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a b s t r a c t

With the development of decentralized power sources based on renewable energy, power grids need

smarter operations to be run properly. This paper investigates different procedures for the optimal

power dispatching of a grid-connected prosumer with an energy storage consisting in a high speed

flywheel. An off-line optimal scheduling for the day ahead aims at minimizing the cost with regards to

the daily energy rates and considering the forecasts for both consumption and production. That

dispatching is performed thanks to global optimization procedures based on a trust-region method or

on a niching genetic algorithm. Another approach using step by step optimization and exploiting an

original self-adaptive dynamic programming strategy is also developed. The paper discusses the

performance of all the considered methods with regards to the obtained results and the

computational time.
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1. Introduction

Global energy consumption has increased by 50% since the 90's
and is expected to keep going up with a ratio of 1.6% per year due
to the growing population on earth and the new needs that have
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emerged [1]. To face that increasing demand of electrical power in
compliance with the liberalization of the electricity market and
the need of reducing CO2 emissions, many distributed energy
resources have appeared and especially the generation systems
that utilize renewable energy sources. Thus, distribution networks
evolve towards more meshed structures, and they are likely to
become associations of a large number of “microgrids” combining
both consumption and production and interacting with the main
grid [2]. Due to the stochastic nature of those generations, it
requires smarter operations to keep feeding loads in a supply-on-
demand system. The improvements in storage technologies allow
those operations with a more flexible and reliable management of
energy [3]. Renewable energy sources associated with storage
units are then considered like active distributed generators, one of
the fundamental elements of the “Smart Grid” concept [4]. Adding
a storage device deeply questions the most widely used model
that consists in selling all the highly subsidized production at
important prices and buying the whole consumption. It also allows
the owners of microgrids to optimize the power exchanged with
the main grid in compliance with the electricity market and the
forecasts for the day ahead [5]. Thus, more and more methods
based on optimization algorithms are developed to perform the
optimal scheduling of power flows within the hybrid electrical
systems with load, production and storage [6,7]. In the microgrid
considered in this study, all the components are connected
through a DC bus (Fig. 1a) with the following data:

! Consumption: A building with a maximum contractual power
of 156 kW.

! Production: Solar PV arrays with a total capacity of 175 kWp.
! Storage: A 100 kW/100 kWh storage consisting in ten 10 kW/

10 kWh high speed flywheels.

In this paper, an off-line optimal power dispatching problem is
introduced with the aim of minimizing global energy cost, con-
sidering the forecasts for consumption and production and the
possible constraints imposed by the main grid operator. The
second section describes the power flow model used to represent
the system and the corresponding equations. Then, the next part
refers to the proposed optimization methods using an evolution-
ary algorithms or a trust region strategy that both consider the
global load consumption and the PV production over the day. A
step by step optimization based on basic Dynamic Programming

(DP) is also presented and an original self-adaptive DP is devel-
oped. Finally, some results performed with the various algorithms
are exposed and discussed, especially in terms of reliability,
efficiency and computational time.

2. Power flow model of the microgrid

2.1. Considered microgrid and constraints

Voltages and currents are not considered so far. The study
refers to the optimization of active power flows pi which appear to
be a widely used formulation for such a problem [8,9]. A nomen-
clature of all the used symbols is given in Table 1. Eleven power
flows are identified to entirely characterize the system at each
time step.

! p1: power flowing through the consumption meter
! p2: power flowing between the DC bus and the consumption

branch after the converter
! p3: power flowing between the DC bus and the consumption

branch before the converter
! p4: power flowing between the storage and the DC bus after the

converter
! p5: power flowing between the storage and the DC bus before

the converter
! p6: power flowing between the production branch and the rest

of the DC bus
! p7: effective solar production after the converter
! p8: effective solar production before the converter
! p9: derating of the solar production in case of microgrid

congestion (section 2.2)
! p10: power flowing through the production meter before the

converter
! p11: effective production sold

Due to the grid policy, three system constraints have to be
fulfilled at each time step t:

! Pp(t)Z0: the power cannot return to the grid through the
consumption meter.

