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Abstract

We investigate a resource allocation problem in a multi-class server with convex holding
costs and user impatience under the average cost criterion. In general, the optimal policy has a
complex dependency on all the input parameters and state information. Our main contribution
is to derive index policies that can serve as heuristics and are shown to give good performance.
Our index policy attributes to each class an index, which depends on the number of customers
currently present in that class. The index values are obtained by solving a relaxed version of
the optimal stochastic control problem and combining results from restless multi-armed bandits
and queueing theory. They can be expressed as a function of the steady-state distribution
probabilities of a one-dimensional birth-and-death process. For linear holding cost, the index
can be calculated in closed-form and turns out to be independent of the arrival rates and the
number of customers present. In the case of no abandonments and linear holding cost, our
index coincides with the cµ-rule, which is known to be optimal in this simple setting. For
general convex holding cost we derive properties of the index value in limiting regimes: we
consider the behavior of the index (i) as the number of customers in a class grows large, which
allows us to derive the asymptotic structure of the index policies, (ii) as the abandonment rate
vanishes, which allows us to retrieve an index policy proposed for the multi-class M/M/1 queue
with convex holding cost and no abandonments, and (iii) as the arrival rate goes to either 0
or ∞, representing light- and heavy-traffic regimes, respectively. We show that Whittle’s index
policy is asymptotically optimal in both light- and heavy-traffic regimes. To obtain further
insights into the index policy, we consider the fluid version of the relaxed problem and derive
a closed-form expression for the fluid index. The latter coincides with the stochastic model in
case of linear holding costs. For arbitrary convex holding cost the fluid index can be seen as the
Gcµ/θ-rule, that is, including abandonments into the generalized cµ-rule (Gcµ-rule). Numerical
experiments show that our index policies become optimal as the load in the system increases.

1 Introduction

In this paper our objective is to develop a unifying framework to obtain well performing control
policies in a multi-class single-server queue with convex holding costs and impatient customers.
The single-server queue is the canonical model to study resource allocation problems and it can
be considered as one of the most classical decision problems. It has been widely studied due to its

∗The PhD fellowship of Maialen Larrañaga is funded by a research grant of the Foundation Airbus Group
(http://fondation.airbus-group.com/). A shorter version of this paper was published in the Proceedings of ACM
Sigmetrics 2014 [26].

1



applicability to any situation where a single-resource is shared by multiple concurrent customers.
Abandonment or reneging takes place when customers, unsatisfied of their long waiting time, decide
to voluntarily leave the system. It has a huge impact in various real life applications such as the
Internet or call centers, where customers may abandon while waiting in the queue, or even while
being served. In the presence of abandonments and/or convex holding cost, a characterization of
the optimal control is out of reach, due to the curse of dimensionality.

When the holding costs are linear and customers are not impatient, a classical result shows that
the celebrated cµ-rule rule is optimal, that is, to serve the classes in decreasing order of priority
according to the product ckµk, where ck is the holding cost per class-k customer, and µ−1

k is the
mean service requirement of class-k customers, [14, 19]. The cµ-rule is a so-called index policy,
that is, the solution to the stochastic control problem is characterized by an index, ckµk, which
determines which customer is optimal to serve. This simple structure of the optimal policy vanishes
however in the presence of convex costs and/or impatient customers. The optimal policy will in
general be a complex function of all the input parameters function and the number of customers
present in all the classes.

Optimality of index policies has enjoyed a great popularity. The solution to a complex control
problem that, a priori, might depend on the entire state space, turns out to have a strikingly simple
structure. For instance, in the case of the cµ-rule, the solution does not depend on the number of
customers in the various classes. Another classical result that can be seen as an index policy is the
optimality of Shortest-Remaining-Processing-Time (SRPT), where the index of each customer is
given by its remaining service time. Both examples fit the general context of Multi-Armed Bandit
Problems (MABP). A MABP is a particular case of a Markov Decision Process: at every decision
epoch the scheduler needs to select one bandit, and an associated reward is accrued. The state of
this selected bandit evolves stochastically, while the state of all other bandits remain frozen. The
scheduler knows the state of all bandits, the rewards in every state, and the transition probabilities,
and aims at maximizing the total average reward. In a ground-breaking result Gittins showed that
the optimal policy that solves a MABP is an index-rule, nowadays commonly referred to as Gittins’
index [20]. Thus, for each bandit, one calculates an index that depends only on its own current
state and stochastic evolution. The optimal policy activates in each decision epoch the bandit with
highest current index.

Despite its generality, in multiple cases of practical interest the problem cannot be cast as
a MABP. In a seminal work [36], Whittle introduced the so-called Restless Multi-Armed Bandit
Problems (RMABP), a generalization of the standard MABP. In a RMABP all bandits in the
system incur a cost. The scheduler selects a number of bandits to be made active. However,
all bandits might evolve over time according to a stochastic kernel that depends on whether the
bandit is selected for service or not. The objective is to determine a control policy that optimizes
the average performance criterion. RMABP provides a more general modeling framework, but its
solution has in general a complex structure that might depend on the entire state-space description.
Whittle considered a relaxed version of the problem (where the restriction on the number of active
bandits needs to be respected on average only, and not in every decision epoch), and showed that
the solution to the relaxed problem is of index type, referred to as Whittle’s index. Whittle then
defined a heuristic for the original problem where in every decision epoch the bandit with highest
Whittle index is selected. It has been shown that the Whittle index policy performs strikingly well,
see [29] for a discussion, and can be shown to be asymptotically optimal, see [34, 32]. The latter
explains the importance given in the literature to calculate Whittle’s index. In order to calculate
Whittle’s index there are two main difficulties, first one needs to establish a technical property
known as indexability, and second the calculation of the index might be involved or even infeasible.

In our main contribution of the paper, we verify indexability and calculate Whittle’s index
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for the average cost criterion of the multi-class queue with abandonments and convex cost. In
fact, our model can be written as a RMABP where each class is represented by a bandit and the
state of a bandit describes the number of customers in that class. The evolution of the number of
customers being birth-and-death, the bandit is of birth-and-death type. An important observation
we make is that the Whittle index we obtain, which is expressed as a function of the steady-state
probabilities, is in fact applicable for any birth-and-death bandit. This is a simple observation
that has far reaching consequences since it allows to derive Whittle’s index for a general class of
control problems, as will be explained in the paper. Note that indexability would be needed to be
established on a case-by-case basis. For the abandonment model with convex holding cost, we prove
indexability by showing that threshold policies are optimal for the relaxed optimization problem
and using properties of the steady-state distributions.

Having characterized Whittle’s index in terms of steady-state distributions, we then apply it
to various cases. In the case of linear holding cost, we show that the Whittle’s index is a constant
that is independent of the number of customers in the system and of the arrival rate. In fact, this
index policy (with linear holding cost) coincides with the index policies as proposed in [7] and [5],
for specific model assumptions, and is asymptotically optimal for a multi-server environment. For
general convex holding cost we derive properties of the index value in limiting regimes: we consider
the behavior of the index (i) as the number of customers in a class grows large, which allows us to
derive the asymptotic structure of the index policies, ii) as the abandonment rate vanishes, which
allows us to retrieve an index policy proposed for the multi-class M/M/1 queue with convex holding
cost and no abandonments, and (iii) as the arrival rate goes to either 0 or ∞, representing light-
and heavy-traffic regimes, respectively.

We show asymptotic optimality of Whittle’s index policy in both light traffic and heavy traffic.
We do so by establishing that for these two limiting regimes, the solution to the relaxed version
of the optimization problem (where the restriction on the number of active bandits needs to be
respected on average only, and not in every decision epoch) is a feasible policy for the original
optimization problem.

Our index is expressed as a function of the steady-state probabilities and it can thus efficiently be
calculated, but it does not always allow to obtain qualitative insights. We therefore formulate a fluid
version of the relaxed optimization problem, where the objective is bias optimality, i.e., to determine
the policy that minimizes the cost of bringing the fluid to its equilibrium. We show how to derive
an index for the fluid model, and we compare it with Whittle’s index as obtained for the stochastic
model. The advantage of the fluid approach lies in its relatively simple expressions compared to the
stochastic one. It shows equivalence with the Gcµ/θ-rule, that is, including abandonments into the
generalized cµ-rule (Gcµ-rule) and provides useful insights on the dependence on the parameters.
For linear holding cost the Whittle index and the fluid index are identical.

Numerical experiments show that our index policies, in addition to being optimal in light and
heavy traffic, perform very well across all traffic loads.

In summary the main contributions of this paper are:

• Obtain Whittle’s index for a multi-class queue with convex holding costs and abandonments
under average cost criterion.

• Establish optimality of threshold policies and indexability for the relaxed optimization prob-
lem.

• For linear holding costs Whittle’s index is independent on the arrival rate and number of
customers present in a class.

• Establish asymptotic optimality of Whittle’s index policy in a light-traffic and heavy-traffic
regime.
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• Development of a fluid-based approach to derive a closed-form index policy for general holding
cost.

The paper is organized as follows. In Section 2 we give an overview of related work and in
Section 3 we describe the model. In Section 4 we present the relaxation of the original problem
and show that threshold policies are optimal. We establish indexability and calculate Whittle’s
index under the average cost criterion. In Section 5 we explain a heuristic index policy, based on
Whittle’s index, for the original optimization problem. In Section 6 we calculate Whittle’s index for
linear holding cost and derive properties for general convex holding costs. In Section 7 we calculate
the index for an M/M/1 queue without abandonments. Section 8 describes asymptotic optimality
results. In Section 9 we present the fluid model and derive the fluid index. Finally, in Section 10
we numerically evaluate the performance of Whittle’s index policy and the fluid index policy.

2 Related Work

There are four main literature bodies that are relevant to our work: literature on (i) index policies
for resource allocation problems, (ii) scheduling with convex costs, (iii) scheduling in the presence
of impatient customers, and (iv) fluid-based scheduling. We provide below a brief summary of some
of the main contributions in each of the domains.

(i) The seminal work on the optimality of index policies for MABP is in the book by Gittins et.
al. [20]. The optimality of the cµ-rule, i.e., strict priority is given according to the indices cµ, in a
multi-class single server queue for average reward and discounted cost criteria, in the preemptive
and non-preemptive cases, is shown in [14, 19]. Index policies for RMABP were introduced in
the seminal paper [36]. In [29] the author develops an algorithm that allows to establish whether
a problem is indexable, and if yes, to numerically calculate, in an efficient way, Whittle’s index.
Under the assumption that an ODE has an equilibrium point and that all bandits are symmetric, in
[34] it is shown that Whittle’s index policy is asymptotically optimal as the number of bandits and
the number of bandits that can be made active grow to infinity, while their ratio is kept constant.
This result is generalized in [32] to the case in which there are various classes of bandits, and
new bandits can arrive over time. In addition to resource allocation problems, Whittle’s index has
been applied in a wide variety of cases, including opportunistic spectrum access, website morphing,
pharmaceutical trials and many others, see for example [20, Chapter 6]. The recent survey paper
[22] is a good up-to-date reference on the application of index policies in scheduling.

(ii) A seminal paper on scheduling in the presence of convex costs is [31], where the author
introduced the Generalized-cµ-rule (Gcµ) and showed its optimality in heavy-traffic for convex
delay cost. The Gcµ-rule associates to each class-i customer with experienced delay di the index
C ′
i(di)µi, where Ci(·) denotes the class-i delay cost. The optimality of the Gcµ-rule in a heavy-

traffic setting with multiple servers was established in [28]. In [1] the authors calculate Whittle’s
index policy for a multi-class queue with general holding cost functions. In [13], convex holding
costs are considered as well and, taking a stochastic approach, the author obtains an index rule
that consists on first-order differences of the cost function, rather than on its derivatives.

(iii) The impact of abandonments has attracted considerable interest from the research com-
munity, with a surge in recent years. To illustrate the latter, we can mention the recent Special
Issue in Queueing Systems on queueing systems with abandonments [24] and the survey paper [16]
on abandonments in a many-server setting. Related literature that is more close to our present
work consists of papers that deal with optimal scheduling or control aspects of multi-class queue-
ing systems in the presence of abandonments, see for instance [21, 2, 4, 17, 5, 7, 3, 25, 27, 11].
Note that, with the exception of [3], these papers consider linear holding cost. In the case of one
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server the authors of [17, 11] show that (for exponential distributed service requirements and im-
patience times) under an additional condition on the ordering of the abandonment rates an index
policy is optimal for linear holding cost. In the case of no arrivals and non-preemptive service,
the authors of [2] provide partial characterizations of the optimal policy and show that an optimal
policy is typically state dependent. It is worthwhile to mention that [2] is inspired by a patient
triage problem which illustrates that abandonments are as well an important issue in other areas
than information technology. As far as the authors are aware, the above two settings are the only
ones for which structural optimality results have been obtained. State-dependent heuristics for the
multi-class queue are proposed in [2] for two classes and no arrivals and in [21] for an arbitrary
number of classes including new arrivals. In [7] the authors obtain Whittle’s index for a multi-class
abandonment queue without arrivals, that is, each customer is a bandit and the state of a bandit is
either present or departed. In an overload setting the abandonment queue has been studied under
a fluid scaling in [4, 5], where the authors scale the number of servers and the arrival rate and show
that an index rule is asymptotically fluid optimal. In our analysis we will show how the indices
of [7] and [4, 5] coincide with the Whittle’s index rule in the case of linear holding costs and in
the presence of arrivals. In [27] the optimal policy is obtained for two classes of customers for a
fluid approximation of the stochastic model, which allows to propose a heuristic for the stochastic
model for an arbitrary number of classes. We finally mention [3, 25] where the authors derive index
policies by studying the Brownian control problem arising in heavy traffic. In [3] general delay costs
are considered while in [25] the impatience of customers has a general distribution with increasing
failure rate.

(iv) The approach of using the fluid control model to find an approximation for the stochastic
optimization problem finds its roots in the pioneering works by Avram et al. [6] and Weiss [35]. It
is remarkable that in some cases the optimal control for the fluid model coincides with the optimal
solution for the stochastic problem. See for example [6] where this is shown for the cµ-rule in a
multi-class single-server queue and [9] where this is shown for Klimov’s rule in a multi-class queue
with feedback. For other cases, researchers have aimed at establishing that the fluid control is
asymptotically optimal, that is, the fluid-based control is optimal for the stochastic optimization
problem after a suitable scaling, see for example [8, 18, 33]. We conclude by mentioning that the
fluid approach owes its popularity to the groundbreaking result stating that if the fluid model drains
in finite time, the stochastic process is stable, see [15].

3 Model Description

We consider a multi-class single-server queue with K classes of customers. Class-k customers
arrive according to a Poisson process with rate λk and have an exponentially distributed service
requirement with mean 1/µk, k = 1, . . . ,K. We denote by ρk := λk/µk the traffic load of class k,
and by ρ :=

∑K
k=1 ρk the total load to the system. We model abandonments of customers in the

following way:

• Any class-k customer not served abandons after an exponentially distributed amount of time
with mean 1/θk, k = 1, . . . ,K, with θk > 0.

• A class-k customer that is being served abandons after an exponentially distributed amount
of time with mean 1/θ′k, k = 1, . . . ,K, with θ′k ≥ 0.

The server has capacity 1 and can serve at most one customer at a time, where the service can be
preemptive. We make the following natural assumption:

µk + θ′k ≥ θk, for all k.
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That is, for a class-k customer its departure rate is higher when being served than when not being
served.

At each moment in time, a policy ϕ decides which class is served. Because of the Markov
property, we can focus on policies that only base their decisions on the current number of customers
present in the various classes. For a given policy ϕ, Nϕ

k (t) denotes the number of class-k customers

in the system at time t, (hence, including the one in service), and ~Nϕ(t) = (Nϕ
1 (t), . . . , N

ϕ
K(t)). Let

Sϕ
k (~n) ∈ {0, 1} represent the service capacity devoted to class-k customers at time t under policy

ϕ in state ~N(t) = ~n. The constraint on the service amount devoted to each class is Sϕ
k (~n) = 0 if

nk = 0 and
K
∑

k=1

Sϕ
k (~n) ≤ 1, (1)

and we denote by U the set of admissible control strategies that satisfy this constraint.
The above describes a birth-and-death process with transition rates

qϕk (~n, ~n+ ~ek) = λk,

and
qϕk (~n, ~n− ~ek) = µkS

ϕ
k (~n) + θk(nk − Sϕ

k (~n)) + θ′kS
ϕ
k (~n), (2)

for nk > 0, with ~ek a K-dimensional vector with all zeros except for the k-th component which is
equal to 1.

Let Ck(n, a) denote the cost per unit of time when there are n class-k customers in the system
and when either class k is not served (if a = 0), or when class k is served (if a = 1). We assume
Ck(·, 0) and Ck(·, 1) are convex and non-decreasing functions and satisfy for all n ≥ 0,

Ck(n, 0)− Ck((n− 1)+, 0) ≤ Ck(n+ 1, 1)− Ck(n, 1) ≤ Ck(n+ 1, 0)− Ck(n, 0). (3)

Observe that if Ck(0, 0) ≥ Ck(0, 1), then (3) implies that, for all n, Ck(n, 0) ≥ Ck(n, 1). We also
note that (3) is always satisfied when (i) Ck(n, a) = Ck(n), or when (ii) Ck(n, a) = Ck((n − a)+).
Case (i) represents holding costs for customers in the system, while (ii) represents holding costs for
customers in the queue.

We further introduce a cost dk for every class-k customer that abandoned the system when not
being served and a cost d′k for a class-k customer that abandoned the system while being served.

The objective of the paper is to find the optimal scheduling policy, denoted by OPT , under the
average-cost criteria, that is, find the policy ϕ that minimizes

Cϕ := lim sup
T→∞

K
∑

k=1

1

T
E

(∫ T

0
Ck(N

ϕ
k (t), S

ϕ
k (

~Nϕ(t))) dt+ dkR
ϕ
k (T ) + d′kR

′ϕ
k (T )

)

, (4)

where Rϕ
k (T ) and R′ϕ

k (T ) denote the number of class-k customers that abandoned the queue while
waiting and while being served, respectively, in the interval [0, T ] under policy ϕ. We denote by
COPT = infϕ∈U Cϕ the average cost under the optimal policy.

We have

E(Rϕ
k (T )) = θkE

(∫ T

0
(Nϕ

k (t)− Sϕ
k (

~Nϕ(t)))dt

)

and

E(R′ϕ
k (T )) = θ′kE

(∫ T

0
Sϕ
k (

~Nϕ(t))dt

)

,
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by Dynkin’s formula. We introduce the following notation to denote the total cost in state nk under
action a ∈ {0, 1}:

C̃k(nk, a) := Ck(nk, a) + dkθk(nk − a)+ + d′kθ
′
k min(a, nk), (5)

so that the objective (4) can be equivalently written as

lim sup
T→∞

K
∑

k=1

1

T
E

(∫ T

0
C̃k(N

ϕ
k (t), S

ϕ
k (

~Nϕ(t))) dt

)

. (6)

The above described stochastic control problems have proved to be very difficult to solve.
Already for the special case of linear holding cost, deriving structural properties of optimal policies
is extremely challenging. For example, in [17] optimal dynamic scheduling is studied for two classes
of customers (K = 2), dk = d′k, θk = θ′k, µ1 = µ2 = 1, and linear holding cost. Define c̃k := ck+dkµk.
For the special case where c̃1 ≥ c̃2 and θ1 ≤ θ2, the authors show that it is optimal to give strict
priority to class 1, see [17, Theorem 3.5]. It is intuitively clear that giving priority to class 1 is the
optimal thing to do, since serving class 1 myopically minimizes the (holding and abandonment)
cost and in addition it is advantageous to keep the maximum number of class-2 customers in the
system (without idling), since they have the highest abandonment rate. In [11] optimal dynamic
scheduling is studied for Ck(n, a) = ckn, dk = d′k, and either θk = θ′k or θ′k = 0. For the special case
where the classes can be ordered such that c̃1 ≥ · · · ≥ c̃K , c̃1(µ1+θ′1−θ1) ≥ · · · ≥ c̃K(µK+θK−θ′K),
and c̃1(µ1 + θ′1 − θ1)/θ1 ≥ . . . ≥ c̃K(µK + θ′K − θK)/θK , the authors show that it is optimal to give
strict priority according to the ordering 1 > 2 > . . . > k.

