefit of the filtering process isthat leaky modes can be filtered out in the low-frequency
range, indicating waves insufficiently absorbed by the PML.

Figure 11 represents the phase velocity as a function of frequency for the Epoxy-Al waveguide. 30 modes have
been solved, centered aroundω/cs. One focuses on the first two trapped modes (k′l/s = 0,k′′l/s > 0,k′′ = 0), represented
by continuous lines in figures. Numerical results also show other modes, of less interest here (these modes are leaky
modes of high axial attenuation or higher order trapped modes).

Note that in the complex plane (Reλ, Imλ), trapped modes in the original problem (without PML) wouldbe
located on the real axis. Hence, trapped modes do not need to be discovered by spectrum PML rotation (increasing
the imaginary part of ˆγ is useless). For a proper computation of trapped modes, a first idea is to increase the value
of d in order to let the trapped modes naturally decrease in the transverse direction. Yet increasingd could lead
to numerical problems as previously mentioned in Sec. 3. An interesting alternative technique consist in increasing
Reγ̂ instead (see Sec. 2.5), which is equivalent to stretch the transverse direction and therefore to increase the PML
thickness. Comparing the results obtained with ˆγ = 4+ i and 20+ i confirms that increasing Reˆγ give more accurate
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Figure 11: Comparison between SAFE-PML (crosses) and analytical (continuous lines) phase velocities for Epoxy-Al
waveguide for (a) ˆγ = 4 + i (ρmax = 0.6), (b) γ̂ = 20+ i (ρmax = 0.9). PML parameters are:d = 0.1a, h = 0.9a,
parabolic function (∆x = 0.2a).

dispersion curves.
Figure 12a represents the attenuation as a function of frequency for the Alpha-Ti bilayer with ˆγ = 10+ 10i. 20

modes have been computed aroundω/cl . In this test case, one focuses on the computation of the firstmode (the less
attenuated one). As shown in Fig. 12b, this mode is trapped upto a dimensionless frequency close to 4 and then
becomes leaky beyond. Therefore, the real part of ˆγ is chosen as high as the imaginary part in this example. Good
agreement with the analytical solution is found.

From Fig. 12a, it is observed that the second mode is filtered out at low frequencies, due to insufficient attenuation
by the PML. Besides, the highest mode is not accurately computed. Numerical tests (not shown for conciseness) have
shown that setting ˆγ to a lower value, ˆγ = 4+ 4i, gives more satisfying results for higher order modes. Sucha value
is yet less suitable for the first mode.

5. Conclusion

A SAFE-PML technique has been proposed to compute the elastic propagation modes of open waveguides. The
method yields three kinds of modes: leaky and trapped modes,which are intrinsic to the physics, and radiation modes,
which are located along two branches corresponding to a continuum of compressional waves and a continuum of shear
waves respectively. The PML rotates both branches from the real axis, with a rotation angle approximately equal to
−2 argL̃ whereL̃ is the so-called complex thickness of the semi-infinite layer. The truncation of the PML discretizes
both continua and also controls the modal density along eachbranch (increasing|L̃| yields a denser discretization).
Furthermore, the rotation angle must be large enough in order to discover the leaky modes of interest.

In this study, parabolic absorbing functions have shown to yield more accurate results than constant functions.
Besides, the PML interface should be set close to the core in order to avoid the deteriorating effects of the exponential
growth of leaky modes. A comparison with analytical dispersion curves obtained from a Thomson-Haskell approach
has been conducted. The SAFE-PML method gives satisfying results both for leaky and trapped modes. An efficient
filtering criterion based on the ratio of kinetic energy inside the PML over the whole domain has been proposed in
order to eliminate radiation modes in the visualization of dispersion curves.

The main drawback of the approach is the optimization of PML parameters (inherent to any PML method). For
a given PML thickness and a given mesh size, the PML absorbingfunction cannot be arbitrarily large due to the FE
approximation. However, relatively thin PML layers allow to obtain accurate results.
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Figure 12: (a) Comparison between SAFE-PML (crosses) and analytical (continuous lines) attenuation for Alpha-Ti
waveguide, (b) zoom on the first mode. PML parameters are:d = 0.1a, h = 0.9a, γ̂ = 10+ 10i, ρmax= 0.8, parabolic
function (∆x = 0.1a).
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