! Ps(t)Z0: the main grid cannot feed the DC bus through the
production meter.

Fig. 1. Considered microgrid (a) and graph representation (b).



! Pprod_c(t)Z0: the storage cannot be discharged through the
production meter.

A particular attention is attached to the grid power Pgrid(t)
which should comply with requirements possibly set by the grid
operator Pgrid_min and Pgrid_max:

PgridðtÞ ¼ PpðtÞ%PsðtÞ ð1Þ

Pgrid_ minðtÞoPgridðtÞoPgrid_ maxðtÞ ð2Þ

2.2. Equations and degrees of freedom

Equations are generated using the graph theory and an inci-
dence list to describe the system with particular equations
corresponding to each type of node [10]. In Fig. 1b, the black
arrows between nodes represent sign conventions for power flows
while the possible directions (mono or bi-directional) are illu-
strated by the dotted arrows. Three degrees of freedom are
required to control the whole system (Fig. 1a):

! Pst(t): the power flowing from/to the storage unit
! Pprod_c(t): the power flowing from the solar PV arrays to the

common DC bus
! ΔPPV(t): denotes the possibility to decrease the solar PV

production (MPPT derating) in order to fulfill grid constraints,
in particular when the power supplier does not allow (or limits)
injection of the solar PV production to the main grid (Pgrid_min).
For instance, if the flywheels are fully charged while production
is greater than consumed energy and if no injection is allowed

to the grid, a part of the produced energy should be wasted to
fulfill the main grid constraints.

Those degrees of freedom being set from a management
process, all power flows in the microgrid can be expressed from
the consumption Pload(t) and production Pprod(t) and from the
input data, i.e. ηCVS,i (typically ηCVS,i ¼95%) the efficiency related to
the power converter corresponding to the node i. From the graph
representation, subsequent equations can be derived:

p1ðtÞ ¼ PloadðtÞ%p2ðtÞ ð3Þ

p2ðtÞ ¼ p3ðtÞþ 1%
1

ηCVS;3

 !

: maxð0; %p3ðtÞÞþðηCVS;3%1Þ: maxð0;p3ðtÞÞ

ð4Þ

p3ðtÞ ¼ p4ðtÞþp6ðtÞ ð5Þ

p4ðtÞ ¼ p5ðtÞþ 1%
1

ηCVS;5

 !

: maxð0; %p5ðtÞÞþðηCVS;5%1Þ: maxð0; p5ðtÞÞ ð6Þ

p7ðtÞ ¼ ηCVS;8:p8ðtÞ ð7Þ

p8ðtÞ ¼ PprodðtÞ%p9ðtÞ ð8Þ

p10ðtÞ ¼ p7ðtÞ%p6ðtÞ ð9Þ

p11ðtÞ ¼ ηCVS;11:p10ðtÞ ð10Þ

Note that in (4) and (6) the power flows through converters are
bidirectional. Two cases are identified depending on the direction
of the flows to determine how the corresponding converter
efficiency ηCVS,i has to be considered. That is performed using the
max function:

maxða; bÞ ¼ a if aZb

maxða; bÞ ¼ b if aob

(

ð11Þ

The next sections only refer to the flows Pp, Ps, Pgrid and the
degrees of freedom that are the truly interesting powers in term of
management.

2.3. Storage efficiency

The storage losses are computed versus the state of charge SOC

(in %) and the power Pst using a function Ploss(SOC) and calculating
the efficiency with a fourth degree polynomial interpolation
ηFS(Pst) as shown in (11). Interpolations are extracted from experi-
mental measurements provided by the manufacturer. Note that
due to confidentiality constraints, no additional information
related to quantitative data have been allowed to be provided.
Both Ploss and ηFS functions are also extracted from measurements
provided by the manufacturer. Another coefficient KFS (in kW) is
also introduced to estimate the self-discharge of the flywheels
when they are not used [11]. Once the overall efficiency is
computed, the true power PFS associated with the flywheel is
calculated as well as the SOC evolution using the maximum stored
energy EFS (here 100 kWh), the time step Δt (typically 1 h for the
off-line optimization) and the control reference p5.