Outside these special parameter settings, or for convex holding cost, an optimal policy is ex-
pected to be state dependent, and as far as the authors are aware, no (structural) results exist for
this stochastic optimal control problem.

In order to obtain insights into optimal control for convex holding cost, in this paper we will
solve a relaxed version of the optimization problem that allows us to propose a heuristic for the
original model, which we will prove to be optimal in light and heavy traffic. The details of the
relaxation technique are described in the next section.

4 Relaxation and Indexability

The solution to (6) under constraint (1) cannot be solved in general. Following Whittle [36], we
study the relaxed problem in which the constraint on the service devoted to each class must be
satisfied on average, and not in every decision epoch. The control policy must thus satisfy

lim sup
T→∞

1

T
E

(

∫ T

0

K
∑

k=1

Sϕ
k (

~Nϕ(t))dt

)

≤ 1, (7)

or equivalently lim supT→∞
1
T E

(

∫ T
0

∑K
k=1(1− Sϕ

k (
~Nϕ(t)))dt

)

≥ K − 1. We denote by UREL the

set of policies that satisfy (7), and we note that U ⊆ UREL.
The objective of the relaxed problem is hence to determine the policy that solves (6) under con-

straint (7). A standard Lagrangian argument shows that this problem can be solved by considering
the following unconstrained control problem: find a policy ϕ that minimizes

Cϕ(W ) := lim sup
T→∞

1

T
E

(

∫ T

0

( K
∑

k=1

C̃k(N
ϕ
k (t), S

ϕ
k (

~Nϕ(t))) −W (1−K +

K
∑

k=1

(1− Sϕ
k (

~Nϕ(t))))

)

dt

)

, (8)
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where W is the Lagrange multiplier. For a given W , let REL(W ) denote a policy that minimizes
(8), and let CREL(W )(W ) := minϕ∈UREL Cϕ(W ) denote the optimal performance of the relaxed

problem. For any value of the multiplier W ≥ 0, it holds that CREL(W )(W ) ≤ COPT . To see this,
note that for a given W ≥ 0 and ϕ ∈ U it holds that

CREL(W )(W ) ≤ Cϕ(W ) ≤ Cϕ.

The first inequality follows by definition of REL(W ), and the second inequality follows from the
fact that 1−K +

∑K
k=1(1− Sϕ

k (
~Nϕ(t))) ≥ 0 for a policy ϕ ∈ U .

The key observation made by Whittle is that problem (8) can be decomposed into K subprob-
lems, each corresponding to a different class (or bandit when using terminology from the RMABP
literature). Thus, the solution to (8) is obtained by combining the solution to K separate opti-
mization problems. For the remainder of this section we focus on the optimization problem of one
class and drop the dependency on the class from the notation. For a given W we hence consider
the individual optimization problem for a given class, that is, minimize

gϕ(W ) := lim sup
T→∞

1

T
E

(∫ T

0

(

C̃(Nϕ(t), Sϕ(Nϕ(t))) −W (1− Sϕ(Nϕ(t)))

)

dt

)

, (9)

where now Nϕ(t) is the state of a given class at time t. Under a stationarity assumption, we can
invoke ergodicity to show that (9) is equivalent to minimizing

gϕ(W ) = E(C̃(Nϕ, Sϕ(Nϕ))−WE(1Sϕ(Nϕ)=0), (10)

where Nϕ denotes the steady-state number of customers in a class under policy ϕ. We observe that
the multiplier W can be interpreted as subsidy for passivity.

In summary, the relaxed optimization problem can be written asK independent one-dimensional
Markov Decision Problems (9). In Section 4.1 we will determine the structure of the optimal control
of the relaxed problem (9). In Section 4.2 and Section 4.3 we derive Whittle’s index and describe
the optimal solution of the relaxed problem.

4.1 Threshold policies

In the following proposition we show that an optimal solution of the relaxed problem (9) is of
threshold type, i.e., when the number of customers is above a certain threshold n, the class is
served, and is not served otherwise. We denote by ϕ = n, n = −1, 0, 1, . . . , the threshold policy
with threshold n, that is, Sn(m) = 1 if m > n, and Sn(m) = 0 otherwise.

Proposition 1 There is an n = −1, 0, 1, . . . , such that the policy ϕ = n is an optimal solution of
the relaxed problem (9).

Proof. The value function V (n) satisfies

(µ+ θ′ +mθ + λ)V (m) + g = λV (m+ 1) + θ(m− 1)V ((m− 1)+)

+ min{C̃(m, 0)−W + (µ+ θ′)V (m) + θV ((m− 1)+), C̃(m, 1) + (µ+ θ′)V ((m− 1)+) + θV (m)},
(11)

where g is the average cost incurred under an optimal policy. Proving optimality of a threshold
policy is hence equivalent to showing that if it is optimal in (11) for state m + 1, m ≥ 0 to be
passive, then it is also optimal in (11) for state m to be passive, i.e., C̃(m + 1, 0) − W + (µ +
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θ′ − θ)V (m + 1) ≤ C̃(m + 1, 1) + (µ + θ′ − θ)V (m), implies C̃(m, 0) − W + (µ + θ′ − θ)V (m) ≤
C̃(m, 1) + (µ + θ′ − θ)V ((m − 1)+). A sufficient condition for the above to be true is (3) together
with the inequality V (m+ 1) + V ((m− 1)+) ≥ 2V (m), for m ≥ 0. The latter condition, convexity
of the value function, will be proved below, which concludes the proof.

In case of bounded transition rates, one can uniformize the system and use Value-Iteration in
order to prove convexity. However, our transition rates are unbounded. We therefore consider the
truncated space, truncated by L > 1, and smooth the arrival transition rates as follows:

qk(m,m+ 1) = λ
(

1−
m

L

)+
,

m = 0, . . . , L. Denote by V L(m) the value function of the L-truncated system. After verifying
two conditions, (as done in Appendix A.1), we have by [12, Theorem 3.1] that V L(m) → V (m)
as L → ∞. Hence, convexity of the function V is implied by convexity of V L for all L, and we
are left with proving the latter. The latter is uniformizable, hence we can use the Value-Iteration
technique in order to prove convexity of V L. This proof is available in Appendix A.2. �

Below we write the steady-state distribution of threshold policy ϕ = n. We denote the steady-
state probability of being in state i under policy ϕ = n by πn(i), and have

πn(i) =
i
∏

m=1

qn(m− 1,m)

qn(m,m− 1)
πn(0), i = 1, 2, . . . , (12)

where πn(0) =

(

1 +
∑∞

i=1

∏i
m=1

qn(m− 1,m)

qn(m,m− 1)

)−1

.

Remark 1 In Proposition 1 we established optimality of threshold policies for problem (9) in the
case µ+θ′ ≥ θ and when (3) is satisfied.When instead µ+θ′ < θ, and in addition C̃(m, 1) > C̃(m, 0)
for all m (but without requiring (3) to hold), then (for W ≥ 0) the optimal policy is to be passive
in all states m. This can be easily seen from Equation (11), since being always passive is optimal
if for all m

C̃(m, 0)−W + (µ+ θ′ − θ)V (m) ≤ C̃(m, 1) + (µ+ θ′ − θ)V ((m− 1)+),

which holds from the above assumptions and the fact that the value function V is non-decreasing.
The proof of V being a non-decreasing function follows as in Appendix A.2.

In other cases, we have numerically observed that threshold policies are optimal, but we have
not established this formally.

4.2 Indexability and Whittle’s index

Indexability is the property that allows to develop a heuristics for the original problem. This
property requires to establish that as the Lagrange multiplier, or equivalently the subsidy for
passivity, W , increases, the collection of states in which the optimal action is passive increases, i.e.,
the optimal threshold n increases. It was first introduced by Whittle [36] and we formalize it in
the following definition.

Definition 1 A class is indexable if the set of states in which passive is an optimal action (denoted
by D(w)) increases in W , that is, W ′ < W ⇒ D(W ′) ⊆ D(W ).

9



Note that an optimal solution of problem (9) is a threshold policy, or more specifically, if it is
optimal to be passive in state m, m ≥ 1, then it is also optimal to be passive in state m−1, see the
proof of Proposition 1. We can therefore equivalently write the following definition for indexability.

Definition 2 Let n(W ) denote the largest value of n such that the threshold policy n minimizes
(9). A class is indexable if n(W ) is non-decreasing in W , that is, W ′ < W ⇒ n(W ′) ≤ n(W ).

Provided we can establish indexability, the Whittle index in a state m is defined as the smallest
value for the subsidy such that it is optimal to be passive in state m. Formally:

Definition 3 When a class is indexable, the Whittle index in state m is defined by W (m) :=
inf {W : m ≤ n(W )} .

The solution to the relaxed control problem (8) will then be to activate all classes k that are in
a state nk such that their Whittle’s index exceeds the subsidy for passivity, i.e., Wk(nk) > W . A
standard Lagrangian argument shows that there exists a value of W (possibly negative) for which
the constraint (7) is binding, i.e., the optimal policy ϕ that solves Problem (8) will on average
activate 1 class.

Obviously, the solution to the relaxed optimization problem is not feasible for the original
problem. Following Whittle, we use Whittle’s index to construct the following heuristic for the
original problem (6) under the constraint (1): select in every decision epoch the class with largest
Whittle index. We will formally describe this in Section 5.

To conclude this subsection we show that for the model under consideration, the classes are
indexable.

Proposition 2 All classes are indexable.

Proof. Since an optimal policy for (9) is of threshold type, for a given subsidy W the optimal
average cost is given by g(W ) := minn{g

(n)(W )}, where

g(n)(W ) :=

∞
∑

m=0

C̃(m,Sn(m))πn(m)−W

n
∑

m=0

πn(m), (13)

is the average cost under threshold policy n. The function g(W ) is a lower envelope of linear
non-increasing functions in W (see Figure 1, where we depict the lower-envelope for the case of
quadratic cost). It thus follows that g(W ) is a concave non-increasing function.

It follows directly that the right-derivative of g(W ) in W is given by −
∑n(W )

m=0 πn(W )(m). More-
over, we will prove below that

∑n
m=0 π

n(m) is strictly increasing in n. Since g(W ) is concave in

W , its first derivative −
∑n(W )

m=0 πn(W )(m) is non-increasing in W . It hence follows that n(W ) is
non-decreasing in W , that is, this class is indexable (see Definition 2).

We now prove that
∑n

i=0 π
n(i) is strictly increasing in n, or equivalently, that 1−

∑∞
i=n+1 π

n(i)
is strictly decreasing in n. Using (12), the latter is equivalent to verifying that

∑∞
m=n+1

∏m
i=1

qn(i−1,i)
qn(i,i−1)

∑∞
m=n

∏m
i=1

qn−1(i−1,i)
qn−1(i,i−1)

<
1 +

∑∞
m=1

∏m
i=1

qn(i−1,i)
qn(i,i−1)

1 +
∑∞

m=1

∏m
i=1

qn−1(i−1,i)
qn−1(i,i−1)

, (14)

holds for all n. Note that qn(m−1,m) = qn−1(m−1,m) for allm and qn(m,m−1) = qn−1(m,m−1)
for all m 6= n. From the assumption µ+ θ′ ≥ θ we have qn(n, n− 1) ≤ qn−1(n, n− 1). Hence, the
left-hand-side of (14) is strictly less than 1, while the right-hand-side is larger than or equal to 1.
This proves (14). �
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Figure 1: Lower envelop g = minn{g
(n)} when C̃(n, a) = (1 + 2θ)n + 3n2, for a = 0, 1, and

θ = 6, λ = 23, µ = 10.

4.3 Derivation of Whittle’s index

We are now in position of deriving Whittle’s index. An optimal policy is fully characterized by a
threshold n such that the passive action is prescribed for states m ≤ n, and the active action for
states m > n. Our key observation to derive Whittle’s index is that it is not necessary to solve the
optimality equation (11), but that it suffices to determine the average cost for threshold policies. In
turn, the average reward g can be expressed as a function of the steady-state probabilities, which
in the case of birth-and-death processes have a well-known solution.

We can now state the main result of the paper, which describes an algorithm to obtain Whittle’s
index. The proof of Proposition 3 can be found in Appendix B.

Proposition 3 Whittle’s index values are computed by the following algorithm:

• Step 0 Compute

W0 = inf
n∈N0

E(C̃(Nn, Sn(Nn)))− E(C̃(N−1, S−1(N−1)))
∑n

m=0 π
n(m)

,

and name by n0 the largest minimizer. Then, define W (n) := W0 for all n ≤ n0. If n0 = ∞
stop the algorithm, otherwise go to Step 1.

• Step j Compute

Wj = inf
n∈N\{0,...,nj−1}

E(C̃(Nn, Sn(Nn)))− E(C̃(Nnj−1 , Snj−1(Nnj−1)))
∑n

m=0 π
n(m)−

∑nj−1

m=0 π
nj−1(m)

, j ≥ 1

and name by nj the largest minimizer. Then, define W (n) := Wj for all nj−1 < n ≤ nj. If
nj = ∞ stop the algorithm, otherwise jump to step j + 1.

Moreover, if nJ = ∞ for J ≥ 0, then, define Wn := WJ for all n > J and nj = ∞ for j > J .

11



Corollary 1 If
E(C̃(Nn, Sn(Nn)))− E(C̃(Nn−1, Sn−1(Nn−1)))

∑n
m=0 π

n(m)−
∑n−1

m=0 π
n−1(m)

, (15)

is non-decreasing in n, then Whittle’s index W (n) is given by (15). In particular, W (0) = C̃(0, 0)−
C̃(0, 1).

Proof. Let W̃ (n) be the value for the subsidy such that the average cost under threshold policy n is
equal to that under policy n−1. Hence, using (10), we have that for all n ≥ 1, E(C̃(Nn, Sn(Nn))−
W̃ (n)E(1Sn(Nn)=0) is equal to E(C̃(Nn−1, Sn−1(Nn−1)) − W̃ (n)E(1Sn−1(Nn−1)=0). For threshold

policy n we have E(1Sn(Nn)=0) =
∑n

m=0 π
n(m), hence W̃ (n) is given by (15).

A direct consequence of Proposition 3 is that W̃ (n) being non-decreasing, implies that g(W̃ (n)) =
g(n)(W̃ (n)) = g(n−1)(W̃ (n)). We therefore have g(W ) = g(n−1)(W ) for W̃ (n − 1) ≤ W ≤ W̃ (n).
This implies that Whittle’s index is given by W (n) = W̃ (n).

To show that W (0) = C̃(0, 0)− C̃(0, 1), observe that π0(m) = π−1(m) for all m. Hence,

W (0) =
E(C̃(N0, S0(N0)))− E(C̃(N−1, S−1(N−1)))

π0(m)
=

C̃(0, 0)π0(0)− C̃(0, 1)π−1(0)

π0(0)

= C̃(0, 0)− C̃(0, 1),

where the first equality holds due to W (n) being non-decreasing. �

Whittle’s index as defined in Proposition 3 and Equation (15) can be numerically computed,
since the cost function and the steady-state probabilities are known. In Section 6 closed-form
expressions and limiting properties for Whittle’s index will be derived for special cases.

We could not prove that Whittle’s index W (n) as given in (15) is non-decreasing in n for a
general case, however, in many particular cases this property can be established. For instance,

• in the case µ+ θ′ = θ, we have πn(m) = πn−1(m) for all m, and therefore (15) can be written
as

C̃(n, 0)πn(n)− C̃(n, 1)πn−1(n)

πn(n)
= C̃(n, 0)− C̃(n, 1). (16)

By condition (3) we have that C̃(n, 0) − C̃(n, 1) ≤ C̃(n + 1, 0) − C̃(n + 1, 1), hence (15) is
non-decreasing in n. This implies that Whittle’s index is given by (16).

• In Proposition 4 it will be proved that when C(n, a) is linear in n, (15) is a constant and
therefore non-decreasing in n. Hence, Whittle’s index is given by (15).

• As λ → 0, we obtain in Proposition 6 that

lim
λ→0

E(C̃(Nn, Sn(Nn)))− E(C̃(Nn−1, Sn−1(Nn−1)))
∑n

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)

= C̃(n, 0)− C̃(n, 1) + (C̃(n, 0)− C̃(0, 0))
µ+ θ′ − θ

θ
,

which is a non-decreasing function in n.

• Letting θ → 0, we obtain in Proposition 8 that

lim
θ→0

θ
E(C̃(Nn, Sn(Nn)))− E(C̃(Nn−1, Sn−1(Nn−1)))

∑n
m=0 π

n(m)−
∑n−1

m=0 π
n−1(m)

,

is non-decreasing in n.
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A few comments are in order. The first concerns the form of (15). The numerator in (15) can
be interpreted as the increase in cost by deciding to become passive in state n and keeping all
other actions unchanged, and similarly, the denominator can be understood as the corresponding
increase of passivity rate for the process, measured by the additional probability in which a subsidy
is received. Thus, W (n) can be interpreted as a measure of increased cost per unit of increased
passivity, a term coined as Marginal Productivity Index by Niño-Mora [29].

The second comment regards the applicability of Whittle’s index (15) in other contexts. Indeed
we can outline a general recipe to develop Whittle’s indices for bandits whose evolution can be
described by general birth-and-death processes:

(i) Establish optimality of monotone policies (as in Proposition 1).
(ii) Establish indexability (as in Proposition 2).
(iii) If (i) and (ii) can be established, then Whittle’s index is given by Proposition 3, where the

steady-state probabilities are as in (12).

Steps (i) and (ii) are model dependent, but (iii) is immediate and the index will always be given
by Proposition 3.

To the best of our knowledge, it has not been reported previously that for bandits whose evolu-
tion can be described by a birth-and-death process, one can get an explicit closed-form expression
for Whittle’s index. Perhaps a reason for this lies in the difficulty to solve the optimality equation
(11), which has two unknowns g and V (m), and this has led researcher to circumvent this difficulty
by considering the discounted cost first, equating the total discounted costs as done in Proposition 3
for average cost and then taking the limit in order to retrieve an index for the average cost case.
This is for instance the approach taken in [1] to derive an index for convex costs without aban-
donments or in [20, Section 6.5] for bi-directional bandits in which the active and passive actions
push the process in opposite directions. In [23] the authors develop an algorithm to calculate an
index in a multi-class queue with admission control. All these models have in common that after
the relaxation, the bandits are birth-and-death, and the obtained Whittle’s index is thus equal to
(15). We will explain in Section 7 how to derive the index of [1] using this approach. Regarding
the bi-directional bandit it can be directly checked that index (15) is equivalent to the index of [20,
Theorem 6.4]. Finally, we note that by adapting the cost structure we obtain that index (15) is
equivalent to that of [23, Theorem 2].

Having made this remark on the applicability of (15) in a wider context, in the remainder of the
paper we will discuss the properties of Whittle’s index (15) in the context of a queue with convex
costs and abandonments.

5 Whittle’s index policy

In this section we describe how the solution to the relaxed optimization problem is used to obtain
a heuristic for the original stochastic model. The optimal control for the relaxed problem is not
feasible for the original stochastic model, since in the latter at most one class can be served at a
time. Whittle [36] therefore proposed the following heuristic, which is nowadays known as Whittle’s
index policy:

Definition 4 (Whittle’s index policy) Assume at time t we are in state ~N(t) = ~n. Whittle’s
index policy prescribes to serve the class k having currently the highest non-negative Whittle’s index
Wk(nk), as defined in Proposition 3 (after adding subscript k).

Note that in case all classes have a negative index, we define that Whittle’s index policy will keep
the server idle (until there is a class having a positive value for its index). This follows, since, when
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the Whittle’s index is negative, in the relaxed problem you will keep the class passive even though
a negative subsidy is given. A formal explanation is given in [32] by the introduction of dummy
bandits.

When C̃k(mk, 0) ≥ C̃k(mk, 1) for all mk, the Whittle index Wk(nk) will always be positive. This
can be seen as follows. Recall that Wk(nk) refers to the value of W such that a threshold policy nk

is an optimal solution of the relaxed problem. Hence, for all mk ≤ nk, it is optimal to keep the class
passive, that is, C̃k(mk, 0)−Wk(nk)+ (µk + θ′k − θk)V (mk) ≤ C̃k(mk, 1)+ (µk + θ′k − θk)V (mk − 1),
as we saw in the proof of Proposition 1. Since C̃k(mk, 0) ≥ C̃k(mk, 1), µk + θ′k ≥ θk, and V (·) is
non-decreasing (see proof of Proposition 1), it follows that Wk(nk) ≥ 0.

Instead, when C̃(mk, 0) < C̃(mk, 1) for an mk, Wk(nk) can be negative for certain states nk.
For example, when θ′k = θk and d′k ≫ dk. Then, even though the total departure rate of class-k
customers is highest when serving class k (µk + θ′k ≥ θk), for certain states nk it might be better
not to serve class k. The latter follows since having a class-k customer abandon while being served,
will incur a much higher cost than when it abandons while waiting. Hence, a negative subsidy, that
is, a cost, is needed in order for it to be optimal to serve class k.

From the practical point of view, the interest of Whittle’s index Wk(nk) as defined in Proposi-
tion 3 (after adding subscript k) lies in the fact that the index of class k does not depend on the
number of customers present in the other classes j, j 6= k. Hence, it provides a systematic way
to derive simple implementable policies which we will show perform very well, see Section 10, and
which in fact are asymptotically optimal in certain settings, see Section 8.

6 Case studies

In this section we further investigate properties of the obtained Whittle’s index in Proposition 3.
In Section 6.1 we obtain that the index is state-independent for linear holding cost. In Section 6.2
we derive asymptotic properties of the index for general convex holding cost functions.

6.1 Linear holding cost

In this section we consider linear holding cost, that is, Ck(nk, a) = ck(nk − a)+ + c′k min(nk, a).
Hence, under this function, any class-k customer in the queue contributes with ck to the cost, and
a class-k customer in service contributes with c′k to the cost. In particular, if c′k = ck, then Ck

represents the linear holding cost of customers in the system and if c′k = 0 then Ck represents
the linear holding cost of customers in the queue. These two holding cost functions have been
considered in the literature in the context of abandonments, for example [7] considers the former,
while [4] takes the latter. From our formula (15) we will be able to obtain a full characterization
of Whittle’s index. Interestingly, we show that the Whittle’s index becomes state-independent and
does not depend on the arrival rate λk.

It will be convenient to define c̃k := ck + dkθk, k = 1, . . . ,K, which can be interpreted as the
total cost per unit of time incurred by a customer who can abandon the system.

We now state the main result of this section. The proof can be found in the Appendix C.

Proposition 4 Assume linear holding cost Ck(nk, a) = ck(nk − a)+ + c′k min(nk, a). Then, the
Whittle index for class k is

Wk(nk) =
c̃k(µk + θ′k)

θk
− c̃′k, for all nk. (17)
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An interesting feature of (17) is that it is independent of the arrival rate λk and independent
on the number of class-k customers present, nk. In Section 6.2 we will show that this observation
only holds for linear holding costs.

The index (17) allows for the following interpretation. Consider there is only one class-k cus-
tomer in the system and no future arrivals, we then have C̃k(1, 1) = c̃′k, C̃(1, 0) = c̃k, q

1
k(1, 0) = θk,

q0k(1, 0) = µk+θ′k. Index (17) can equivalently be written as (µk+θ′k)
(

c̃k
θk

−
c̃′
k

µk+θ′
k

)

, which is equal

to q0k(1, 0)
(

C̃(1,0)
q1
k
(1,0)

− C̃k(1,1)
q0
k
(1,0)

)

. Hence, the index can be interpreted as the reduction in cost when

making a class-k bandit active instead of keeping him passive (the term within the brackets) during
a time lag equal to the departure time in the active phase.

We now consider some particular cases that have been studied in the literature. For example,
let us consider first the case in which all customers can abandon the system, i.e., θ′k = θk, for
k = 1, . . . ,K, and that the cost for abandonment is the same for both active and passive, so
dk = d′k. Let us consider two cases: In the first case all customers in the system incur a holding

cost. This implies that ck = c′k, and thus c̃k = c̃′k. Substituting into (17) we get Wk(nk) =
c̃kµk

θk
.

In the second case we consider that only customers in the queue incur a holding cost, so we take
c′k = 0, which gives c̃k− c̃′k = ck, and upon substitution in (17) we get the index Wk(nk) =

c̃kµk

θk
+ck.

We now assume that only customers in the queue can abandon, that is, the customer in service
will not abandon, hence θ′k = 0, for k = 1, . . . ,K. This is the model assumption of [7] and [4].
We first assume that all customers in the system incur a holding cost, that is, ck = c′k, and we

thus get c̃′k = ck. From (17) we get Wk(nk) = c̃kµk

θk
− ck. We can similarly calculate the index

in the case in which only customers in the queue incur a holding cost, i.e., c′k = 0, to obtain the

index Wk(nk) =
c̃kµk

θk
. These two last indices have been derived in [7] and [4], respectively. More

specifically, [7] derives the index c̃kµk

θk
− ck when studying one customer and no future arrivals.

Interestingly, we observe that the index remains the same in the presence of random arrivals as
considered in this paper. When the customer in service does not contribute to the holding cost our
model coincides with that analyzed in [4], where it is shown that the index rule c̃kµk

θk
is asymptotically

fluid optimal in a multi-server queue in overload (ρ > 1). We therefore conclude that the Whittle’s
index, Wk(nk), we have derived, retrieves index policies that had been proposed in the literature
when studying the system in special parameter regimes.

To finish this subsection we now provide an intuition to understand the result of Proposition 4
in the case θ′k = θk and ck = c′k. In this setting, at any moment in time, all customers in the
system incur a holding cost ck and can abandon at rate θk. Substituting E(C̃k(N

nk

k , Snk

k (Nnk

k ))) =

c̃kE(N
nk

k ) and Wk(nk) =
c̃kµk

θk
in (15), we get the relation

θk(E(N
nk−1
k )− E(Nnk

k )) = µk





∞
∑

m=nk

πnk−1
k (m)−

∞
∑

m=nk+1

πnk

k (m)



 ,

which can be seen as a rate conservation. Indeed, the term on the left-hand-side represents the
difference in the average number of customers that abandons the system per time unit when com-
paring both policies nk and nk − 1. The right-hand-side represents the difference in the average
number of customers that is served per time unit when comparing both policies nk and nk−1. The
left-hand-side being equal to the right-hand-side is exactly the rate conservation.

6.2 Convex increasing holding cost

In this section we characterize Whittle’s index, assuming that Wk(n) is given by Equation (15),
for general convex non-decreasing holding cost functions. We note that the cost associated to
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abandonments of customers are linear functions. We can thus use the result of Proposition 4 to
rewrite Whittle’s index as

Wk(nk) = dk(µk + θ′k)− d′kθ
′
k +W c

k (nk), (18)

where

W c
k (nk) :=

E(Ck(N
nk

k , Snk(Nnk

k )))− E(Ck(N
nk−1
k , Snk−1(Nnk−1

k )))
∑nk

m=0 π
nk

k (m)−
∑nk−1

m=0 πnk−1
k (m)

,

that is, the term corresponding to the holding cost. In the remainder of this section, we will focus
on W c

k (nk), that is, the term corresponding to the holding cost.
In Section 6.2.1 we characterize Whittle’s index for large state values and we will observe that

for non-linear holding cost the index Wk(nk) is dependent on nk, that is, is state-dependent. In
Section 6.2.2 and Section 6.2.3 we obtain Whittle’s index as λk ↓ 0 and λk ↑ ∞, representing a
light-traffic and heavy-traffic regime, respectively.

6.2.1 Whittle’s index for large states

In this section we assume that the holding costs Ck(nk, 1) and Ck(nk, 0) are upper bounded by
polynomials of finite degrees Pk < ∞ and Qk < ∞, respectively . Hence, we can write Ck(nk, a) =

Ek(nk, a) + o(1), for large values of nk, where Ek(nk, 1) =
∑Pk

i=0C
(Pk,i)
k ni

k, with

C
(Pk,i)
k := lim

nk→∞

Ck(nk, 1)−
∑Pk

j=i+1C
(Pk,j)
k nj

k

ni
k

,

and Ek(nk, 0) =
∑Qk

i=0E
(Qk,i)
k ni

k, with

E
(Qk,i)
k := lim

nk→∞

Ck(nk, 0)−
∑Qk

j=i+1E
(Qk,j)
k nj

k

ni
k

.

We assume w.l.o.g. that Pk is such that C
(Pk,Pk)
k > 0 and Qk is such that E

(Qk,Qk)
k > 0.

In the following proposition we give the expression for Whittle’s index for large states. The
proof can be found in Appendix D.

Proposition 5 Assume that Ck(nk, 1) and Ck(nk, 0) are upper bounded by a polynomial of degree
Pk and Qk respectively. Then, we have Wk(nk) = W∞

k (nk) + o(1), as nk → ∞, where W∞
k (nk) :=

dk(µk + θ′k)− d′kθ
′
k +W c

k (nk) and

W c
k (nk) :=(Ek(nk, 0)− Ek(nk, 1)) + (µk + θ′k − θk)/θk

·





Qk
∑

i=1

E
(Qk,i)
k ni−1

k +

Pk
∑

i=2

C
(Pk,i)
k

i−2
∑

j=0

ni−2−j
k

(

λk

θk

)j+1


 . (19)

The index W∞
k (nk) is a non-decreasing function.

Assume Ck(nk, a) = Ck(nk) or Ck(nk, a) = Ck((nk − a)+) with Pk ≥ 2. In that case, Pk = Qk

and C
(Pk,Pk)
k = E

(Qk,Qk)
k . For states that are large enough, the value of W∞

k (nk) is determined by
the highest polynomial, which is given by

(

E
(Pk,Pk−1)
k − C

(Pk,Pk−1)
k +

µk + θ′k − θk
θk

E
(Pk,Pk)
k

)

nPk−1
k . (20)
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The latter is independent of the arrival rate λk, and hence, so is W∞
k for large enough states. This

robust index (20) can serve as an approximation for Whittle’s index policy when there are a large
number of customers in the system. Furthermore, the index W∞

k (nk) can be of interest in overload
settings. In Section 10 we numerically assess the performance under this index policy W∞(·).

6.2.2 Light-traffic indices

We present in the following proposition the expression for Whittle’s index as λk ↓ 0, also referred
to as the light-traffic regime. The proof can be found in Appendix E. Under the light-traffic
assumption, the index can be given in closed form. In Section 8 we will use this expression to show
that Whittle’s index is asymptotically optimal in light traffic.

Proposition 6 Assume Whittle’s index Wk(nk) as in (15). Then, Wk(nk) = dk(µk + θ′k)− d′kθ
′
k +

W c
k (nk), where

lim
λk↓0

W c
k (nk) = Ck(nk, 0)− Ck(nk, 1) + (Ck(nk, 0)− Ck(0, 0))

(µk + θ′k − θk)

θknk
.

Assuming Ck(0, 0) = 0, the above index can be rewritten as follows:

lim
λk↓0

W c
k (nk) = (µk + θ′k + θk(nk − 1))

(

Ck(nk, 0)

θknk
−

Ck(nk, 1)

µk + θ′k + θk(nk − 1)

)

.

This allows for the following interpretation in light traffic. Given that there are nk class-k customers,
and there are no future arrivals, the index measures the reduction in cost when making a class-k
bandit active instead of keeping him passive (the term within the brackets) during a time lag equal
to the departure time in the active phase.

6.2.3 Heavy-traffic indices

In this section we are interested in studying Whittle’s index for large values of the arrival rate,
i.e., as λk ↑ ∞, for all k. We refer to this as the heavy-traffic regime. We characterize Whittle’s
index for a truncated system, allowing us to prove for asymptotic optimality in Section 8.2. The
so-obtained index does however provide insights into how to control the original problem in heavy
traffic.

As we did in Section 4.1, we truncate the state space of class k at Lk > 1, and smooth the
arrival transition rates as qk(m,m+1) = λk(1−

m
Lk

)+, for all m = 0, . . . , Lk. From Proposition 1 we
know that for the truncated system (with smoothed arrival rates) a threshold policy is an optimal
solution for every class, and a similar proof to the one of Proposition 2 allows us to establish that all
classes are indexable. We denote the Whittle index of the truncated system in state n by WLk

k (n).

We can calculate WLk

k (n) as done in Proposition 3 and Corollary 1 by considering the steady-state
probabilities of threshold policies in the truncated system. It can easily be verified that for a given
threshold policy n, the steady-state probabilities of the truncated system converge to those of the
original system, and therefore WLk

k (n) → Wk(n) as Lk → ∞. In Section 8.2 we will establish
the asymptotic optimality of Whittle’s index policy in heavy traffic for any (finite) truncation Lk,
k = 1, . . . ,K.

The following proposition characterizes Whittle’s index states in the truncated system. The
proof can be found in Appendix E.
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Proposition 7 Let the state space be truncated by Lk and the arrival rates be smoothed as qk(n, n+
1) = λk(1 − n

Lk
)+, and assume Whittle’s index WLk

k (n) is as given in (15). Then, for all n =
0, . . . , Lk we have

WHT
k (n) := lim

λk↑∞
WLk

k (n) = C̃k(n, 0)− C̃k(n, 1).

The above heavy-traffic index allows for the following interpretation. As λk → ∞, the steady-
state behavior of the system is not influenced by the scheduling decision that is taken. This
follows since the effect of serving class k or not gives a possible term µk + θ′k − θk, which is
however negligible with the order of arrivals of new customers. Since the steady-state behavior of
the system is not influenced by the scheduling decision, the policy can be greedy when deciding
which class to serve, that is, in state ~N = ~n serve the class k̃ that minimizes the direct cost
∑K

k=1,k 6=k̃
C̃k(nk, 0) + C̃k̃(nk̃, 1), that is, the cost of keeping all classes k 6= k̃ passive and class k̃

active. This is equivalent to serving the class that maximizes WHT
k (nk) = C̃k(nk, 0)− C̃k(nk, 1).

7 M/M/1 multi-class queue

The multi-class M/M/1 queue without abandonments has received lot of attention from the research
community. In the case of linear holding cost, the cµ-index rule has been proved to be optimal in
two main settings: (i) with exponential distributed service times and preemptive scheduling [14],
and (ii) general service time distributions and non-preemptive scheduling [19]. A brief explanation
of the optimality of an index rule is that having a linear holding cost ck for a class-k customer
per unit of time is equivalent to a problem where a reward ck is received upon service completion
(and no holding cost) [20, Section 4.9]. The latter can be seen as a MABP, for which an index
rule (in this case cµ) is optimal1. However, this equivalence holds only for linear holding costs,
which explains why for general cost functions the structure of the optimal scheduling policy is no
longer of index type. In that context, a fruitful approach has been to derive scheduling policies
with near-optimal performance or asymptotically optimal performance in a limiting regime, see the
references as stated in Section 2.

In this section, we derive an index policy for the multi-class M/M/1 system by considering
the limit of our Whittle index as the abandonment rate tends to 0. Note that the Whittle’s index
Wk(nk) goes to ∞ as θk → 0, and it turns out that when scaling the index by θk we get a non-trivial
limit. The proof of the next proposition may be found in Appendix G.

Proposition 8 Assume Ck(nk, a) = Ck(nk), a = 0, 1, θ′k = θk, and dk = d′k = 0. Then,

lim
θk→0

θkWk(nk) =
µk(1− ρk)

ρk
·

[ ∞
∑

m=0

ρmk (1− ρk)Ck(nk − 1 +m)− Ck(nk − 1)

]

. (21)

Observe that convexity of the function C(·) implies that (21) is a non-decreasing function. Moreover,
(21) is the Whittle index as in Proposition 3 for the case without abandonments.

A heuristic for the M/M/1 queue with as objective to minimize the holding cost can now be
derived as follows. Set θk = θ′k for all k and consider the index multiplied by θk as θk → 0. A
heuristic is then to give priority according to the index as given in (21).

In case of linear holding costs Ck(nk) = cknk, the index (21) coincides with the ckµk-rule.
For general holding cost the index in (21) was also obtained in Glazebrook et al. [1] (see also

1This is known as the tax formulation of a MABP, see [20, Section 4.9].
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Section [20, Section 6.5]) by carrying out a model-dependent analysis, which consists in considering
first the total discounted holding cost criterion, calculating the corresponding Whittle’s index, and
afterwards taking the limit in the discounting factor. In that case too, indexability needs to be
established.

As pointed out in [20, Section 6.5] applying directly the average cost criteria to the M/M/1
queue without abandonments gives no meaningful index. Consider an M/M/1 queue with threshold
policy n, where the taken action is passive for all states below and equal to n, and active for all
states above n. A classical queueing theory result shows that in the absence of abandonments,
under policy n the probability of being in state n will be 1 − ρ, i.e., independently of where the
threshold is set. This result that the subsidy obtained is W (1 − ρ), that is, independent of the
policy n, and therefore, the subsidy does not allow to “calibrate” the states. In our approach this is
circumvented by obtaining an index for the, well-defined, case with abandonments and then letting
θ → 0, while in [20, Section 6.5] this is circumvented by looking at the discounted problem and
scaling the immediate cost.

For large values of nk, the index (21) is approximately equal to C ′
k(nk)µk, which we refer to

as the Gcµ-rule. This rule was introduced in [31] for convex delay cost. The equivalence with the
Gcµ rule can be seen as follows. We have for nk large,

∞
∑

m=0

ρmk (1− ρk)Ck(nk − 1 +m)− Ck(nk − 1)
∞
∑

m=0

ρmk (1− ρk)

= (1− ρk)

∞
∑

m=0

ρmk (C(nk − 1 +m)− C(nk − 1))

≈ (1− ρk)
∞
∑

m=0

mρmk C ′(nk − 1) = C ′(nk)
ρk

(1− ρk)
,

where we used that for nk large with respect to m, we have C(nk−1+m)−C(nk−1)
m ≈ C ′(nk) and that

large values ofm have a negligible weight on the summation. Hence, we can write limθk→0 θkWk(nk) ≈
C ′
k(nk)µk.

Numerical example. In Table 1 we compare the suboptimality of the C ′(n)µ-rule and index-rule
(21) in an M/M/1 queue without abandonments. Note that when θk = 0, for all k, we need to
assume

∑K
k=1 ρk < 1 in order to assure stability of the system. Consider 4 classes of customers with

the following parameters: µ1 = 16, µ2 = 27, µ3 = 12 and µ4 = 21, ρ1 = 3ρ/9, ρ2 = ρ/9, ρ3 = 5ρ/9
and ρ4 = ρ/9. The holding cost of each class are cubic, Ck(nk) := αk + βknk + γkn

2
k + δkn

3
k, for

which (21) simplifies to: βkµk+γkµk

(

3ρk − 1

1− ρk
+2nk

)

+δkµk

(

3n2
k+3

(

2ρk − 1

1− ρk

)

nk+
4ρ2k + ρk + 1

(1− ρk)2

)

.

We take the particular example: C1(n1) = 6n1 + 2n2
1 + 2n3

1, C2(n2) = 2n2 + 2n2
2 + 2n3

2, C3(n3) =
n3 + n2

3 + 3n3
3 and C4(n4) = 8n4 + 2n3

4. We observe that for this example the C ′(n)µ-rule is
outperformed by the index-rule (21), but both policies give nearly optimal performance.