PstðtÞo0-PFSðtÞ ¼ PstðtÞ & ηFSð%PstðtÞÞ

PstðtÞ40-PFSðtÞ ¼ PstðtÞ=ηFSðPstðtÞÞ

(

ð12Þ

Thus, when a power p5 is required from the storage (i.e. p540),
the actual power PFS including the flywheels losses is computed to
estimate the loss of stored energy that have to be decreased to the
discharge power. The same process is performed when p5 becomes
negative for storage charging. If no power flows from/to the
flywheels, the loss of stored energy is limited to the self-

Table 1

Nomenclature of the used symbols.

Pload Consumed power kW

Pprod solar PV production kW

pi power flows used to characterize the system (Section

2.1)

kW

Pp power flowing through the consumption meter kW

Ps power flowing through the production meter kW

Pst power flowing from/to the storage unit kW

PFS power flowing from/to the flywheel taking account of

device losses

kW

Pst_min,

Pst_max

lower and upper bounds for Pst kW

EFS maximum stored energy in the storage unit kWh

KFS self-discharge coefficient of the flywheels (Section 2.3) kWh/

h

ηFS flywheels efficiency depending on the exchanged power

Pst

–

SOC state of charge of the storage unit %

SOCmin,

SOCmax

lower and upper bounds for the SOC level %

SOCstart,

SOCend

initial and final daily values for the SOC level %

Pgrid power flowing between the main grid and the microgrid kW

Pgrid_min,

Pgrid_min

lower and upper bounds for Pgrid possibly set by the

power supplier

kW

ηCVS,i efficiency of the ith converter in the graph

representation (Fig. 1b)

-

ΔP%PV solar production derated in case of microgrid congestion

(Section 2.2)

kW

Cpurchase instantaneous cost for the purchased energy €/kWh

Csale instantaneous cost for the sold energy €/kWh

t time step h

Pref matrix with the scheduled controls for the degrees of

freedom

kW

C(Pref) daily cost to be minimized by the optimization

algorithm

€

Cnl vector with the non linear constraints of the

optimization problem

–



discharge coefficient:

PstðtÞa0-SOCðtþΔtÞ ¼ SOCðtÞ%PFS ðtÞ&Δt
EFS

& 100

PstðtÞ ¼ 0-SOCðtþΔtÞ ¼ SOCðtÞ%KFS&Δt
EFS

& 100

8

<

:

ð13Þ

The energy management strategy must ensure that both power
and energy bounds are fulfilled with regards to storage power
limits, i.e. Pst_min¼%100 kW and Pst_max¼100 kW. With a storage
assumed to be charged at SOCstart¼50% at the beginning of the
day, the solving procedures should fulfill both upper and lower
energy limits (i.e. SOCmin¼0% and SOCmax¼100%) while ensuring a
final value SOCend¼50%.

2.4. Input variables

The energy management strategy is based on consumption and
production forecasts similar to the example depicted in Fig. 2a. The
consumption profile is computed using measurements performed
on the microgrid site and the production forecast uses a geophy-
sical model considering among other the incidence and orienta-
tion of the solar PV arrays [12,13] as well some estimation of the
radiated energy on the microgrid site for the corresponding day.