8 Asymptotic optimality

In this section we will discuss various notions of asymptotic optimality of Whittle’s index pol-
icy. Section 8.1 deals with the optimality of Whittle’s index policy in a multi-server setting, and
Section 8.2 proves Whittle’s index policy to be optimal in light-traffic and heavy-traffic regimes.
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ρ 0.11 0.21 0.31 0.41

(21) 4.25e-06 1.51e-05 6.07e-06 5.02e-07

C ′(n)µ 0.0072 0.0636 0.1002 0.1320

ρ 0.51 0.61 0.71 0.81

(21) 0.008 0.0291 0.0919 1.7129

C ′(n)µ 0.1689 0.3616 1.8280 4.9539

Table 1: Suboptimality gap

8.1 Multi-server optimality

For linear holding cost, asymptotic optimality can be derived directly from [32]. Assume there
are M servers and the arrival rate of class-k customers is Mλk. Let Wk be the state-independent
index as given in (17). In [32, Proposition 6.2] it is shown that the Whittle index policy (WI),
where at each moment in time a server serves a customers having highest non-negative index Wk,
is asymptotically optimal in the following sense: for any policy ϕ,

lim
M→∞

lim
T→∞

1

T

K
∑

k=1

E

(∫ T

0
C(Nk(t), S

WI
k (t))dt

)

≤ lim inf
M→∞

lim
T→∞

1

T

K
∑

k=1

E

(∫ T

0
C(Nk(t), S

ϕ
k (t))dt

)

.

For general holding cost, we can not derive asymptotic optimality. We do expect however that
under certain conditions one would have the following. Assume there are M servers and xkM
queues where class-k customers arrive with rate λk, k = 1, . . . ,K2. A queue can be served by at
most one server. In bandit terminology this represents having xkM class-k bandits whose state
(that is, the number of customers in the queue) has values in S := {0, 1, . . .}, and the scheduler
needs to decide which M bandits to make active (so which M queues to serve). In case the state
space S would have been finite, the result in [34, 32] implies (under certain conditions) asymptotic
optimality of Whittle’s index policy as M → ∞. However, for infinite state space, as is the case
for our model, no result is known so far.

8.2 Light-traffic and heavy-traffic optimality

Light traffic and heavy traffic refer to the situations in which the total arrival rate goes to 0 and ∞,
respectively. Note that due to abandonments, our model is stable for any value of the arrival rate.
In this section we will show that Whittle index policy is optimal in these two limiting regimes. In
order to take the limits we will modify the total arrival rate while keeping constants the proportion
of traffic of each class. To do so, we assume that λk = γkλ, where λ denotes the total arrival rate,
and

∑K
k=1 γk = 1.

We recall that U and UREL refer to the set of admissible policies in the original and relaxed
problem, respectively, and that U ⊆ UREL. As we argued in Section 4, for any value of the
multiplier W ≥ 0, CREL(W )(W ) ≤ COPT , where CREL(W )(W ) and COPT are the minimum cost
in the relaxed and original problems, respectively. We also recall that CREL(W )(W ) is achieved
by a policy that serves all the classes with current Whittle’s index larger than W . We denote by
CWI the performance in the original problem under the admissible Whittle index policy and we set
C∗ = supW CREL(W )(W ). It then trivially holds that

CREL(W )(W ) ≤ C∗ ≤ COPT ≤ CWI . (22)

2This can represent for example a setting where there are xkM class-k flows having newly arriving packets
(represented by customers).
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We now argue that if either

(i) REL(0) ∈ U , or,

(ii) REL(W ) ∈ U and the constraint (7) is satisfied with equality,

then it holds that, for that choice ofW , CREL(W )(W ) = C∗ = COPT = CWI , and hence in those cases
Whittle’s index policy is optimal for the original policy. This can be seen as follows. First we observe
that if REL(W ) ∈ U , then REL(W ) coincides with Whittle’s index policy. Hence, for W = 0 we
have CREL(0)(0) = CREL(0) = CWI , where the first equality holds by definition since W = 0. Now
assume W > 0, then since (7) holds with equality, we have again CREL(W )(W ) = CREL(W ) = CWI .
In both cases, we use (22) to conclude that CREL(W )(W ) = C∗ = COPT = CWI . We note that the
same characterization is described in [20, Chapter 6] and [23, Section 5].

We can now use the above in order to show Whittle’s index to be asymptotically optimal in
both light traffic and heavy traffic. In the light-traffic regime, we will consider the case (i), and
in the heavy-traffic regime we will consider case (ii). In light traffic, most of the time the system
is empty or at most there is one customer in the system. This implies that as λ → 0, REL(0)
becomes admissible for the original problem, that is, REL(0) ∈ U . Hence, we are in case (i), which
will allow to conclude for asymptotic optimality of Whittle’s index policy. In heavy traffic, we
will consider the truncated system at Lk, k = 1, . . . ,K, as described in Section 6.2.3. For any
admissible policy the number of class-k customers tends to the truncation level Lk with probability
1, and as a consequence Whittle’s index policy will give strict priority to the class k having largest
value for WHT

k (Lk), as defined in Proposition 7. Let us denote k̄ = argmaxkW
HT
k (Lk), and let W

be such that WHT
k̄

(Lk̄) > W and WHT
j (Lj) < W , for all j 6= k̄ (assuming no tie exists). Hence,

REL(W ) will exclusively serve class k̄, so thatREL(W ) becomes admissible for the original problem
(REL(W ) ∈ U). In addition, since there will be always class-k̄ customers present, constraint (7)
is satisfied with equality. Hence, we are in case (ii), which will allow to conclude for asymptotic
optimality of Whittle’s index policy.

We present the asymptotic optimality result in the light-traffic regime in Proposition 9 and in
Proposition 10 that corresponding to the heavy-traffic regime. The proof for both results can be
found in Appendix H.

Proposition 9 Assume Ck(0, 0) ≥ Ck(0, 1), ∀k. The Whittle index policy (WI) is asymptotically
optimal in light traffic, that is,

lim
λ↓0

CWI − COPT

COPT
= 0,

with λk = λγk,
∑K

k=1 γk = 1.

We see from the proof of Proposition 9 that in fact any non-idling policy will be optimal as
λ ↓ 0.

We now consider the heavy-traffic regime, λ ↑ ∞, for the truncated system.

Proposition 10 Let the state space of class k be truncated by Lk and the arrival rates be smoothed
as qk(m,m+1) = λk(1−

m
Lk

)+, and assume Whittle’s index WLk

k (n) is as given in (15). Then, the
Whittle index policy (WI) is asymptotically optimal in heavy traffic, that is,

lim
λ→∞

(CWI − COPT ) = 0,

with λk = λγk,
∑K

k=1 γk = 1.
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We see from the proof of Proposition 10 that any policy that gives strict priority to class k̄
will be optimal as λ ↑ ∞. The optimality result holds provided the truncation thresholds Lk

are finite, but it is important to emphasize that the behavior under the asymptotically optimal
policy depends on the value of thresholds Lk. Unfortunately we have not succeeded in showing
asymptotic optimality of Whittle’s index policy in the original infinite-space optimization problem.
In the latter, the difficulty lies in establishing that in the limit λ ↑ ∞ the optimal policy in the
relaxed problem serves only one class. The numerical results reported in Section 10 suggest that
Whittle’s index policy remains optimal in this case as well.

9 Fluid index

In Section 4 we derived the optimal policy of the relaxed optimization problem (9), which was
described by the index value as given in Proposition 3 and Corollary 1. Unfortunately, for non-
linear holding cost the index could not be written in closed-form. In this section we will therefore
solve the fluid version of the relaxed optimization problem (9), that is, we only take into account
the average behavior of the system. This will allow to obtain a closed-form expression for the fluid
index. In Section 9.1 we describe the fluid control problem we need to solve and in Section 9.2 we
obtain the solution and the fluid index. In addition, in Section 9.3 we compare the fluid index with
the index for the stochastic model.

9.1 Fluid model description

We approximate the stochastic model as presented in Section 3 by a deterministic fluid model,
where only the mean dynamics are taken into account. Let mk(t) ≥ 0 be the amount of class-k
fluid and let sk(t) ∈ {0, 1} be the control parameter. Let u denote a fluid control that determines

suk(t). The fluid dynamics under control u is given by
dmu

k(t)

dt
= λk − θkm

u
k(t) if the chosen action

is passive, that is, su(t) = 0, and is given by
dmu

k(t)

dt
= λk − µk − θ′k − θk(m

u
k(t)− 1), if the chosen

action is active, that is, su(t) = 1. Hence, the dynamics can be written as

dmu
k(t)

dt
=λk − suk(t)(µk + θ′k + θk(m

u
k(t)− 1))− (1− suk(t))θkm

u
k(t)

=λk − (µk + θ′k − θk)s
u
k(t)− θkm

u
k(t),

where the control u is such that mu
k(t) ≥ 0 for all t.

At time t, the cost for the fluid model under the relaxed problem is written as

(1− sk(t))C̃k(mk(t), 0) + sk(t)C̃k(mk(t), 1)−W (1− sk(t)).

The cost functions Ck(m, 0) and Ck(m, 1) are assumed to be continuous in m. Note that we have
used the same notation as in the stochastic model where the cost functions were discrete in m
(slight abuse of notation). Assume

dCk(m, 1)

dm
≤

dCk(m, 0)

dm
, (23)

which is the continuous equivalence of the RHS of (3).

An equilibrium point (m̄k, s̄k) of mk(t) is such that dmk(t)
dt = 0, that is,

0 = λk − (µk + θ′k − θk)s̄k − θkm̄k,
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with s̄k ∈ [0,min{1, λk/(µk + θ′k − θk)}] and m̄k ∈ [max(0, (λk − (µk + θ′k − θk))/θk), λk/θk].
In the stochastic model the aim is to minimize (9), that is, to minimize the time-average cost

minus the subsidy obtained. In equilibrium, s̄k is the average amount of time the system is active,
hence, the fluid version of (9) will be to find the equilibrium point that minimizes the cost in
equilibrium, that is, to minimize

EC(s̄k,W ) := (1− s̄k)C̃k(m̄k, 0) + s̄kC̃k(m̄k, 1)−W (1− s̄k).

We denote by (m∗
k, s

∗
k) an optimal equilibrium point and define the optimal equilibrium cost under

subsidy W by

EC∗
k(W ) := min

s̄k∈[0,min{1,λk/(µk+θ′
k
−θk)}]

ECk(s̄k,W ) (24)

= (1− s∗k)C̃k(m
∗
k, 0) + s∗kC̃k(m

∗
k, 1)−W (1− s∗k). (25)

Since the time-average criteria will be attained by several controls, in the next section we will study
controls that are bias-optimal. That is, among all controls that reach the optimal equilibrium point,
a bias-optimal control is the one that minimizes the cost to get to this equilibrium point.

9.2 Fluid index for bias optimality

Having characterized the optimal equilibrium point in the previous section, the question is which
control minimizes the cost to get to this equilibrium, referred to as bias-optimality. Hence, our aim
is to find the control u that minimizes

∫ ∞

0

(

C̃k(m
u
k(t), s

u
k(t))−W (1− suk(t))− EC∗

k(W )
)

dt. (26)

That is, minimize the total cost over time minus the optimal cost in equilibrium.
The optimal solution to the fluid bias optimal problem is stated below.

Proposition 11 An optimal control for the relaxed fluid problem (26) is s∗k(t) = 1 if wk(mk(t)) >
W and s∗k(t) = 0 otherwise, with

wk(mk) := Ck(mk, 0)− Ck(mk, 1) + dk(µk + θ′k)− d′kθ
′
k

+















w
(1)
k (mk) if 0 ≤ mk < max

(

0,
λk−(µk+θ′

k
−θk)

θk

)

,

w
(2)
k (mk) if max

(

0,
λk−(µk+θ′

k
−θk)

θk

)

≤ mk ≤ λk

θk
,

w
(3)
k (mk) if mk > λk

θk
,

where

w
(1)
k (mk) =

(µk + θ′k − θk)

θk

(

C
(

λk−(µk+θ′
k
−θk)

θk
, 1
)

− C(mk, 1)
)

(λk − (µk + θ′k − θk))/θk −mk
,

w
(2)
k (mk) =

(λk − θkmk)
d

dmk
Ck(mk, 1) + (θkmk + µk + θ′k − θk − λk)

d
dmk

Ck(mk, 0)

θk
,

w
(3)
k (mk) =

(µk + θ′k − θk)

θk

(

Ck(mk, 0)− Ck

(

λk

θk
, 0
))

mk − λk/θk
.

The fluid index wk(mk) is non-decreasing and continuous.
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The proof of Proposition 11 can be found in Appendix I.
Having solved the fluid version of the relaxed problem, we propose the following heuristic for

the stochastic model.

Definition 5 (Fluid index policy) Assume at time t we are in state ~N(t) = ~n. The fluid index
policy prescribes to serve the class k having currently the highest non-negative fluid index wk(nk).

We make the following observations:

• For linear holding cost, the fluid index is state-independent and coincides with that of the
stochastic model as stated in Proposition 4.

• Assume Ck(mk, ak) = Ck(mk). In that case,

w
(2)
k (mk) =

(µk + θ′k − θk)

θk

d

dmk
Ck(mk),

which corresponds to the C ′(m)µ/θ-rule when θ′k = θk. We refer to this rule as the Generalized

cµ/θ-rule (Gcµ/θ). The terms w
(1)
k (mk) and w

(3)
k (mk) reduce to

w
(1)
k (mk) =

(µk + θ′k − θk)

θk

(Ck((λk − (µk + θ′k − θk))/θk)− Ck(mk))

(λk − (µk + θ′k − θk))/θk −mk
,

w
(3)
k (mk) =

(µk + θ′k − θk)

θk

(Ck(mk)− Ck(λk/θk))

mk − λk/θk
.

We refer to [13] where index policies based on first-order difference have also been proposed
and are shown to empty the system with the lowest cost possible in a single server multi-class
queue without abandonments and no future arrivals.

9.3 Asymptotic equivalence of stochastic and fluid indices

In this section we discuss the relation between the Whittle index as obtained for the original
stochastic problem (Section 4) and the fluid index. As mentioned in the previous section, for linear
holding cost both indices coincide. Here we study the equivalence of both indices in asymptotic
regimes.

We first consider the light-traffic scenario, that is, λk ↓ 0. In that case, it can be readily seen
that the fluid index is given by

lim
λk↓0

wk(mk) = Ck(mk, 0)− Ck(mk, 1) + dk(µk + θ′k)− d′kθ
′
k +

µk + θ′k − θk
θk

(Ck(mk, 0)− Ck(0, 0))

mk
.

This expression coincides with the expression as obtained for Whittle’s index as λk ↓ 0 in Proposi-
tion 6.

We now focus on the indices for large values of the state. In the next proposition we show
that the fluid index wk(nk) coincides with Whittle’s index, as derived in Proposition 3, when
the cost functions are upper bounded by polynomial functions (as in Proposition 5). Recall that

we upper bounded Ck(nk, 1) and Ck(nk, 0) by the polynomials Ek(nk, 1) =
∑Pk

i=0C
(Pk,i)
k ni

k and

Ek(nk, 0) =
∑Qk

i=0E
(Qk,i)
k ni

k, respectively, where C
(Pk,Pk)
k > 0 and E

(Qk,Qk)
k > 0. The proof can be

found in Appendix J
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Proposition 12 Assume that Ck(nk, 1) and Ck(nk, 0) are upper bounded by a polynomial of degree
Pk and Qk, respectively, with Qk > Pk − 1. Then,

lim
nk→∞

Wk(nk)

wk(nk)
= 1. (27)

If we further assume Pk = Qk and C
(Pk,i)
k = E

(Pk,i)
k for all i ∈ {2, . . . , Pk}, then as nk → ∞,

Wk(nk) = wk(nk) + o(1). (28)

As an example we consider Ck(nk, a) = Ck(nk) or Ck(nk, a) = Ck((nk − a)+). Then Qk = Pk,
and hence (27) holds. In case, Ck(nk, a) = Ck(nk), then in addition (28) holds.

10 Numerical Results

The objective of the present section is to show in which regimes the Whittle index policy W (n)
(Equation (15)) performs well. We will focus on holding cost functions of the shape Ck(nk, a) =
Ck(nk) or Ck(nk, a) = Ck((nk−a)+), that is, the holding cost is a function of the number of class-k
customers in the system or queue respectively. Hence, C̃k(nk, a) reduces to Ck(nk) + dkθknk or
Ck((nk − a)+) + dkθk(nk − a)+ + d′kθ

′
k min(a, nk), respectively.

In Section 10.1 we compare the structure of Whittle’s index policy with the structure of the
optimal policy, which is numerically obtained through value iteration [30]. In Section 10.2 we then
numerically compare the performance of the index policies with that of the optimal policy.

10.1 Structure of different policies

We compare the structure of the different index policies and the optimal policy for linear and convex
holding cost.

10.1.1 Linear holding cost

We performed numerical analysis for a wide range of parameters and observed that for linear
holding cost the optimal policy is of the following structure: when (N1, . . . , NK) is close enough to
the origin (and Ni denotes the number of class-i customers in the system), it is optimal to prioritize
classes according to the c̃µ-rule, otherwise to prioritize classes according to the c̃µ/θ-rule, where
c̃k := ck+dkθk, see Figure 2 (left) with ǫ = 0 as described in the next section. Hence, the Whittle’s
index (which corresponds to the c̃µ/θ-rule in the linear case) captures the optimal action for states
that are not too close to the origin.

10.1.2 General holding cost

To discuss the structure of index policies for general holding cost, we focus on two classes of
customers (K = 2). In a state (N1, N2), the action taken by Whittle’s index rule is to serve the
class having highest value Wk(Nk). Since Wk(Nk) is an non-decreasing function, this implies that
there is an increasing switching curve (SC) such that when (N1, N2) is below the SC, Whittle’s
index policy serves class 1 and for any state (N1, N2) above the curve the policy serves class 2.
Note that for linear holding cost this switching curve collapses either to the vertical or horizontal
axis.

By simulations we observed that an optimal policy is as well of switching curve type. For
example, in Figure 2 (left) we plot the switching curve of the optimal policy with the following
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Figure 2: (Left:) Switching curves of the optimal policy for varying holding cost (from linear to
quadratic). (Middle and right:) Actions under the optimal policy, the index policy W (n), and the
fluid index policy for quadratic holding cost. Area with “+”: W (n) serves class 1 while it is optimal
to serve class 2, Area with “*”: W (n) serves class 2, which is also optimal, and in the white area
W (n) serve class 1, which is also optimal.

holding cost: C1(n) = n + ǫn2 and C2(n) = n (parameters θ = θ′ and λ = [9, 10], µ = [14, 16], θ =
[2, 0.05], d = [4, 0.3]). When ǫ = 0, we obtain a decreasing switching curve, which describes the
behavior of the optimal policy for linear cost as explained in Section 10.1.1. As ǫ becomes positive,
the switching curve becomes increasing. In addition, ǫ becomes larger, and hence the quadratic
cost of class 1 increases, and therefore, class 1 gets priority in a larger region.

We now compare the actions taken under Whittle’s index policy and the optimal policy. We
consider an example with quadratic costs C1(n) = (c11+d1θ1)n+c21n

2 and C2(n) = (c12+d2θ2)n+
c22n

2, and set the following parameters θ = θ′ and µ = [15, 18]; θ = [4, 7]; c1 = [1, 4]; c2 = [2, 1]; d =
[8, 6.5]. In Figures 2 (middle and right) we plot the optimal actions (obtained by value iteration)
for load ρ = 0.8 and ρ = 2.5, respectively, and compare it to the actions taken under Whittle’s
index policy. We observe that the optimal policy can be described by a switching curve. In addition
the optimal policy coincides with that of Whittle’s index W (n) in almost all the state space as the
workload increases. We also plotted the switching curve corresponding to the fluid index w(n) and
observe a very good fit.

10.2 Performance evaluation

In this section we evaluate numerically the performance of the index policies. This is carried out
by computing the relative sub optimality gap between the average cost of the optimal solution and
an index policy. In order to compute this we use the Value Iteration algorithm [30].

We saw in Section 7 that the index policy with index (21) performs very well in an M/M/1
multi-class systems (when there are no abandonments). We considered cubic costs and 4 classes
of customers and compared the Generalized index rule (Gcµ) and the index-rule of (21) and we
observed there that the latter performs slightly better than the Gcµ-rule.

In this section we will consider scenarios allowing abandonments. We will evaluate the following
indices: (i) the Whittle index W (n) (Equation (15)), (ii) the Whittle index for large states W∞(n)
and (iii) the fluid index w(n). We compare these to the two index policies proposed for a multi-class
queue without abandonments: the Gcµ-rule, and the index-rule corresponding to (21) which is an
approximation of W (n) for θ close to zero. We will analyze two different scenarios: (1) varying the
workload ρ, and (2) varying the abandonment rates θk.
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Figure 3: Left: sub optimality for linear holding cost, as ρ increases when θ = θ′. Right: sub
optimality for linear holding cost, as ρ increases when θ 6= θ′.
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Figure 4: Left: sub optimality for linear holding cost, as ρ increases. Middle: sub optimality for
quadratic holding cost as ρ increases. Right: sub optimality for quadratic holding cost as p (θ = pǫ)
varies.

10.2.1 Varying Workload

In this section we aim at observing the behavior of index policies for varying workload.
Example with linear holding cost (θ = θ′): We set Ck(n, a) = ckn, µ = [15, 25], θ′ =

θ = [4, 2], c = [1, 1], d = [5, 3.2], and let ρ =
∑2

k=1 λk/µk vary in the interval [0, 2.6], with
λ1/µ1 = λ2/µ2. For linear holding costs, the indices W (n),W∞(n) and w(n) reduce to the c̃µ/θ-
rule and the indices Gcµ and (21) reduce to the c̃µ-rule, with c̃k = ck + dkθk.

Example with linear holding cost (θ 6= θ′): We set Ck(n, a) = ck(n − a)+, µ = [15, 25],
θ = [4, 2], θ′ = [3, 2], c′ = c = [1, 1], d = [5, 3.2], d′ = [2, 1], and let ρ =

∑2
k=1 λk/µk vary in the

interval [0, 2.6], with 2λ1/µ1 = λ2/µ2. For linear holding costs and θ 6= θ′, the indicesW (n),W∞(n)
and w(n) reduce to the c̃(µ + θ′)/θ − c̃′-rule and the indices Gcµ and (21) reduce to the c̃µ-rule,
with c̃k = ck + dkθk.

In Figure 3 we observe for both cases that the c̃µ-rule is optimal in underload, while the perfor-
mance of the index W (n) is nearly optimal in overload. The latter suggests that Whittle’s index
policy is also optimal in heavy traffic for the original non-truncated system (see Proposition 10).
As discussed in Section 10.1.1, in a state far from the origin, the optimal action is to serve ac-
cording to c̃µ/θ, which is the region in which the process will live in overload, explaining why the
c̃µ/θ-rule and the c̃(µ+θ′)/θ− c̃′-rule perform well in this case. In underload, apparently the effect
of abandonments is not that important and the c̃µ-rule performs very well.
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Workload 1 1.5 2 2.5 3 3.5 5.25

W (n) 1.3089 1.4608 0.8055 0.1094 0.0185 0.0065 0.00017

W∞(n) 1.4028 1.5596 0.8902 0.1732 0.0614 0.0329 0.0007

w(n) 1.3823 1.2885 0.5534 0.0026 0.0771 0.0904 0.0004

(21) 0.0409 0.7327 0.8010 11.2134 20.5851 28.3926 50.0996

Gcµ 0.0409 0.7483 3.9951 10.4111 18.7237 25.0454 42.5645

Table 2: Absolute error CWI − COPT that correspond to the example in Figure 4 (left).

Workload 1 1.5 2.5 3 3.5 5.25 7.25 10 16

W (n) 0.1332 0.0664 0.0098 0.1260 0.2874 0.2448 0.1404 0.0486 0.0061

W∞(n) 1.4817 1.9167 1.4429 1.1485 1.4243 1.7296 1.4784 0.7977 0.1012

w(n) 1.4817 1.4157 0.3397 0.0382 0.1288 0.5125 04383 0.1542 0.0093

(21) 0.0720 - - - 19.3226 35.5180 48.5766 66.1024 91.4859

Gcµ 0.0720 0.7896 7.7697 12.8528 17.6942 31.1417 43.3748 59.7161 99.4344

Table 3: Absolute error CWI − COPT that correspond to the example in Figure 4 (middle).

Example with quadratic holding cost (θ = θ′): Consider the following parameters: µ =
[15, 18], θ′ = θ = [4, 7], c1 = [1, 4], c2 = [2, 1], d = [8, 6.5], and we let λ vary, but keeping λ1/µ1 =
λ2/µ2. We assume quadratic costs C1(n) = (c11+d1θ1)n+c21n

2 and C2(n) = (c12+d2θ2)n+c22n
2.

See Figure 4 (left) for the sub-optimality gap and Table 2 for the absolute errors.
We observe that for low load the Gcµ-rule and the index-rule (21) behave very well. However,

as the load grows larger, the sub-optimality gap of these θ-independent policies grows large, while
our Whittle index policy W (n), the Whittle index policy for large states W∞(n) and the fluid index
policy w(n) become near optimal. In Table 2 we observe that the convergence towards optimality
is reached very fast as the absolute error (CWI − COPT ) of the W (n),W∞(n) and w(n) indices is
of order 10−4 when ρ = 5.25. On the other hand, both (21) and the Gcµ-rule perform very bad
in overload. Hence, our index policies are very suitable for the overload setting, which are from a
practical point of view of main importance.

Note that the jump around ρ = 2 for the index-rule (21) is a result of undefined values around
λk = µk.

Example with quadratic holding cost (θ 6= θ′): Consider the following parameters: µ =
[15, 18], θ = [4, 7], θ′ = [3, 4], c1 = [1, 4], c2 = [2, 1], d = [8, 6.5], d′ = [7, 7] and we let λ vary, but
keeping 2λ1/µ1 = λ2/µ2. We assume quadratic costs C̃1(n, a) = c11(n − a)+ + c21((n − a)+)2 +
d1θ1(n − a)+ + d′1θ

′
1a and C̃2(n, a) = c12(n − a)+ + c22((n − a)+)2 + d2θ2(n − a)+ + d′2θ2a. See

Figure 3 for the sub-optimality gap and Table 3 for the absolute errors.
We observe that for low loads the Gcµ-rule and the index-rule (21) behave very well. In this

example, also the Whittle index policy performs close to optimal for low loads, while W∞(n) and
w(n) do not. As the load grows larger, the sub-optimality gap of our Whittle index policy W (n),
and the fluid index policy w(n) become near optimal. However, in this example the convergence
towards optimality in absolute terms is much slower than for the previous example. The absolute
error CWI − COPT is of order 10−3 for the indices W (n) and w(n) and of order 10−1 for W∞(n)
when ρ = 16. This phenomena is explained by the fact that the process on average lives around an
area where the optimal policy prescribes to serve class 2 customers and the index policies prescribe
to serve class 1 customers. As the workload increases this phenomena disappears.

The jump around the interval ρ = [1.5, 3] for the index-rule (21) is a result of undefined values
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around λk = µk.
In these last examples the good performance of W (n) in overload suggests that Whittle’s index

policy is also optimal for the original non-truncated system in heavy traffic (see Proposition 10).

10.2.2 Varying abandonment rates

In this section we evaluate the performance of the index policies for varying abandonment rates.
Linear holding cost: In this case, the 5 index policies mentioned above reduce to the c̃µ/θ-

rule and the c̃µ-rule, as explained in Section 10.2.1. As θk → 0, we observed in simulations that the
c̃µ-rule performs optimal, while the c̃µ/θ-rule might perform very bad when the abandonment rates
are negligibly small. It is known that for the non-reneging case, the c̃µ-rule is optimal in underload
(the celebrated cµ-rule for a multi-class M/M/1 queue). The c̃µ/θ = (c + dθ)µ/θ index might
however give an opposite priority rule when θ’s are very small, which explains the non-optimality
of the c̃µ/θ-rule when θk’s are very small.

Quadratic holding cost: Consider a system with 2 classes of customers. We assume quadratic
holding costs C1(n) = c̃11n + c21n

2 where, c̃11 = (c11 + d1θ1), and C2(n) = c̃21n + c22n
2, where

c̃21 = (c21 + d2θ2) and fix the following parameters: λ = [4, 5], µ = [15, 17], c1 = [1, 4], c2 = [5, 1],
d = [2, 3], θ1 = ǫ1p and θ2 = ǫ2p, where ǫ1 = 0.05 and ǫ2 = 0.01, and let p vary. Hence,
ρ =

∑

k ρk < 1 so that the stability of the system is assured as θk → 0.
In Figures 4 (right) we plot the sub-optimality gap as p varies from 0 to 200, hence θ1 and θ2

range from [0, 10] and [0, 2], respectively. We observe for the θ-dependent indices a sub-optimality
gap of 25% around p = 0. As θ grows large, this gap disappears however very fast. Note that the
θ-independent indices work well, as we are in an underload scenario.
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Appendix

A Proof of Proposition 1

In Proposition 1 we aim at proving that threshold policy ϕ = n is an optimal solution of the
relaxed problem (9). In order to do so, we are left to prove the convexity of the value function V .
We will therefore prove that the value function that corresponds to the truncated system V L(m)
(truncated by L > 1) is convex. Having done this, due to the result in [12, Th. 3.1] we have that
V L(m) → V (m) as L → ∞ and hence, the convexity of V L for all L will imply convexity of the
function V . In order to apply [12, Th. 3.1] we need to make sure that the conditions required
are satisfied. We therefore check the conditions required by [12, Th. 3.1] in A.1, and prove the
convexity of V L in A.2.

A.1 Conditions to be checked for [12, Th. 3.1]

Let us first present the following definition:

Definition 6 A function f : E −→ R+ is a moment function if there exists an increasing sequence
of finite sets Er ↑ E, r → ∞, such that inf{f(m) : m /∈ Er} → ∞ as r → ∞. (Where E is the
state space).

The conditions to be checked in [12, Th. 3.1] are the following:

1. There exists a moment function f : N0 −→ R+, constants α, β > 0 and M > 0 such that

∞
∑

m̃=0

qϕ,L(m, m̃)f(m̃) ≤ −αf(m) + β1{m<M}(m), for all ϕ,L,

where ϕ defines the policy followed and L is the truncating parameter.

2. (ϕ,L) 7→ qϕ,L(m, m̃) and (ϕ,L) 7→
∑

m̃ qϕ,L(m, m̃)f(m̃) are continuous functions in ϕ and L.

We define f(m) := eǫm, where ǫ > 0. We can construct Er = {0, . . . , r} such that Er is finite,
Er ↑ N

0 as r → ∞ and inf{f(m) : m /∈ Er} → ∞. The objective is then to see, that there exists
ǫ > 0, an M > 0 and a constant α > 0, such that

∞
∑

m̃=0

qϕ,L(m, m̃)f(m̃) ≤ −αf(m), for all m ≥ M,

that is,

λ
(

1−
m

L

)

eǫ(m+1) +
(

(µ+ θ′)Sϕ(m) + θ(m− Sϕ(m))
)

eǫ(m−1)

−
((

1−
m

L

)

+ (µ+ θ′)Sϕ(m) + θ(m− Sϕ(m))
)

eǫm ≤ −αeǫm, for all m ≥ M.

After some algebra we get

λ
(

1−
m

L

)

(eǫ − 1) +
(

(µ+ θ′ − θ)Sϕ(m) + θm
)

(e−ǫ − 1) ≤ −α, for all m ≥ M.
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Note that λ(1−m/L)(e−ǫ−1) can be upper bounded by a constant, κ1, and (µ+θ′−θ)Sπ(m)(eǫ−1)
can be upper bounded by κ2. Besides, θm(e−ǫ − 1) < 0. Hence, we can find M large enough so
that −θm(e−ǫ − 1) ≥ κ1 + κ2 for all m ≥ M . This proves that condition (1) is satisfied.

Condition (2), i.e., the continuity of the functions (ϕ,L) 7→ qϕ,L(m, m̃) and (ϕ,L) 7→
∑

m̃ qϕ,L(m, m̃)f(m̃)
in L and ϕ is satisfied by definition of transition rates.

A.2 Convexity of V L

W.l.o.g. assume λ+ µ+ θ′ + θL = 1. For n ∈ {0, 1, . . . , L} we define V L
t (n) by V L

0 (n) = 0 and

V L
t+1(n) =λ

(

1−
n

L

)

V L
t (min{n+ 1, L})

+ min{−W + C̃(n, 0) + (µ+ θ′ − θ)V L
t (n), C̃(n, 1) + (µ+ θ′ − θ)V L

t ((n− 1)+)}

+ θnV L
t ((n− 1)+) + λ

n

L
V L
t (n) + (L− n+ 1)θV L

t (n).

We will prove that V L
t is a convex function for n ≤ L− 1, that is,

2V L
t (n) ≤ V L

t ((n− 1)+) + V L
t (n+ 1), for n ≤ L− 1. (29)

The function V L
t being convex, for any t, implies convexity of V L and concludes the proof.

In order to prove convexity of V L
t we first prove that V L

t (·) is a non-decreasing function. The
proof follows by induction: V L

0 (n) = 0 is non-decreasing for t = 0, then we assume V L
t (n) is

non-decreasing and we prove that

V L
t+1(n+ 1)− V L

t+1(n) ≥ 0 for all n ≤ L− 1. (30)

Let us first consider the terms multiplied by λ in V L
t+1(n+ 1)− V L

t+1(n), that is,

λ

(

1−
n+ 1

L

)

V L
t (min{n+ 2, L}) + λ

n+ 1

L
V L
t (min{n+ 1, L})

− λ
(

1−
n

L

)

V L
t (min{n+ 1, L})− λ

n

L
V L
t (n)

≥ λ

(

1−
n+ 1

L

)

(V L
t (min{n+ 2, L})− V L

t (min{n+ 1, L}))

+ λ
n

L
(V L

t (min{n+ 1, L} − V L
t (n))) ≥ 0,

where the last inequality holds due to the non-decreasingness of V L
t (n). Let us now consider the

terms multiplied by θ in V L
t+1(n+ 1)− V L

t+1(n), namely,

θ(n+ 1)V L
t (n) + (L− n− 1)θV L

t (min{n+ 1, L})− θnV L
t ((n− 1)+)− (L− n)θV L

t (n)

≥ θn(V L
t (n)− V L

t ((n− 1)+)) + (L− n− 1)(V L
t (min{n+ 1, L})− V L

t (n)) ≥ 0,

where, again, the last inequality holds due to V L
t (n) being non-decreasing for all n ≤ L−1. Finally,

let us consider the min-terms in V L
t+1(n+ 1)− V L

t+1(n). It is straightforward that

min{−W + C̃(min{n+ 1, L}, 0) + (µ+ θ′)V L
t (min{n+ 1, L}),

C̃(min{n+ 1, L}, 1) + (µ+ θ′)V L
t (n)}

−min{−W + C̃(n, 0) + (µ+ θ′)V L
t (n),

C̃(n, 1) + (µ+ θ′)V L
t ((n− 1)+)} ≥ 0,
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due to C̃ and V L
t being non-decreasing. This proves (30) and hence we showed that V L

t (n) is
non-decreasing.

Equation (29) for n = 0 follows directly from V L
t (·) being non-decreasing. In the remainder of

the proof we therefore prove Equation (29) for n ≥ 1.
We will prove convexity (29) by induction on t. Since V L

0 (n) = 0, it holds for t = 0. Now
assume V L

t is convex. For 1 ≤ n ≤ L− 1 we have

2V L
t+1(n) = 2λ

(

1−
n

L

)

V L
t (n+ 1) + 2λ

n

L
V L
t (n) + 2θnV L

t (n− 1) + 2(L− n+ 1)θV L
t (n)

+ 2min{−W + C̃(n, 0) + (µ+ θ′ − θ)V L
t (n), C̃(n, 1) + (µ+ θ′ − θ)V L

t (n− 1)}. (31)

We need to show that this is less than or equal to V L
t+1(n− 1) + V L

t+1(n+ 1), which is given by

λ

(

1−
n− 1

L

)

V L
t (n) + λ

(

1−
n+ 1

L

)

V L
t (n+ 2) + λ

n− 1

L
V L
t (n− 1) + λ

n+ 1

L
V L
t (n+ 1)

+ θ(n− 1)V L
t ((n− 2)+) + θ(n+ 1)V L

t (n) + (L− n+ 2)θV L
t (n− 1) + (L− n)θV L

t (n+ 1)

+ min{−W + C̃(n− 1, 0) + (µ+ θ′ − θ)V L
t (n− 1), C̃(n− 1, 1) + (µ+ θ′ − θ)V L

t ((n− 2)+)}

+min{−W + C̃(n+ 1, 0) + (µ+ θ′ − θ)V L
t (n+ 1), C̃(n+ 1, 1) + (µ+ θ′ − θ)V L

t (n)}. (32)

We first consider the two terms multiplied by λ in (31) and show that they are smaller than or
equal to

λ

(

1−
n− 1

L

)

V L
t (n) + λ

(

1−
n+ 1

L

)

V L
t (n+ 2) + λ

n− 1

L
V L
t (n− 1) + λ

n+ 1

L
V L
t (n+ 1). (33)

When 1 ≤ n < L− 1, then for the terms multiplied by λ in (31) we can write

2
(

1−
n

L

)

V L
t (n+ 1) + 2

n

L
V L
t (n) = 2

(

1−
n+ 1

L

)

V L
t (n+ 1) + 2

n

L
V L
t (n) +

2

L
V L
t (n+ 1)

≤

(

1−
n− 1

L

)

V L
t (n)−

2

L
V L
t (n) +

(

1−
n+ 1

L

)

V L
t (n+ 2) + 2

n

L
V L
t (n) +

2

L
V L
t (n+ 1), (34)

by convexity of V L
t . Since by convexity 2n−1

L V L
t (n) ≤ n−1

L (V L
t (n − 1) + V L

t (n + 1)), we obtain
that (34) is smaller than or equal to (33). When n = L−1, it reduces to verifying 2(1−2/L)V L

t (L−
1) ≤ (1− 2/L)(V L

t (L− 2) + V L
t (L)), which follows from convexity of V L

t .
For the terms multiplied by θ, we need to show for 1 ≤ n ≤ L− 1 that

2nV L
t (n− 1) + 2V L

t (n) + 2(L− n)V L
t (n)

≤ (n− 1)V L
t ((n− 2)+) + (n+ 1)V L

t (n) + 2V L
t (n− 1) + (L− n)(V L

t (n− 1) + V L
t (n+ 1)).

We apply the inequality 2V L
t (n− 1) ≤ V L

t ((n− 2)+)+V L
t (n) on the right hand side and the whole

initial inequality reduces to

2nV L
t (n− 1) + 2(L− n)V L

t (n) ≤ n(V L
t ((n− 2)+) + V L

t (n)) + (L− n)(V L
t (n− 1) + V L

t (n+ 1)),

which holds by convexity of V L
t .