The energy prices result from one of the fares proposed by the
French main energy supplier. The purchase cost Cpurchase has night
and daily values with 0.10 €/kWh from 10 p.m. to 6 a.m. and 0.17
€/kWh for the other time steps. An average fare of Csale¼0.10 €/kWh
is also considered for the production meter (Fig. 2b). Finally, an
additional grid power constraints is introduced with Pgrid_-

max¼0 kW between 7 p.m. and 10 p.m. with the aim of imposing
the microgrid autonomous operation during this period. Otherwise
the bounds are set to high values (typically 103 kW). Without
storage device and optimal management, all the consumption is
purchased from the grid while the PV production is sold. The
resulting cost for that initial situation (noted Init) is 28.39 €. If the
self-consumption of the production is considered, the generated
energy feds the loads and the surplus is sold. In that case (noted
SelfCons) the overall cost is of 5.82 €. Note that in both situations
the previous grid constraints cannot be fulfilled by the microgrid.

3. Optimal power dispatching problem

The problem consists in planning, for each hour of a 24h-
period, the best power dispatching that ensures the minimal
energy cost of the microgrid while complying with the grid
requirements. The decision variables computed in a vector Pref

are the degrees of freedom defined in the previous section

according to upper and lower bounds respectively computed in
vectors ub and lb.. Those bounds can be expressed using a vector
J24 composed of 24 values equal to one. With a time step of 1 h, the
total number of decision variables is 72.

Pref ¼ ½P5ðtÞ P6ðtÞ P9ðtÞ(with tA ½0::24 h(; noted

P¼ ½P5 P6 ΔP9(

lb ¼ ½Pst_min
:J24 0:J24 0:J24(

ub ¼ ½Pst_max
:J24 ηCVS;8:Pprod Pprod( ð14Þ

The overall cost to be optimized is the difference between the sold
and purchased energies during the day obtained by calculating the
flows Pp and Ps all along the simulated period (typically 24 h) for a
set of parameters Pref:

CðPref Þ ¼ ∑
24

t ¼ 0

CpurchaseðtÞUPpðtÞ%Csale UPsðtÞwith Δt ¼ 1 h ð15Þ

Some constraints in the microgrid are implicitly included in the
bounds previously defined. Additional constraints are added in
order to fulfill all power flow requirements defined in Section 2.
Eq. (16) allows controlling the powers though the meters that have
both to remain positive with the given convention and set the two
corresponding constraints CPp and CPs.

CPp ¼ ∑
24h

t ¼ 0

max ð0; %PpðtÞÞ
2

CPs ¼ ∑
24h

t ¼ 0

max ð0; %PsðtÞÞ
2

8

>

>

>

>

<

>

>

>

>

:

ð16Þ

The possible bounds set by the grid operator for Pgrid are
considered by summing all the overshoots. The negative and
positive deviations are computed in constraints CPgrid

% and CPgrid
þ .

CPþgrid ¼ ∑
24h

t ¼ 0

max ð0; PgridðtÞ%Pgrid_ maxðtÞÞ
2

CP%grid ¼ ∑
24h

t ¼ 0

max ð0; Pgrid_ minðtÞ%PgridðtÞÞ
2

8

>

>

>

>

<

>

>

>

>

:

ð17Þ

The three last limits refer to the use of the storage unit. Indeed
the SOC has to remain between its lower and upper bounds and
return at a given value at the end of the day (i.e. t¼24 h). The
corresponding constraints are noted CSOC% , CSOCþ and CSOCend.

CSOCend ¼ SOCð24hÞ%SOCend

CSOCþ ¼ ∑
24h

t ¼ 0

max ð0; SOCðtÞ%SOCmaxÞ
2

CSOC% ¼ ∑
24h

t ¼ 0

max ð0; SOCmin%SOCðtÞÞ2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð18Þ
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All those constraints are strongly nonlinear due to the bi-
directional characteristic of static converters and the flywheel
efficiency. They are computed in a vector Cnl that will be used in
the algorithms developed to optimize the energy management.