We now consider the min-terms. We will condition on the possible optimal actions in states
n − 1 and n + 1. Since at time t we have that V L

t is convex, the optimal actions satisfy the
monotonicity property. Denote by a∗n ∈ {0, 1} the optimal action in state n, with action 0 (1) being
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passive (active). Then, by monotonicity there are the following three possibilities: (a∗n−1, a
∗
n+1)

equals (0, 0), (0, 1) or (1, 1). First assume a∗ = (0, 1). Then, we obtain for 1 ≤ n ≤ L− 1 that

2min{−W + C̃(n, 0) + (µ+ θ′ − θ)V L
t (n), C̃(n, 1) + (µ+ θ′ − θ)V L

t (n− 1)}

≤ −W + C̃(n, 0) + (µ+ θ′ − θ)V L
t (n) + C̃(n, 1) + (µ+ θ′ − θ)V L

t (n− 1)

≤ −W + C̃(n− 1, 0) + (µ+ θ′ − θ)V L
t (n) + C̃(n+ 1, 1) + (µ+ θ′ − θ)V L

t (n− 1)

= min{−W + C̃(n− 1, 0) + (µ+ θ′ − θ)V L
t (n− 1), C̃(n− 1, 1) + (µ+ θ′ − θ)V L

t ((n− 2)+)},

+min{−W + C̃(n+ 1, 0) + (µ+ θ′ − θ)V L
t (n+ 1), C̃(n+ 1, 1) + (µ+ θ′ − θ)V L

t (n)}, (35)

where in the second inequality we used that C and hence C̃ satisfies (3). In the case a∗ = (1, 1) we
obtain for 1 ≤ n ≤ L− 1 that

2min{−W + C̃(n, 0) + (µ+ θ′ − θ)V L
t (n), C̃(n, 1) + (µ+ θ′ − θ)V L

t (n− 1)}

≤ 2C̃(n, 1) + 2(µ+ θ′ − θ)V L
t (n− 1)

≤ C̃(n− 1, 1) + C̃(n+ 1, 1) + (µ+ θ′ − θ)(V L
t ((n− 2)+) + V L

t (n))

= min{−W + C̃(n− 1, 0) + (µ+ θ′ − θ)V L
t (n− 1), C̃(n− 1, 1) + (µ+ θ′ − θ)V L

t ((n− 2)+)},

+min{−W + C̃(n+ 1, 0) + (µ+ θ′ − θ)V L
t (n+ 1), C̃(n+ 1, 1) + (µ+ θ′ − θ)V L

t (n)}. (36)

In the second inequality we used the convexity of C (and hence of C̃) and the convexity of V L
t .

When a∗ = (0, 0) we obtain for 1 ≤ n ≤ L− 1 that

2min{−W + C̃(n, 0) + (µ+ θ′ − θ)V L
t (n), C̃(n, 1) + (µ+ θ′ − θ)V L

t (n− 1)}

≤ −2W + 2C̃(n, 0) + 2(µ+ θ′ − θ)V L
t (n)

≤ −2W + C̃(n− 1, 0) + C̃(n+ 1, 0) + (µ+ θ′ − θ)V L
t (n− 1) + (µ+ θ′ − θ)V L

t (n+ 1)

= min{−W + C̃(n− 1, 0) + (µ+ θ′ − θ)V L
t (n− 1), C̃(n− 1, 1) + (µ+ θ′ − θ)V L

t ((n− 2)+)},

+min{−W + C̃(n+ 1, 0) + (µ+ θ′ − θ)V L
t (n+ 1), C̃(n+ 1, 1) + (µ+ θ′ − θ)V L

t (n)}. (37)

In the second inequality we used the convexity of C (and hence of C̃) and the convexity of V L
t .

Hence, we have that (31) is less than or equal to V L
t+1(n−1)+V L

t+1(n+1), hence V L
t+1 is convex.

This concludes the proof for convexity of V L
t (·).

B Proof of Proposition 3

In this section we prove that the algorithm indeed defines Whittle’s index correctly. To do so let
us assume that the algorithm stops at iteration J ∈ N ∪ {∞}, and hence nJ = ∞. We further set
Wi := WJ and ni = ∞ for all i ∈ {J +1, . . .}∪{∞}. We will prove that W0 < W1 < W2 < . . ., and
note that by construction ni for i ∈ N

0 ∪ {∞} is an increasing sequence. Let us prove Wi < Wi+1
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for all i ∈ {0, 1, 2, . . . } ∪ {∞}. We have from the characterization of Wi that

E(C̃(Nni+1 , Sni+1(Nni+1)))− E(C̃(Nni−1 , Sni−1(Nni−1)))
∑ni+1

m=0 π
ni+1(m)−

∑ni−1

m=0 π
ni−1(m)

>
E(C̃(Nni , Sni(Nni)))− E(C̃(Nni−1 , Sni−1(Nni−1)))

∑ni

m=0 π
ni(m)−

∑ni−1

m=0 π
ni−1(m)

=⇒
(

E(C̃(Nni+1 , Sni+1(Nni+1)))− E(C̃(Nni−1 , Sni−1(Nni−1)))
)

(

ni
∑

m=0

πni(m)−

ni−1
∑

m=0

πni−1(m)

)

>
(

E(C̃(Nni , Sni(Nni)))− E(C̃(Nni−1 , Sni−1(Nni−1)))
)

(ni+1
∑

m=0

πni+1(m)−

ni−1
∑

m=0

πni−1(m)

)

,

and adding E(C̃(Nni , Sni(Nni))(
∑ni−1

m=0 π
ni−1(m) −

∑ni

m=0 π
ni(m)) on both sides of the inequality,

after some algebra we obtain

Wi+1 =
E(C̃(Nni+1 , Sni+1(Nni+1)))− E(C̃(Nni , Sni(Nni)))

∑ni+1

m=0 π
ni+1(m)−

∑ni

m=0 π
ni(m)

>
E(C̃(Nni , Sni(Nni)))− E(C̃(Nni−1 , Sni−1(Nni−1)))

∑ni

m=0 π
ni(m)−

∑ni−1

m=0 π
ni−1(m)

= Wi.

To prove that the algorithm actually defines the Whittle index we have to show that,

1. the threshold policy −1 is optimal for problem (9) for all W such that W < W0.

2. The threshold policy ni < ∞ is optimal for problem (9) for all W such that Wi < W < Wi+1.

3. And finally that the policy ∞, is optimal for problem (9) for all W such that ∞ > W > WJ

and J < ∞.

To show 1., note that for all W < W0

W
n
∑

m=0

πn(m) < E(C̃(Nn, Sn(Nn)))− E(C̃(N−1, S−1(N−1))),

=⇒ E(C̃(N−1, S−1(N−1))) < E(C̃(Nn, Sn(Nn)))−W

n
∑

m=0

πn(m), ∀n,

that is, g(−1)(W ) < g(n)(W ) for all n ∈ N
0, and hence g(W ) = g(−1)(W ). Policy −1 is therefore

optimal for problem (9) for W < W0.
We will prove 2. by induction, observe from Step 0 of the algorithm that for all n ≥ 0

E(C̃(Nn0 , Sn0(Nn0)))−W0

n0
∑

m=0

πn0(m) ≤ E(C̃(Nn, Sn(Nn)))−W0

n
∑

m=0

πn(m),

that is, g(n0)(W0) ≤ g(n)(W0), for all n ≥ 0. Besides, we trivially have that g(n0)(W0) ≤ g(−1)(W0).
We have proven in the proof of Proposition 2 that

∑n
m=0 π

n(m) is strictly increasing in n, and
therefore for all n ≤ n0 and W0 < W

E(C̃(Nn0 , Sn0(Nn0)))−W

n0
∑

m=0

πn0(m) ≤ E(C̃(Nn, Sn(Nn)))−W
n
∑

m=0

πn(m)

=⇒ g(n0)(W ) ≤ g(n)(W ).
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In particular, g(n0)(W ) ≤ g(n)(W ) is satisfied for all W0 < W < W1 and n ≤ n0. Similarly,
from the definition of W1 we have that g(n0)(W1) ≤ g(n)(W1) for all n ≥ n0 + 1, and again using
that

∑n
m=0 π

n(m) is strictly increasing we obtain g(n0)(W ) ≤ g(n)(W ) for all W0 < W < W1 and
n ≥ n0 + 1.

We have therefore proven that g(n0)(W ) ≤ g(n)(W ) for all n and W0 < W < W1, that is, policy
n0 is optimal for all W such that W0 < W < W1. This establishes the first step of the induction
i = 0. Let us now assume that it holds for step i − 1 ≥ 0, that is, ni is an optimal policy for
problem (9), given W such that Wi−1 < W < Wi. And let us assume ni < ∞. The definition of Wi

together with the fact that ni−1 is optimal for the choice of W such that Wi−1 < W < Wi, imply

g(ni−1)(Wi) = g(ni)(Wi) ≤ g(n)(Wi), n ≥ 0.

Recall that
∑n

m=0 π
n(m) is strictly increasing in n and therefore

g(ni)(W ) ≤ g(n)(W ), n ≤ ni,Wi < W < Wi+1.

Besides, from the definition of Wi+1 we have

g(ni)(W ) ≤ g(n)(W ), n ≥ ni + 1,Wi < W < Wi+1.

We therefore have obtained that threshold policy ni is optimal for problem (9) given W such that
Wi < W < Wi+1.

Finally, we prove 3. for J < ∞, note that from the induction followed in the previous point we
have that

g(nJ−1)(WJ) = g(nJ )(WJ) ≤ g(n)(WJ), n ≥ 0,

and the fact that
∑n

m=0 π
n(m) is increasing in n gives that

g(nJ )(W ) < g(n)(W ), n ≤ nJ = ∞,WJ < W.

Which concludes the proof of the algorithm.

C Proof of Proposition 4

For ease of notation we omit subscript k from the notation in the proof. To calculate Whittle’s
index as in Proposition 3 we need to consider the monotone policies n and n−1 in which the server
is active in states m ≥ n+ 1 and m ≥ n, respectively.

Let us consider the policy n first. Let fn(ab) and fn(ser) denote the fraction of customers
that end up abandoning and being served, respectively. A rate conservation argument implies that
all arriving users either abandon or are served, thus λ = λfn(ab) + λfn(ser). Conditioning on
the state, the rate of abandonment from the system can be written as

∑∞
m=0 θmπn(m) + (θ′ −

θ)
∑∞

m=n+1 π
n(m), and equating the rates we get the relation

θE(Nn) + (θ′ − θ)

∞
∑

m=n+1

πn(m) = λfn(ab) = λ(1− fn(ser)). (38)

Conditioning on the state, the rate of service is given by
∑∞

m=n+1 µπ
n(m), and we get the relation

λf(ser) = µ
∞
∑

m=n+1

πn(m),
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and substituting in (38) we get

E(Nn) =
λ

θ
+

θ − θ′ − µ

θ

∞
∑

m=n+1

πn(m),

where Nn denotes the stationary number of class-k customers in the system under the monotone
policy n. We calculate now the average holding cost. Plugging the holding cost Ck(nk, a) =
ck(nk − a)+ + c′ka in the total cost relation (5) we get C̃(n, a) = c̃n+ a(c̃′ − c̃), where the constants
c̃ and c̃′ are defined in the statement. The average cost then becomes

E(C̃(Nn, Sn(Nn))) = c̃E(Nn) + (c̃′ − c̃)

∞
∑

m=n+1

πn(m)

= c̃
λ

θ
+

(

c̃(θ − θ′ − µ)

θ
+ c̃′ − c̃

) ∞
∑

m=n+1

πn(m) = c̃
λ

θ
+

(

c̃′ −
c̃(θ′ + µ)

θ

) ∞
∑

m=n+1

πn(m).

We substitute now all the terms in (15) to get

W (n) =
c̃(µ+ θ′)

θ
− c̃′, (39)

which concludes the proof after adding the subscript k.

D Proof of Proposition 5:

For ease of notation we drop the dependency on k throughout the proof.
First of all recall that the steady-state probabilities πn(i) for policy n and state i are given by

(12). To compute Whittle’s index for large values of n, we need to compute πn(i)−πn−1(i), ∀i ≥ 0.
Let us start by i = 0, that is,

πn(0)− πn−1(0) =

(

πn−1(0)
)−1

− (πn(0))−1

(πn(0)πn−1(0))−1

=

(

∞
∑

i=1

i
∏

m=1

qn−1(m− 1,m)

qn−1(m,m− 1)
−

∞
∑

i=1

i
∏

m=1

qn(m− 1,m)

qn(m,m− 1)

)

πn(0)πn−1(0).

The following observations on the transition rates will be used throughout the proof. Assuming
m ≥ 1:

qn(m,m− 1) = qn−1(m,m− 1), ∀m 6= n, (40)

qn(m− 1,m) = qn−1(m− 1,m), ∀m. (41)

Taking these relations into account together with the fact that qn(n, n−1)−qn−1(n, n−1) = θ−µ−θ′,
we get after some calculations

πn(0)− πn−1(0) = πn(0)πn−1(0)

∞
∑

i=n

i
∏

m=1
m 6=n

qn(m− 1,m)

qn(m,m− 1)

(

1

qn−1(n, n− 1)
−

1

qn(n, n− 1)

)

=πn(0)πn−1(0)
θ − µ− θ′

qn−1(n, n− 1)

∞
∑

i=n

i
∏

m=1

qn(m− 1,m)

qn(m,m− 1)
.
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Since qn(m−1,m) = λ for all m ≥ 1, qn(m,m−1) = θm for all 1 ≤ m ≤ n−1 and qn(m,m−1) =
µ+ θ′ + θ(m− 1) for all m ≥ n, together with πn(0) given as in (12), we observe that

πn(0)πn−1(0)

qn−1(n, n− 1)
∈ O

(

1

n

)

and

∞
∑

i=n

i
∏

m=1

qn(m− 1,m)

qn(m,m− 1)
∈ O

(

1

n!

)

.

We then get that

πn(0)− πn−1(0) ∈ O

(

1

nn!

)

. (42)

We can now compute πn(i)− πn−1(i), for all 0 < i ≤ n− 1. Using (41), we obtain for i ≤ n− 1,

πn(i)− πn−1(i) =

i
∏

m=1

qn(m− 1,m)

qn(m,m− 1)
(πn(0)− πn−1(0)).

Due to (42) and since qn(m,m− 1) = θm, and qn(m− 1,m) = λ for all m ≤ n− 1, we obtain for
i ≤ n− 1

πn(i)− πn−1(i) =
λi

i!θi
(πn(0)− πn−1(0)) ∈ O

(

1

nn!

)

, (43)

For states i ≥ n, with n sufficiently large, we have the following:

πn(i)− πn−1(i) =
i
∏

m=1

qn(m− 1,m)

qn(m,m− 1)
πn(0)−

i
∏

m=1

qn−1(m− 1,m)

qn−1(m,m− 1)

(

πn(0)− πn(0) + πn−1(0)
)

.

From observation (42), together with

i
∏

m=1

qn−1(m− 1,m)

qn−1(m,m− 1)
∈ O

(

1

i!

)

,

we get

πn(i)− πn−1(i) =O

(

1

i!n!n

)

+
i
∏

m=1

qn(m− 1,m)

qn(m,m− 1)
πn(0)−

i
∏

m=1

qn−1(m− 1,m)

qn−1(m,m− 1)
πn(0).

After some calculations and by observations (40) and (41) we obtain for i ≥ n

πn(i)− πn−1(i) =

(

1

qn(n, n− 1)
−

1

qn−1(n, n− 1)

) i
∏

m=1
m 6=n

qn(m− 1,m)

qn(m,m− 1)
+O

(

1

i!n!n

)

=
µ+ θ′ − θ

qn−1(n, n− 1)
πn(i) +O

(

1

i!n!n

)

. (44)

Before computing Whittle’s index for large values of n, let us simplify the expression in (15)
by noting that the penalties for abandonments are only incurred linearly and therefore, by Propo-
sition 4 we can decompose (15) into d(µ + θ′) − d′θ′ + W c(n), where W c(n) corresponds to the
holding costs only. W c(n) can be written as follows

W c(n) =
ξ1(n) + ξ2(n) + ξ3(n)

πn(n) +
∑n−1

m=0(π
n(m)− πn−1(m))

=
ξ1(n) + ξ2(n) + ξ3(n)

πn(n) +O(1/n!n)
, (45)
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with

ξ1(n) :=

n−1
∑

i=1

C(i, 0)(πn(i)− πn−1(i)),

ξ2(n) := C(n, 0)πn(n)− C(n, 1)πn−1(n),

ξ3(n) :=
∞
∑

i=n+1

C(i, 1)(πn(i)− πn−1(i)).

Recall now the assumption at the beginning of Section 6.2: the holding costs C(n, 1) and C(n, 0)
are upper bounded by polynomials of finite degrees P < ∞ and Q < ∞, respectively. Hence, we
can write C(n, a) = E(n, a) + o(1), for large values of n, where E(n, 1) =

∑P
i=0C

(P,i)ni, with

C(P,i) := lim
n→∞

C(n, 1)−
∑P

j=i+1C
(P,j)nj

ni
,

and E(n, 0) =
∑Q

i=0E
(Q,i)ni, with

E(Q,i) := lim
n→∞

C(n, 0)−
∑Q

j=i+1E
(Q,j)nj

ni
.

We assume w.l.o.g. that P is such that C(P,P ) > 0 and Q such that E(Q,Q) > 0. We then have

ξ1(n) =
n−1
∑

i=1

E(i, 0)(πn(i)− πn−1(i)) + o(1),

ξ2(n) = E(n, 0)πn(n)− E(n, 1)πn−1(n) + o(1),

ξ3(n) =
∞
∑

i=n+1

E(i, 1)(πn(i)− πn−1(i)) + o(1).

We now define ξ̂1 :=
∑n−1

i=1 E(i, 0)(πn(i)− πn−1(i)), and with the result obtained in Equation (43)
we have that for large values of n

ξ̂1(n) ∈ O

(

nQ−1

n!

)

⊂ o(1).

Hence, for large values of n, ξ1(n) ∈ o(1). Let us now define ξ̂2(n) := E(n, 0)πn(n)−E(n, 1)πn−1(n).
Using (40) and (41) we have after some calculations,

ξ̂2(n) =

∏n
m=1 q

n(m− 1,m)
∏n−1

m=1 q
n(m,m− 1)

(

E(n, 0)πn(0)

qn(n, n− 1)
−

E(n, 1)πn−1(0)

qn−1(n, n− 1)

)

.

We recall that qn−1(n, n− 1) = µ+ θ′ + θ(n− 1) and qn(n, n− 1) = θn, which together with (42)
give, after some calculations,

ξ̂2(n) =

n
∏

m=1

qn(m− 1,m)

qn(m,m− 1)

θn

qn−1(n, n− 1)

(

(E(n, 0)− E(n, 1))πn(0) +O

(

nP−1

n!

))

+ πn(n)(µ+ θ′ − θ)
E(n, 0)

qn−1(n, n− 1)
.
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Since for large values of n
n
∏

m=1

qn(m− 1,m)

qn(m,m− 1)

θn

qn−1(n, n− 1)
· O

(

nP−1

n!

)

⊂ O

(

nP−1

(n!)2

)

⊂ o(1),

we conclude that

ξ2(n) =
πn(n)

qn−1(n, n− 1)

(

θn(E(n, 0)− E(n, 1)) + (µ+ θ′ − θ)E(n, 0)

)

+ o(1). (46)

Finally, we compute ξ̂3(n) :=
∑∞

i=n+1E(i, 1)(πn(i)− πn−1(i)). From (44) we see that

ξ̂3(n) =
µ+ θ′ − θ

qn−1(n, n− 1)

∞
∑

i=n+1

E(i, 1)πn(i) +
∞
∑

i=n+1

E(i, 1) · O

(

1

i!n!n

)

.

Since for large values of n
∞
∑

i=n+1

E(i, 1) · O

(

1

i!n!n

)

⊂ O

(

nP−1

i!n!

)

⊂ o(1),

we obtain

ξ3(n) =
µ+ θ′ − θ

qn−1(n, n− 1)

∞
∑

i=n+1

E(i, 1)πn(i) + o(1). (47)

Now using ξ1 ∈ o(1), the expression of ξ2(n) in (46) and (47) and letting n be large, we see that

ξ1(n)

πn(n)
∈ o(1),

and,

ξ2(n)

πn(n)
=

θn(E(n, 0)− E(n, 1))

µ+ θ′ + θ(n− 1)
+

(µ+ θ′ − θ)E(n, 0)

µ+ θ′ + θ(n− 1)
+ o(1)

= E(n, 0)− E(n, 1) +
(µ+ θ′ − θ)

θn
E(n, 0) + o(1)

= E(n, 0)− E(n, 1) +
(µ+ θ′ − θ)

θ

Q
∑

j=1

E(P,j)nj−1 + o(1),

and

ξ3(n)

πn(n)
=

µ+ θ′ − θ

µ+ θ′ + θ(n− 1)
·

∞
∑

i=n+1

E(i, 1)
i
∏

m=n+1

λ

µ+ θ′ + θ(m− 1)
+ o(1)

=
µ+ θ′ − θ

θn

∞
∑

i=n+1

P
∑

j=0

C(P,j)ij
(

λ

θm

)i−n

+ o(1).

Substituting the expressions for ξ1(n)/π
n(n), ξ2(n)/π

n(n) and ξ3(n)/π
n(n) in Equation (45), we

obtain

W c(n) = (E(n, 0)− E(n, 1)) + (µ+ θ′ − θ)/θ

×





Q
∑

j=1

E(Q,j)nj−1 +
P
∑

i=2

C(P,i)
i−2
∑

j=0

ni−2−j

(

λ

θ

)j+1


+ o(1),

that is, the expression in Equation (19). E(n, a) being non-decreasing together with Condition 3
implies that W c is non-decreasing, and hence W∞ as well, which concludes the proof.
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E Proof of Propostion 6

For ease of notation we drop the dependency on k throughout the proof.
Before computing Whittle’s index as λ → 0 let us simplify the expression in (15) by noting that

the penalties for abandonments are only incurred linearly and therefore, by Proposition 4 we can
decompose (15) into d(µ+ θ′)− d′θ′ +W c(n), where W c(n) corresponds to the holding costs only.
W c(n) can be written as follows

W c(n) =
ξ1(n) + ξ2(n) + ξ3(n)

πn(n) +
∑n−1

m=0(π
n(m)− πn−1(m))

(48)

with

ξ1(n) :=
n−1
∑

m=0

C(m, 0)(πn(m)− πn−1(m)),

ξ2(n) := C(n, 0)πn(n)− C(n, 1)πn−1(n),

ξ3(n) :=

∞
∑

m=n+1

C(m, 1)(πn(m)− πn−1(m)).

The following observations on the transition rates will be used throughout the proof. Assuming
m ≥ 1:

qn(m,m− 1) = qn−1(m,m− 1), ∀m 6= n, (49)

qn(m− 1,m) = qn−1(m− 1,m) = λ, ∀m, n. (50)

Let us first compute limλ→0 π
n−1(0)/πn(0), since this result will be used later in the proof. Recall

the expression of the steady-state probabilities as defined in (12). Using this together with (49)
and (50) we obtain

lim
λ→0

πn−1(0)

πn(0)
= lim

λ→0

∑∞
m=0

λm
∏m

i=1 q
n(i,i−1)

∑∞
m=0

λm
∏m

i=1 q
n−1(i,i−1)

= 1 + lim
λ→0

∑∞
m=n

λm
∏m

i=1 q
n(i,i−1)

−
∑∞

m=n
λm

∏m
i=1 q

n−1(i,i−1)
∑∞

m=0
λm

∏m
i=1 q

n−1(i,i−1)

= 1 + lim
λ→0

∑∞
m=n

(

λm(µ+θ′+θ(n−1))
θn

∏m
i=1 q

n−1(i,i−1)
− λmθn

θn
∏m

i=1 q
n−1(i,i−1)

)

∑∞
m=0

λm
∏m

i=1 q
n−1(i,i−1)

= 1 +
(µ+ θ′ − θ)

θn
· lim
λ→0

O(λn)

1 +O(λ)
= 1.

(51)

From this last result we observe the following

lim
λ→0

λn/(θnn!)

1− πn−1(0)/πn(0)
= lim

λ→0

λn/(θnn!)

− (µ+θ′−θ)
θn

(

λn

(µ+θ′+θ(n−1))θn−1(n−1)!
+O(λn+1)

1+O(λ)

)

= lim
λ→0

−
µ+ θ′ + θ(n− 1)

µ+ θ′ − θ
+ o(1) = −

µ+ θ′ + θ(n− 1)

µ+ θ′ − θ
. (52)

Let us now consider the first term in (48), that is,

∑n−1
m=0C(m, 0)(πn(m)− πn−1(m))
∑n

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)
=

∑n−1
m=0C(m, 0)

∏m
i=1

qn(i−1,i)
qn(i,i−1)(π

n(0)− πn−1(0))

πn(n) +
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)(π

n(0)− πn−1(0))

=

∑n−1
m=0C(m, 0)

∏m
i=1

qn(i−1,i)
qn(i,i−1)

πn(n)
πn(0)−πn−1(0)

+
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)

=

∑n−1
m=0C(m, 0) λm

∏m
i=1 q

n(i,i−1)

λn/(θnn!)
1−πn−1(0)/πn(0)

+
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)

. (53)
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where in the first inequality we used the conditions (49) and (50). In order to obtain the limit
of (53) as λ → 0 we substitute the result obtained in (52), and we obtain the following

lim
λ→0

ξ1(n)
∑n

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)
= lim

λ→0

∑n−1
m=0C(m, 0) λm

∏m
i=1 q

n(i,i−1)

λn/(θnn!)
1−πn−1(0)/πn(0)

+
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)

= lim
λ→0

C(0, 0) +O(λ)

−µ+θ′+θ(n−1)
µ+θ′−θ + 1 +O(λ)

= −C(0, 0)
(µ+ θ′ − θ)

θn
. (54)

Let us now consider the second term in (48), that is,

C(n, 0)πn(n)− C(n, 1)πn−1(n)

πn(n) +
∑n−1

m=0 π
n(n)−

∑n−1
m=0 π

n(n− 1)
=

C(n, 0)− C(n, 1)π
n−1(n)
πn(n)

1 + 1
πn(n)(π

n(0)− πn−1(0))
∑n−1

m=0
λm

θmm!

=
C(n, 0)− C(n, 1) θnπn−1(0)

(µ+θ′+θ(n−1))πn(0)

1 + θnn!
λn (1− πn−1(0)/πn(0))

∑n−1
m=0

λm

θmm!

. (55)

Substituting the results obtained in (51) and (52) in the expression of Equation (55) we obtain

lim
λ→0

ξ2(n)
∑n

m=0 π
n(n)−

∑n−1
m=0 π

n−1(m)
= lim

λ→0

C(n, 0)− C(n, 1)
(

θn
µ+θ′+θ(n−1)

)

(1 +O(λn))

1− µ+θ′−θ
µ+θ′+θ(n−1)(1 +O(λ))

= lim
λ→0

C(n, 0)(µ+ θ′ + θ(n− 1))− C(n, 1)θn+O(λn)

θn(1 +O(λ))

= C(n, 0)− C(n, 1) + C(n, 0)
(µ+ θ′ − θ)

θn
+O(λ). (56)

To conclude the proof we need to analyze the third term in (48), that is,

∑∞
m=n+1C(m, 1)πn(m)−

∑∞
m=n+1C(m, 1)πn−1(m)

πn(n) +
∑n−1

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)

=
λn
∑∞

m=n+1
λm−n

∏n−1
i=1 qn(i,i−1)

∏m
i=n+1 q

n(i,i−1)

(

πn(0)
qn(n,n−1) −

πn−1(0)
qn−1(n,n−1)

)

λn
(

πn(0)
θnn! + 1

λn (πn(0)− πn−1(0))
∑n−1

m=0
λm

m!θm

)

=

∑∞
m=n+1

λm−n
∏m

i=n+1 q
n(i,i−1)

(

1− θnπn−1(0)
(µ+θ′+θ(n−1))πn(0)

)

(

1 + θnn!
λn

(

1− πn−1(0)
πn(0)

)

∑n−1
m=0

λm

m!θm

) .

In the last expression we substitute the results obtained in (51) and (52), and we show that

lim
λ→0

ξ3(n)
∑n

m=0 π
n(n)−

∑n−1
m=0 π

n−1(m)
= lim

λ→0

∑∞
m=n+1

λm−n
∏m

i=n+1 q
n(i,i−1)

(

1− θnπn−1(0)
(µ+θ′+θ(n−1))πn(0)

)

(

1 + θnn!
λn

(

1− πn−1(0)
πn(0)

)

∑n−1
m=0

λm

m!θm

)

= lim
λ→0

∑∞
m=n+1

λm−n
∏m

i=n+1 q
n(i,i−1)

(

1− θn
µ+θ′+θ(n−1) (1 +O(λn))

)

(

1−
(

µ+θ′−θ
µ+θ′+θ(n−1) +O(λ)

)

∑n−1
m=0

λm

m!θm

) = lim
λ→0

O(λ)
θn

µ+θ′+θ(n−1) +O(λ)
= 0.

(57)
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We now substitute the results obtained in Equations (54), (56) and (57) in limλ→0W
c(n), and we

obtain

lim
λ→0

W c(n) = C(n, 0)− C(n, 1) +
(µ+ θ′ − θ)

θn
(C(n, 0)− C(0, 0)).

Which after adding the subindex k concludes the proof.

F Proof of Proposition 7

For ease of notation we drop the dependency on k throughout the proof.
We assume that the state space is truncated by the parameter L and we let the arrival rates

be smoothed, that is, qn(m − 1,m) = λ
(

1− m
L

)+
for all 0 < m ≤ L. We further define λ̃(m) =

λm
(

1− 1
L

)

· . . . ·
(

1− m−1
L

)+
. We therefore want to compute limλ→∞W (n) for all n ≤ L.

Let us compute the expression of (15) as λ → ∞, and note that W (n) can be written as follows

W (n) =
ξ1(n) + ξ2(n) + ξ3(n)

πn(n) +
∑n−1

m=0(π
n(m)− πn−1(m))

(58)

with

ξ1(n) :=
n−1
∑

m=0

C̃(m, 0)(πn(m)− πn−1(m)),

ξ2(n) := C̃(n, 0)πn(n)− C̃(n, 1)πn−1(n),

ξ3(n) :=

L
∑

m=n+1

C̃(m, 1)(πn(m)− πn−1(m)),

where ξ3(n) only exists for n < L. The following observations on the transition rates will be used
throughout the proof. Assuming m ≥ 1:

qn(m,m− 1) = qn−1(m,m− 1), ∀m 6= n, (59)

qn(m− 1,m) = qn−1(m− 1,m) = λ
(

1−
m

L

)+
, ∀m < L, n < L+ 1. (60)

Moreover, from (12) we obtain for all n < L+ 1

πn(m) =
λm
(

1− 1
L

)

· . . . ·
(

1− m−1
L

)

θnn!
∏m

i=n+1(µ+ θ′ + θ(i− 1))
πn(0), if m > n, and

πn(m) =
λm
(

1− 1
L

)

· . . . ·
(

1− m−1
L

)

θmm!
πn(0), if 0 < m ≤ n,

where

πn(0) =
1

1 +
∑n

m=1

λm(1− 1
L)·...·(1−

m−1
L )

θmm! +
∑L

m=n+1

λm(1− 1
L)·...·(1−

m−1
L )

θnn!
∏m

i=n+1(µ+θ′+θ(i−1))

.

Having obtained the steady-state probabilities for the truncated system (with smoothed arrival
rates) we can compute limλ→∞ πn−1(0)/πn−1(0), which will be used later in the proof, in the
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following way

lim
λ→∞

πn−1(0)

πn(0)

= lim
λ→∞

∑L
m=0

λ̃(m)∏m
i=1 q

n(i,i−1)

∑L
m=0

λ̃(m)∏m
i=1 q

n−1(i,i−1)

= lim
λ→∞



1 +

∑L
m=n

λ̃(m)∏m
i=1 q

n(i,i−1)
−
∑L

m=n
λ̃(m)∏m

i=1 q
n−1(i,i−1)

∑L
m=0

λ̃(m)∏m
i=1 q

n−1(i,i−1)





= 1 +
(µ+ θ′ − θ)

θn
· lim
λ→∞

∑L
m=n

λ̃(m)∏m
i=1 q

n−1(i,i−1)

∑L
m=0

λ̃(m)∏m
i=1 q

n−1(i,i−1)

= 1 +
(µ+ θ′ − θ)

θn
· lim
λ→∞

1

O(λn−1−L) + 1
=

µ+ θ′ + θ(n− 1)

θn
. (61)

From (61) we also deduce that

lim
λ→∞

(

1−
θn

µ+ θ′ − θ(n− 1)

πn−1(0)

πn(0)

)

= lim
λ→∞

µ+ θ′ − θ

µ+ θ′ − θ(n− 1)
O(λn−1−L) = 0. (62)

Having computed these expressions we can now compute (58) as λ → ∞. Let us start by computing
the first term, that is, the term that corresponds to ξ1(n). We have

∑n−1
m=0 C̃(m, 0)(πn(m)− πn−1(m))
∑n

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)
=

∑n−1
m=0 C̃(m, 0)

∏m
i=1

qn(i−1,i)
qn(i,i−1)(π

n(0)− πn−1(0))

πn(n) +
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)(π

n(0)− πn−1(0))

=

∑n−1
m=0 C̃(m, 0) λ̃(m)∏m

i=1 q
n(i,i−1)

λ̃(n)/(θnn!)
1−πn−1(0)/πn(0)

+
∑n−1

m=0
λ̃(m)∏m

i=1 q
n(i,i−1)

. (63)

From (61) and (63) we observe that

lim
λ→∞

ξ1(n)
∑n

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)
= lim

λ↑∞

O(λn−1)

O(λn)
= 0.

We are now interested in computing the second term in (58) as λ → ∞. Using (61) and (62) we
obtain

lim
λ→∞

ξ2(n)
∑n

m=0 π
n(n)−

∑n−1
m=0 π

n−1(m)
= lim

λ→∞

C̃(n, 0)− C̃(n, 1)π
n−1(n)
πn(n)

1 + πn(0)−πn−1(0)
πn(n)

∑n−1
m=0

λ̃(m)
m!θm

= lim
λ→∞

C̃(n, 0)− C̃(n, 1) θn
µ+θ′+θ(n−1)

πn−1(0)
πn(0)

1 + 1−πn−1(0)/πn(0)

λ̃(n)/(θnn!)

∑n−1
m=0

λ̃(m)
m!θm

= C̃(n, 0)− C̃(n, 1).
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We are left with the third term in (58), that is,

lim
λ→∞

ξ3(n)
∑n

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)

= lim
λ→∞

∑L
m=n+1 C̃(m, 1) λ̃(m)

∏n−1
i=1 qn(i,i−1)

∏m
i=n+1 q

n(i,i−1)

(

πn(0)
θn − πn−1(0)

µ+θ′+θ(n−1)

)

πn(n) + (πn(0)− πn−1(0))
∑n−1

m=0
λ̃(m)
m!θm

= lim
λ→∞

∑L
m=n+1 C̃(m, 1) λ̃(m)∏m

i=1 q
n(i,i−1)

(

1− πn−1(0)θn
πn(0)(µ+θ′+θ(n−1))

)

λ̃(n)/(θnn!) + (1− πn−1(0)/πn(0))
∑n−1

m=0
λ̃(m)
m!θm

= lim
λ→∞

∑L
m=n+1 C̃(m, 1) λ̃(m)/λ̃(n)∏m

i=n+1 q
n(i,i−1)

(

1− πn−1(0)θn
πn(0)(µ+θ′+θ(n−1))

)

1 + θnn!
λ̃(n)

(1− πn−1(0)/πn(0))
∑n−1

m=0
λ̃(m)
m!θm

= lim
λ→∞

C̃(L, 1)O(λL−n) · O(λn−1−L)

1 +O(λ−1)
= 0.

Where in the last equality we used the result obtained in (62) as well as the fact that

lim
λ→∞

λ̃(L)

λ̃(n)
= lim

λ→∞

λL(1− 1/L) · . . . · (1− (L− 1)/L)

λn(1− 1/L) · . . . · (1− (n− 1)/L)
= lim

λ→∞
O(λL−n).

Hence,
lim
λ→∞

W (n) = C̃(n, 0)− C̃(n, 1).

After adding the subscript k the proof concludes.

G Proof of Proposition 8

For ease of notation, we omit the class index k in the proof.
Since d′ = d = 0, θ′ = θ and Ck(nk, a) = Ck(nk), we can write C̃k(nk, a) = Ck(nk). Hence, we

are interested in the following limit

lim
θ→0

θW (n) = lim
θ→0

θ
∑∞

m=0C(m)
(

πn(m)− πn−1(m)
)

∑n−1
m=1 (π

n(m)− πn−1(m)) + πn(n)

= ε1(n)ε2(n),

with

ε1(n) = lim
θ→0

θ
∑n−1

m=1 (π
n(m)− πn−1(m)) + πn(n)

,

and

ε2(n) = lim
θ→0

∞
∑

m=0

C(m)
(

πn(m)− πn−1(m)
)

.

Consider ε2(n). We have

πn(0)− πn−1(0)
θ→0
−−−→ 0.

hence
πn(m)− πn−1(m)

θ→0
−−−→ 0, ∀m < n− 1,

πn(n− 1)− πn−1(n− 1)
θ→0
−−−→ (ρ− 1),
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and
πn(m)− πn−1(m)

θ→0
−−−→ ρm−n(1− ρ)2, ∀m ≥ n.

This gives,

ε2(n) = −C(n− 1)(1− ρ) +
(1− ρ)

ρ

∞
∑

m=n

C(m)(1− ρ)ρm−n+1

=
(1− ρ)

ρ
(−C(n− 1) +

∞
∑

m=0

C(m+ n− 1)(1− ρ)ρm).

After some algebra and using that

(

θ

λ

)n

(n)!(πn(0))−1 θ→0
−−−→ (1− ρ)−1,

we obtain ε1(n) = 1/µ. This concludes the proof.

H Proof of Proposition 9 and Proposition 10

We will start by proving the result in Propostition 9 that corresponds to the light-traffic regime
and end up with the proof of Proposition 10 in the heavy-traffic regime.

Light traffic. We first assume there exists a k such that Ck(0, 1) > 0. Let us consider that
W = 0, and from (22) we know that necessarily CREL(0) ≤ COPT . We also consider the policy
ū ∈ U that takes active action when the total number of customers in the system is 0, and is passive
otherwise. Note that policy ū does not take any scheduling decision. Since µk + θ′k ≥ θk, for all k,
the queue length under policy ū stochastically upper bounds any non-idling policy u ∈ U . Note that
under the assumption Ck(0, 0) ≥ Ck(0, 1), ∀k, it holds from (3) that, for all n, Ck(n, 0) ≥ Ck(n, 1),
which implies that Wk(n) is always positive, see Section 5. Hence, Whittle’s index policy (WI) is

non-idling, and it follows CWI ≤ Cū. We will now show that Cū−CREL(0)
COPT → 0 as λ → 0, which in

view of (22) implies the optimality of Whittle’s index policy.
We have Wk(0) = Ck(0, 0) − Ck(0, 1) ≥ 0, for all k. Hence, setting W = 0, it follows that for

every class REL(0) is the threshold policy with threshold −1, that is, every class always actives
for any state nk ≥ 0. Hence, under policy REL(0) the steady-state probabilities are given by (12)
with threshold n = −1. The birth rate is λk = λ · γk and the death rate is µk + θ′k + θk(mk − 1),
mk ≥ 1. It then follows that

CREL(0)(0) =

K
∑

k=1

∞
∑

m=0

Ck(m, 1)π−1
k (m) =

K
∑

k=1

Ck(0, 1)π
−1
k (0) +O(λ),

as λ ↓ 0. We have π−1
k (0) = (1 + λ γk

µk+θ′
k
+O(λ2))−1, hence CREL(0)(0) =

∑K
k=1Ck(0, 1) +O(λ).