Cnl ¼ ½CPp CSOC% CSOCþ CSOCend CPþgrid CP%grid( ð19Þ

For all the constraints (except CSOCend), the returned value is
computed as the sum of the instantaneous violations determined
with the max function all along the day. For instance, considering
(16), if Ps(t) is negative, the instantaneous violation is expressed as
the square value of the power flow. Then, the overall correspond-
ing constraint for the dispatching problem is the sum of all
overshoots. The final optimal dispatching problem consisting in
managing the power flows for the day ahead with 1 h of time step
could be considered as a long term scheduling. In real time, a short
term scheduling (with a shorter sampling period) has to be run to
take account of the differences between the actual values and the
forecasts for the production and consumption [14]. At a lower
level, an efficient control loop has to be implemented to manage
the current/voltage references for the different converters accord-
ing to the values returned by the short term scheduling. Those two
last problems are not the aim of the paper but are crucial in the
field of smart microgrids [15].

4. Approaches for solving the optimal dispatching problem

4.1. Global optimization of power flows

The optimal dispatching in microgrids could be solved using
step by step decisions with rules based methods such as state
machine or fuzzy logic [16,17]. A great part of studies referring to
scheduling in such systems use algorithms that consider the whole
profiles and perform the global optimization of the mission for the
entire time horizon (here 24 h). For instance, linear programming
is often performed to control of the system on a large time scale
[9,18]. In this paper, three procedures are firstly investigated to
manage optimal scheduling considering the mission all along
the day.

The first optimization approach is a trust-region-reflective
algorithm [19]. That method aims at solving the problem by
approximating the objective function with a simpler quadratic
function in a trust-region area. From an initial starting solution,
the algorithm minimizes the cost while fulfilling all constraints
and returns the best solution Pref

n within the predefined bounds:

Pn

ref ¼ ½P
n

st Pn

prod_c ΔPn

PV( ¼ arg min
Pref

ðCðPrefÞÞwith Cnlr0 ð20Þ

The second method uses the clearing algorithm [20] a niching
genetic algorithm which preserves diversity in the population in
order to avoid premature convergence. The particle swarm

optimization method [21] is lastly used to solve the power
management scheduling [22]. For those metaheuristics, all con-
straints related to power flows are included in the cost function
with a classical exterior penalty approach. The algorithm returns
the best individual in the population (or in the particle swarm)
from a given number of iterations:

Pn

ref ¼ ½P
n

st Pn

prod_c ΔPn

PV( ¼ arg min
Pn

ref

CðPref Þþλ:∑
i

CnlðiÞ

 !

ð21Þ

where the penalty coefficient λ is set to 106 to ensure the
constraints fulfilment.

4.2. Global optimization with a sampled problem

4.2.1. Graph representation and Bellman–Ford algorithm

Just like the three methods previously exposed, the approach
presented in this section optimizes the whole mission (i.e. the
references for the degrees of freedom for the whole day). The problem
is here represented as a succession of possible discrete states
characterized by a time position t over one day and a state of charge
SOC [23] as shown in Fig. 3a. With both SOCstart and SOCend fixed in the
problem there is only one available state for the initial and final time
step. The mix of individual states taken for each time step returns a
SOC profile all along the day that corresponds to a given solution Pref
computed with all the instantaneous controls ensuring transitions
between the selected states. Finding the best solution Pref

n is equivalent
to estimating the shortest path in terms of cost from the initial state to
the final one. That is the base of the Dynamic Programming (DP)
approach as developed here.

The cost of a solution equals to the sum of all the individual
costs referring to the transitions between states. Thus, the
Dynamic Programming requires computing all the transitions
between the states situated at two successive time step (Fig. 3b).
Transition are studied with regard to the instantaneous cost that
depends on the values of the consumption and production as well
as the instantaneous references of the degrees of freedom. The
estimated cost of a transition is optimized as explained in Section
4.2.3. This cost is highly penalized if the corresponding transition
appears to be infeasible due to the non-fulfilment of the system
constraints (e.g. non fulfilment of the bounds associated with the
main grid power Pgrid).

Once all transitions are studied, it is possible to determine the
shortest path (i.e. the lowest cost) that allows reaching a state M

starting from the initial point M0. At the previous time step, the
obtained shortest path goes through the “predecessor” of M and
denoted as M' (Fig. 4a). The predecessors of all the states are then
determined moving forward for successive time steps. When all
the predecessors are known, the optimal path is rebuilt backward
from the final state using the Bellman–Ford algorithm [24]
(Fig. 4b). The returned solution Pref

n is the concatenation of all

Fig. 3. Dynamic Programming – (a) sampling of the problem and (b) cost calculation.



the instantaneous controls of the power flows which relate to the
degrees of freedom that allow to follow the optimal path.

4.2.2. Undetermined SOC levels

Moving from one SOC level to another consists in finding the
best instantaneous degrees of freedom Pst(t), Pprod_c(t) and ΔPPV(t)
that ensure the transition with the lowest cost. Note that a
transition between two pre-determined states of charge implicitly
imposes the power value flowing through the storage unit Pst(t).
However, in some cases, this can lead to the non-fulfilment of the
grid constraints and the impossibility to ensure the transition. The
resulting cost would be would be penalized. Fig. 5 illustrates a case
with fictive values without considering losses. In this example,
there is no production and the grid operator imposes a consump-
tion to a given value Pgrid(t) different from Pload(t). Thus Pprod_c(t)¼
ΔPPV(t)¼0 and then Pst(t) should fed the difference Pgrid(t)%
Pload(t). That value does not necessary comply with the transition
between two predetermined states of charge and a non conver-
gence of the algorithm could occur.

The previous algorithm is then modified with the aim of
relieving the storage constraints by considering a space search
7δ around a predetermined SOC. The initial value of δ is set to
ΔSOC/2 and is progressively reduced in case of non-convergence
(typically δ’δ/2). In the example given in Fig. 5, moving towards
undetermined SOC levels allows ensuring the transition starting
from a SOC equal to 40% and could avoid a non convergence of the
overall Dynamic Programming algorithm.

4.2.3. Transition optimization

As already said, studying a transition between two states M and
M' consists in minimizing the cost while adapting the state of
charge for the next time step. This is performed using the trust
region algorithm with a simpler problem than in the case with the
global dispatching in so far as the number of decision variables
simply equals here the number of degrees of freedom (i.e., three in
the studied case). The bounds associated with the degrees of
freedom as well as the grid constraints are expressed using the
instantaneous values of the consumption and production. The
storage constraints defined in (18) are modified in order to comply
with the studied transition and adapt the SOC at the following
state with SOC'7δ:

CSOCþ ðtÞ ¼ maxð0; SOCðtþΔtÞ%SOC 0þδÞ

CSOC% ðtÞ ¼ maxð0; %SOC0%δ%SOCðtþΔtÞÞ
ð22Þ

Finally, the local optimal dispatching problem to be solved at each
time step can be expressed as:

Pref ðtÞ ¼ ½PstðtÞ Pprod_cðtÞ ΔPPV ðtÞ(

lb¼ ½Pst_min 0 0(

ub¼ ½Pst_max ηCVS;8:PprodðtÞ PprodðtÞ(

Pn

ref ðtÞ ¼ ½P
n

stðtÞP
n

prod_cðtÞΔPn

PV ðtÞ( ¼ argmin
Pref ðtÞ

ðCpurchaseðtÞ:PaðtÞ%CsaleðtÞ:PsðtÞÞ

with Ct
nlðPref ðtÞÞ ¼ ½CPaðtÞ CPsðtÞ CSOCþ ðtÞ CSOC% ðtÞ

&CP%gridðtÞ CPþgridðtÞ(r0 ð23Þ

Fig. 4. Dynamic Programming – (a) Computation of the predecessors and (b) optimal path rebuilt.

Fig. 5. Towards undetermined SOC levels.