Under policy ū ∈ U , every class k behaves as an M/M/∞ queue with arrival rate λγk and depar-

ture rate θknk. We then have Cū =
∑K

k=1Ck(0, 1)e
−λγk/θk +

∑K
k=1

∑∞
m=1Ck(m, 0) (λγk)

m

θm
k
m! e

−λγk/θk =
∑K

k=1Ck(0, 1) +O(λ).
Hence,

Cū − CREL(0)(0) = O(λ).
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We now note that in the limit λ → 0, COPT ≤ Cū = O(1). Together with (22), we thus conclude
that

lim
λ↓0

CWI − COPT

COPT
≤ lim

λ→0

Cū − CREL(0)(0)

COPT
= 0.

In case Ck(0, 1) = 0, for all k, we consider ū to be the policy that takes active action when the
total number of customers in the system is 0 or 1, and is passive otherwise. Similar calculations to
the above show that Cū − CREL(0)(0) = O(λ2) and COPT ≤ Cū = O(λ), which lead to the desired

result limλ↓0
CWI−COPT

COPT = 0.

Heavy traffic. Recall that k̄ was defined as k̄ = argmaxkW
HT
k (Lk).

First assume that WHT
k̄

(Lk̄) > 0. By definition, we have that WHT
k̄

(Lk̄) > WHT
j (Lj), for all j.

We can then find a W̄ > 0 such that WHT
k̄

(Lk̄) > W̄ and WHT
j (Lj) < W̄ , for all j 6= k̄. We recall

that REL(W̄ ), the optimal policy for the relaxed problem, serves every class whose current index
is larger than W̄ .

Since λ → ∞, for any admissible policy in the relaxed problem, the steady-state distribution
for class k tends to Lk with probability 1. It thus follows that the optimal relaxed policy REL(W̄ )
will only serve class k̄ as WHT

k̄
(Lk̄) > W̄ and WHT

j (Lj) < W̄ , for all j 6= k̄. In particular, since

with probability 1 class k̄ is in state Lk, it follows that constraint (7) is satisfied with equality, and
from (8) it thus follows that

lim
λ↑∞

(CREL(W̄ )(W̄ )− CREL(W̄ )) = 0.

Since in the limit, REL(W̄ ) will only serve class k̄ with probability 1, it becomes feasible for
the original problem, i.e., REL(W̄ ) ∈ U as λ → ∞, and hence equivalent to Whittle’s index policy.
Therefore limλ→∞(CREL(W̄ ) = CWI). In view of (22) the latter directly implies

lim
λ→∞

(CWI − COPT ) = 0.

Now assume that WHT
k̄

(Lk̄) < 0, for all k. Hence, for all λ large enough we have WLk

k (n) < 0
for n ≤ Lk and for all k. Setting W = 0, the optimal relaxed policy REL(0) will hence never serve
any class, for λ large enough, hence, it is admissible, i.e., REL(0) ∈ U . This implies by case (i)
that Whittle’s index policy is optimal for large enough λ.

I Proof of Proposition 11

Throughout the proof we drop the dependency on k.
We first prove that w(1), w(2) and w(3) are non-decreasing and continuous functions. For that

recall that the holding cost functions C(m, a) are convex and non-decreasing, hence (C(m, a) −
C(m′, a))/(m − m′) is non-decreasing in m and m′, for m ≥ m′. The latter directly implies that
functions w(1) and w(3) under the assumption µ+ θ′ ≥ θ are non-decreasing. To prove that w(2) is
also non-decreasing, let us prove that dw(2)(m)/dm > 0 for all max(0, λ/(µ+ θ′ − θ)) ≤ m ≤ λ/θ.
We write

dw(2)(m)

dm
=2

(

dC(m, 0)

dm
−

dC(m, 1)

dm

)

+
(λ− θm)

θ

d2C(m, 1)

dm2
+

(θm+ µ+ θ′ − θ − λ)

θ

d2C(m, 0)

dm2
.

The first term is positive because of Equation (23). Convexity of C(·, ·) implies that the second
and the third terms are positive in the interval [max(0, λ/(µ+ θ′ − θ)), λ/θ]. This implies that the
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function w(2) is also non-decreasing in m. Continuity of w(1), w(2) and w(3) follows from the fact
that

lim
m↑(λ−(µ+θ′−θ))/θ

C
(

λ−(µ+θ′−θ)
θ , 1

)

− C(m, 1)

(λ− (µ+ θ′ − θ))/θ −m
=

dC(m, 1)

dm
,

hence limm↑(λ−(µ+θ′−θ))/θ w
(1)(m) = w(2)((λ− (µ+ θ′ − θ))/θ), and

lim
m↓λ/θ

C(m, 0)− C(λ/θ, 0)

m− λ/θ
=

dC(m, 0)

dm
,

hence limm↓λ/θ w
(3)(m) = w(2)(λ/θ).

Having proved that w(·) is non-decreasing and continuous, we are left to prove that the optimal
control for problem (26) is s∗(t) = 1 when W < w(m(t)) and s∗(t) = 0 when W ≥ w(m(t)). In
order to do so, we start by characterizing the optimal equilibrium point. Recall that an equilibrium
point (m̄, s̄) of dm(t)

dt is such that

0 = λ− (µ+ θ′ − θ)s̄− θm̄,

with s̄ ∈ [0,min{1, λ
µ+θ′−θ}] and m̄ = (λ − s̄(µ + θ′ − θ))/θ, hence m̄ ∈ [max(0, (λ − (µ + θ′ −

θ))/θ), λ/θ]. The optimal equilibrium point (m∗, s∗) minimizes EC(s̄,W ). We first prove that

EC(s̄,W ) is a convex function in s̄ ∈ [0,min{1, λ
µ+θ′−θ}], by checking that d

ds̄

(

dEC(s̄,W )
ds̄

)

> 0.

After some algebra, we obtain that

d

ds̄

(

dEC(s̄,W )

ds̄

)

=
(µ+ θ′ − θ)

θ

(

dC̃(m̄, 0)

dm̄
−

dC̃(m̄, 1)

dm̄

)

+
(µ+ θ′ − θ)

θ

(

d2C̃(m̄, 0)

dm2

(−λ+ (µ+ θ′ − θ) + θm̄)

θ
+

d2C̃(m̄, 1)

dm2

(λ− θm̄)

θ

)

> 0.

The inequality follows from m̄ ∈ [(λ− (µ+ θ′ − θ))/θ, λ/θ], µ+ θ′ ≥ θ and convexity of C(·, ·).
Having proved convexity of EC(s̄,W ), we can distinguish the following three cases:

(1) the optimal equilibrium point is given by s∗ = min{1, λ
µ+θ′−θ} (hence dEC(s̄,W )

ds̄ ≤ 0 for all
feasible s̄).

(2) the optimal equilibrium point s∗ is such that dEC(s∗,W )
ds∗ = 0 and s∗ ∈ [0,min{1, λ

µ+θ′−θ}].

(3) the optimal equilibrium point is given by s∗ = 0 (hence dEC(s̄,W )
ds̄ ≥ 0 for all feasible s̄),

In which of the three cases we are will depend on the value of W . The cost in equilibrium is given
by EC∗(W ) = (1− s∗)(C̃(m∗, 0)−W ) + s∗C̃(m∗, 1).

Since the control s(·), is such that s(t) ∈ {0, 1} for all t, a sufficient condition for a solution to
be bias optimal is to satisfy the Hamilton-Jacobi-Bellman (HJB) equation, [10], when comparing
the passive and active actions. That is,

0 = min{J0(m,W ),J1(m,W )}, for all m, (64)
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where

J0(m,W ) = C(m, 0)−W − EC∗(W ) + (λ− θm)
∂J(m,W )

∂m
,

J1(m,W ) = C(m, 1)− EC∗(W ) + (λ− (µ+ θ′ − θ)− θm)
∂J(m,W )

∂m
,

and

J(m(0),W ) := min
s(t)∈{0,1}

∫ ∞

0

(

C̃(m(t), s(t))−W (1− s(t))− EC∗(W )
)

dt (65)

is the minimum bias cost. From (64) we have that that the active action is optimal if J1(m,W ) = 0
and J0(m,W ) ≥ 0. That is, the active action is optimal if

0 = J1(m,W ) ⇐⇒
∂J(m,W )

∂m
=

C̃(m, 1)− EC∗(W )

µ+ θ′ − θ + θm− λ
,

and

0 ≤ J0(m,W ) ⇐⇒ W ≤ C̃(m, 0)− C̃(m, 1) +
(µ+ θ′ − θ)

θ

(C̃(m, 1)− EC∗(W ))
λ−(µ+θ′−θ)

θ −m
, (66)

Similarly, the passive action is optimal if

0 = J0(m,W ) ⇐⇒
∂J(m,W )

∂m
=

C̃(m, 0)−W − EC∗(W )

θm− λ
,

and

0 ≤ J1(m,W ) ⇐⇒ W ≥ C̃(m, 0)− C̃(m, 1) +
(µ+ θ′ − θ)

θ

(C̃(m, 1)− EC∗(W ))
λ−(µ+θ′−θ)

θ −m
. (67)

For a given W , the point EC∗(W ) is fixed. Convexity of C(·, ·) hence implies that C̃(m, 0) −

C̃(m, 1) + (µ+θ′−θ)
θ

(C̃(m,1)−EC∗(W ))
λ−(µ+θ′−θ)

θ
−m

is a non-decreasing function. To prove the latter we show that

its first derivative with respect to m is positive, that is,

dC̃(m, 0)

dm
−

dC̃(m, 1)

dm
+

(µ+ θ′ − θ)

λ− (µ+ θ′ − θ)− θm

(

dC̃(m, 1)

dm
−

EC∗(W )− C̃(m, 1)
λ−(µ+θ′−θ)

θ −m

)

>
dC̃(m, 0)

dm
−

dC̃(m, 1)

dm
> 0.

In the first inequality we used convexity of C̃(·, ·), and therefore dC̃(m, 1)/dm ≥ (EC∗(W ) −
C̃(m, 1))/((λ−(µ+θ′−θ))/θ−m) for all m ≤ (λ−(µ+θ′−θ))/θ, and dC̃(m, 1)/dm < (EC∗(W )−
C̃(m, 1))/((λ− (µ+ θ′ − θ))/θ −m) for all m > (λ− (µ+ θ′ − θ))/θ, and in the second inequality
we used Equation (23).

Therefore, from Conditions (66) and (67) we have that if for a given W it is optimal to be active
in m, then for m′ > m the active action is optimal as well.

We can now characterize bias optimal policies for the three case. We start with case (3), hence
W is such that s∗ = 0, m∗ = λ/θ and EC∗(W ) = C̃(λ/θ, 0)−W . In that case, C̃(m, 0)− C̃(m, 1)+
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(µ+θ′−θ)
θ

(C̃(m,1)−EC∗)
λ−(µ+θ′−θ)

θ
−m

simplifies to w(m) = C̃(m, 0)− C̃(m, 1)+w(3)(m). Hence, it is optimal to be

active (passive) in state m when W ≤ (≥)w(m).
For case (1) we obtain similarly that it is optimal to be active (passive) in state m when

W ≤ (≥)w(m) = C̃(m, 0)− C̃(m, 1) + w(1)(m).

We now consider case (2). Rewriting dEC(s̄,W )
ds̄ , we obtain

dEC(s̄,W )

ds̄
=C̃(m̄, 1)− C̃(m̄, 0) +W + (1− s̄)

d

ds̄
C̃(m̄, 0) + s̄

d

ds̄
C̃(m̄, 1)

=C̃(m̄, 1)− C̃(m̄, 0) +W + (1− s̄)
d

dm̄
C̃(m̄, 0)

dm̄

ds̄
+ s̄

d

dm̄
C̃(m̄, 1)

dm̄

ds̄
.

In equilibrium we have 0 = λ − (µ + θ′ − θ)s̄ − θm̄, that is, m̄ = λ−(µ+θ′−θ)s̄
θ . Hence, dm̄/ds̄ =

−(µ+ θ′ − θ)/θ, s̄ = λ−θm̄
µ+θ′−θ and (1− s̄) = −λ−(µ+θ′)−θ(m̄−1)

µ+θ′−θ . Therefore,

dEC(s̄,W )

ds̄
=C̃(m̄, 1)− C̃(m̄, 0) +W

+

(

λ− (µ+ θ′)− θ(m̄− 1)

θ

)

d

dm̄
C̃(m̄, 0)−

λ− θm̄

θ

d

dm̄
C̃(m̄, 1). (68)

From (68), we obtain that when we are in case (1), EC(s̄,W )

ds̄
= 0 can equivalently be written as

W = C(m∗, 0)− C(m∗, 1) + d(µ+ θ′)− d′θ′ + w(2)(m∗). (69)

Hence, given that the optimal equilibrium point is m∗ as in case (1), the subsidy W is given by the
above formula.

Using that EC∗(W ) = (C̃(m∗, 0) − W )(1 − s∗) + C̃(m∗, 1)s∗, we obtain from Equations (66)
and (67) that the active (passive) action is optimal if

Wθ(m∗ −m) ≤ (≥)(λ− θm∗)C̃(m∗, 1)− (λ− θm)C̃(m, 1)− (θ(m− 1) + (µ+ θ′)− λ)C̃(m, 0)

+ (µ+ θ′ + θ(m∗ − 1)− λ)C̃(m∗, 0),

which after some algebra gives

W ≤ (≥)C̃(m, 0)− C̃(m, 1) +
(λ− θm∗)

θ

(C̃(m, 1)− C̃(m∗, 1))

m−m∗

+
(µ+ θ′ + θ(m∗ − 1)− λ)

θ

(C̃(m∗, 0)− C̃(m, 0))

m∗ −m
. (70)

Convexity of C(·, ·) implies that the RHS in a non-decreasing function, let us denote it by W̃ (m).
We are in case (2), hence W is given by (69). Now note that

lim
m→m∗

W̃ (m)

= C(m∗, 0)− C(m∗, 1) + d(µ+ θ′)− d′θ′ +
(µ+ θ′ − θ(m∗ − 1)− λ)dC(m∗,0)

dm∗

θ

(λ− θm∗)dC(m∗,1)
dm∗

θ

= C(m∗, 0)− C(m∗, 1) + d(µ+ θ′)− d′θ′ + w(2)(m∗) = W. (71)

Hence, for all m ≤ (>)m∗, we have W̃ (m) ≤ (>)C(m∗, 0)−C(m∗, 1)+d(µ+θ′)−d′θ′+w(2)(m∗) =
W . In other words, in states m ≤ (>)m∗ it is optimal to be active (passive).

It can now be easily verified that the threshold policy n, with n such that W = w(n), satisfies
the HJB equation for all m, by calculating the expression for ∂J(m,W )/∂m for this threshold
policy. Therefore, the optimal threshold n∗(W ) is such that W = w(n∗(W )).
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J Proof of Proposition 12

As nk → ∞, then the fluid index is given by wk(nk) = Ck(nk, 0) − C(nk, 1) + dk(µk + θ′k) −

d′kθ
′
k + w

(3)
k (nk). We have assumed that Ck(nk, a), a = 0, 1, are upper bounded by a polynomial

of degree Pk. Therefore, we can write Ck(nk, a) = Ek(nk, a) + o(1), for large values of nk, where

Ek(nk, 1) =
∑Pk

i=0C
(Pk,i)
k ni

k, with

C
(Pk,i)
k := lim

nk→∞

Ck(nk, 1)−
∑Pk

j=i+1C
(Pk,j)
k nj

k

ni
k

,

and Ek(nk, 0) =
∑Qk

i=0E
(Qk,i)
k ni

k, with

E
(Qk,i)
k := lim

nk→∞

Ck(nk, 0)−
∑Qk

j=i+1E
(Qk,j)
k nj

k

ni
k

,

Then, as nk → ∞, wk(nk) = w∞
k (nk) + o(1), where w∞

k (nk) = dk(µk + θ′k)− d′kθ
′
k +wc

k(nk) + o(1),
and

wc
k(nk) = E(nk, 0)− Ek(nk, 1) +

(µk + θ′k − θk)

θk

(Ek(nk, 0)− Ek(λk/θk, 0))

nk − λk/θk
.

Note that (Ek(nk, 0)−Ek(λk/θk, 0))/(nk−λk/θk) for large values of nk can equivalently be written
as

∑Qk

i=0E
(Qk,i)
k ni

k −
∑Qk

i=0E
(Qk,i)
k (λk/θk)

i

nk − λk/θk
=

Qk
∑

i=0

E
(Qk,i)
k

(ni
k − (λk/θk)

i)

nk − λk/θk
=

Qk
∑

i=2

E
(Qk,i)
k





i
∑

j=0

(

λk

θk

)j

ni−1−j
k





=
Ek(nk, 0)

nk
+

E
(Qk,1)
k

(

λk

θk

)

+ E
(Qk,2)
k

(

λk

θk

)2
+ . . .+ E

(Qk,Qk)
k

(

λk

θk

)Qk

nk
+

Qk
∑

i=2

E
(Qk,i)
k

i−2
∑

j=0

ni−2−j
k

(

λk

θk

)j+1

=
Ek(nk, 0)

nk
+

Qk
∑

i=2

E
(Qk,i)
k

i−2
∑

j=0

ni−2−j
k

(

λk

θk

)j+1

+ o(1). (72)

We then compute limnk→∞Wk(nk)/wk(nk), which by the result in (19) is equivalent to

lim
nk→∞

Wk(nk)

wk(nk)
= lim

nk→∞

W∞
k (nk) + o(1)

w∞
k (nk) + o(1)

= lim
nk→∞

dk(µk + θ′k)− d′kθ
′
k +W c

k (nk) + o(1)

dk(µk + θ′k)− d′kθ
′
k + wc

k(nk) + o(1)

= lim
nk→∞

Ek(nk, 0)− Ek(nk, 1) +
(µk+θ′

k
−θk)

θk

(

Ek(nk,0)
nk

+
∑Pk

i=2C
(Pk,i)
k

∑i−2
j=0 n

i−2−j
k

(

λk

θk

)j+1
)

+O(1)

Ek(nk, 0)− Ek(nk, 1) +
(µk+θ′

k
−θk)

θk

(

Ek(nk,0)
nk

+
∑Qk

i=2E
(Qk,i)
k

∑i−2
j=0 n

i−2−j
k

(

λk

θk

)j+1
)

+O(1)

= 1 + o(1),

which follows from the fact that both in the denominator and numerator the highest term comes

from Ek(nk, 0)−Ek(nk, 1)+
(µk+θ′

k
−θk)

θ
Ek(nk,0)

nk
. This concludes the proof for the expression in (27).

Let us now obtain the expression in (28) with the extra assumptions Pk = Qk and C
(Pk,i)
k =

E
(Pk,i)
k for all i ∈ {2, . . . , Pk}. Observe that under this assumption we obtain from (72) that
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(Ek(nk, 0)− Ek(λk/θk, 0))/(nk − λk/θk), for large values of nk, can be written as

Ek(nk, 0)

nk
+

Pk
∑

i=2

C
(Pk,i)
k

i−2
∑

j=0

ni−2−j
k

(

λk

θk

)j+1

+ o(1),

and hence,

w∞
k (nk) =dk(µk + θ′k)− d′kθ

′
k + Ek(nk, 0)− Ek(nk, 1)

+
(µk + θ′k − θk)

θk

(

Ek(nk, 0)

nk
+

Pk
∑

i=2

C
(Pk,i)
k

i−2
∑

j=0

ni−2−j
k

(

λk

θk

)j+1)

+ o(1).

Then, by the result in (19) we have W∞
k (nk) = w∞

k (nk) + o(1), and hence Wk(nk) = wk(nk) + o(1)
for large values of nk which concludes the proof for (28).
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