4.2.4. Self-adaptive DP

The DP returns good solutions but some preliminary results
shows that its efficiency and convergence strongly depends on
ΔSOC and δ. As shown in Fig. 6a, the cost is improved with the

reduction of ΔSOC while the computational time required to
obtain the optimal solution is drastically increased. Note that the
trajectories obtained for different values of ΔSOC shows the same
energy balance of the storage which is discharged at the beginning
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Fig. 7. Illustration of the self-adaptive Dynamic Programming.

Table 2

Performance of the trust-region reflective algorithm on the dispatching problem.

Pref0
1 Pref0

2 Pref0
3 Pref0

4

Starting point [Pload Pprod Pprod] [Pload 0.J24 0.J24] [0.J24 0.J24 0.J24] [0.J24 Pprod 0.J24]

Convergence no yes no yes

C (Pref
n ) (in €) x 4.09 x 6.63

CPU time 33 s 24 s 1 s 16 s

Table 3

Performance of the clearing algorithm on the dispatching problem.

Number of generations 1000 5000 10,000 25,000 50,000

Cost – Average Values (€) 3.8071.08 1.6270.95 1.2570.81 0.9670.52 0.8770.38

Cost best values (€) 2.53 1.11 0.79 0.69 0.66

Average CPU Time (s) 6 min 35 min 1 h 10 min 2 h 45 min 5 h 30 min

Table 4

Performance of the particle swarm algorithm on the dispatching problem.

Number of Generations 1000 5000 10,000 25,000 50,000

Cost -Average Values (€) 23.63723.96 19.04719.51 18.79719.89 17.86719.75 17.80719.81

Cost – best values (€) 9.35 6.48 4.99 4.90 4.90

Average CPU Time (s) 3 min 15 min 30 min 1 h 15 min 2 h 30 min



of the day. Then the SOC increases when there is a great amount of
solar production during the day. From 7 p.m. to 9 p.m., the
flywheels are used to fulfill the grid constraints before returning
to the desired state of charge at the end of the day. That optimal
energetic behavior is found with great ΔSOC. Indeed, decreasing
the discretization allows reducing the cost by optimizing the
losses within the elements of the microgrid.

In order to get the best solution corresponding to the finest SOC

sampling without a prohibitive CPU time, a self-adaptive DP (SDP) has
been developed. At first, a basic DP is performed with a coarse ΔSOC.
Then, a space search is defined around the obtained solution meaning
that the number of possible states is reduced around the optimal
profile. Afterwards, a new DP is computed considering the reduced
search space with a smaller ΔSOC. As illustrated in Fig. 7, the self-
adaptive DP consists in a succession of basic DP optimizations starting
with a large ΔSOC and decreasing it to smaller values. At each
iteration, the search space is reduced by considering a new area
around the optimal path. Then, this area is refined by discretizing it
with a smaller value of ΔSOC (typically ΔSOC¼ΔSOC/2).

5. Simulations and results

5.1. Performance and computational time of the power dispatching

procedures

In this section, the results obtained with the different proce-
dures are compared with regard to the cost function value and the

computational time. All tests are performed by considering a time
step of 1 h and with the production and consumption profiles
defined in Section 2. Table 1 shows the outputs of the trust region
reflective algorithm with a maximum number of iterations equal
to 150. Four starting points Pref0

i are considered. They do not
necessarily fulfill the constraints and correspond to various
assumptions such as providing all the consumption though the
storage for instance. The convergence only occurs in half of the
cases and the obtained results depend on the starting points
(Table 2).

Tables 3 and 4 show the best results obtained by the nature
inspired metaheuristics (i.e. clearing and PSO) after 10 indepen-
dent runs. Average values with 95 % level of confidence as well as
the best results are presented. Performances become greater with
high numbers of generations with a population size equal to 100
elements in the two algorithms. Both strategies are more reliable
than the trust-region method with better accuracy for the genetic
algorithm but their CPU time up to 2 h is rather expensive.

The self-adaptive DP gives the best results with a good accuracy
and a reduced computational time (Table 5). A solution with
accuracy of ΔSOC ¼1% is finally reached after 10 min instead of
2 h with the basic DP. It should be noted that the small deviation
on the cost between the basic DP with ΔSOC¼1% and the self-
adaptive DP can be explained by different optimal paths found due
to distinct values of δ around SOC levels during the search.

5.2. Storage benefits

Performance is now studied with regard to the optimal power
profiles found with the solution returned by the SDP and noted
PrefSPD. Fig. 8a shows that the grid power fulfils the constraints
between 7 p.m. and 9 p.m. The storage is discharged at the
beginning of the day in order o lower the cost when prices are
higher (after 6 a.m.). Then the solar production feds the loads and
charges the flywheels. At the end of the day the storage is fully
used to satisfy the constraints before returned to the desired value
SOCend (Fig. 8b).

The optimal power sharing obtained with the SPD is illustrated
in Fig. 9 with few of energy purchased from the grid during the
daily hours. The high amount of PV production is self-consumed in
the loads and the storage. The surplus is even sold to the grid to
get an additional benefit with a negative final electrical bill
(Celec(PrefSDP) ¼%0.17 €).

Table 5

Results obtained with the basic and self-adaptive DP.

ΔSOC 20% 15% 10% 5% 2% 1% SDP

Cost (€) 4.02 2.09 1.52 0.64 %0.56 %0.65 %0.17

CPU time 30 s 50 s 1 min 30 s 5 min 45 min 2 h 15 min 10 min

Table 6

Costs analysis for different cases.

Init SeflCon PrefSPD

Purchased energy (€) 95.48 39.18 23.43

Sold energy (€) 66.09 33.36 25.60

Constraint fulfillment no no yes

TOTAL (€) 28.39 5.82 %0.17

0 6 12 18 24
-100

-50

0

50

100

Grid constraints

fulfilled

PV production 

self-consumed

Time (h)

P
g
ri
d

(k
W

)

PrefSPD

0 6 12 18 24
0

25

50

75

100

Time (h)

S
O
C

(%
)

Init

Fig. 8. Optimal profiles for PrefPDa: (a) Pa and (b) SOC.



The cost analysis of the solution PrefSDP is now compared with the
electrical bills corresponding to the cases Init and SelfCon. The best
cost corresponds to a case with storage and optimal management
(Table 6). Less production is sold but the self-consumption allows
reducing the bill by lowering the purchased energy when prices are
higher. Note that with no storage the grid constraints cannot be
fulfilled. This could lead to pay additional penalties to the grid
operator. On the contrary encouraging the constraints fulfillment with
additional benefit could allow justifying the implementation of a
storage unit whose cost has not been considered so far in the study.

6. Conclusions

In this paper, various optimization approaches have been
compared in order to perform the optimal dispatching of power
flows in a grid connected smart system involving loads, decen-
tralized sources of renewable energy (solar PV panels) and
flywheels as storage unit. In particular, an original self-adaptive
method based on DP has been developed to enhance the perfor-
mance in terms of cost with rapid convergence. For the given
hypothesis and constraints relative to grid consumption and solar
PV production, this method was revealed more efficient than a
classical trust-region based approach and a evolutionary algo-
rithms. All investigated procedures take account of the forecasts of
consumption and production and aim at generating the best
power dispatching for the day ahead. In real-time, an additional
control has to be performed so as to ensure the predicted
efficiency by correcting the possible forecast errors as described
in [14]. Further works will also investigate the generalization of
the approach for more complex microgrid architectures including
other parameters, e.g. multiple energy storages of different nature
(flywheels, electrolyzer-fuel cell association, batteries), various
energy rates related to the cost of the grid power depending on
the target load (storage charge or consumer feeding) and other
grid services such as peak shaving or grid disconnection. Finally,
additional studies will focus on the coupling between the sizing of
the storage and the energy management aiming at optimizing the
tradeoff between the cost of the storage systems and the reduction
of the microgrid energy consumption by considering simulations
over a longer period of time.
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