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In this paper, we study a class of stochastic partial differential equations (SPDEs) driven by space-time fractional noises. Our method consists in studying first the nonlocal SPDEs and showing then the convergence of the family of these equations and the limit gives the solution to the SPDE.

Stochastic partial differential equations driven by space-time fractional noises 1 Introduction

Recently, stochastic partial differential equations are studied mainly as alternative physical models for some complex and chaotic natural phenomena. For example, in the study of turbulent phenomena, a reduction must be made although the Navier-Stokes equations are believed to catch the motions of all different sorts of flows of incompressible fluids. It is thus hopeless, at least under the current technologies and the current computational power (it might be changed with the arrival of quantum computers which is still in the remote future), to understand the solutions to the Navier-Stokes equations subject to complicated boundary conditions with precision and mathematical rigor. One of the ideas in the fluid dynamics is to combine the equations of motions with statistical ideas. Statistical fluid mechanics has been the main tool for the understanding of the turbulent flows. Traditional statistical fluid mechanics is based on the hypothesis (which has not been proved yet) that there is an underlying invariant measure with respect to the non-linear semigroup defined by the Navier-Stokes equations, and is not based on the use of stochastic evolution models. Itô's calculus and its generalizations to infinite dimensional state spaces such as Malliavin Calculus etc., on the other hand, provide the possibility to construct useful stochastic evolution models directly. A class of simple models can be constructed by simplifying the equations of motions and enhanced by adding suitable noise terms in order to recover essential features in the original physical laws. For example, for the equation of motion for an incompressible fluid:

∂u ∂t + u • ∇u = ν∆u -∇p and ∇ • p = 0
where u describes the velocity of the flow and p is the pressure. In order to apply the familiar theory of parabolic equations, a simple way to make reduction is to drop the pressure term ∇p from the first equation, so that the Navier-Stokes equations become a parabolic system ∂u ∂t + u • ∇u = ν∆u which preserves the non-linear convection, but certainly many interesting features are lost. To recover the chaotic nature of the fluids, we may add a noise term to the parabolic equation, which thus leads to the following stochastic partial differential equations

∂u ∂t + u • ∇u = ν∆u + W
where W should be modeled by a space-time random field, and W can be considered as a kind of radom perturbations, or as external random force applied to the fluid in question. This kind of stochastic partial differential equations has received study in the recent years, and a lot of interesting results have been obtained. While, there is no certain rules which dictate the choice of a noise term, and the choice of a reasonable stochastic process really depends on the equation of motion in question, by taking into account of the physical meaning as far as possible.

In this paper, we study the following stochastic partial differential equation (SPDE):

   ∂u ∂t (t, x) = 1 2 ∆u(t, x) + g(u(t, x), ∂ ∂x u(t, x)) + ḂH , u(t, 0) = 0, u(0, x) = u 0 (x), (1.1) where (t, x) ∈ [0, T ] × D, D = [0, ∞), and

ḂH = B H (dt, dx) = ∂ 2 B H (t, x) ∂t∂x
is a space-time fractional noise with Hurst parameter H = (h 1 , h 2 ), h i ∈ (0, 1) for i = 1, 2, see below for a precise definition. SPDEs driven by Gaussian noises have been widely studied where the non-linear term g depends only on u, see for example Walsh [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF], Da Prato-Zabczyk [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF], Hu et al. [START_REF] Hu | Feynman-Kac formula for heat equation driven by fractional white noise[END_REF] and Fuhrman et al. [START_REF] Fuhrman | Stochastic maximum principle for optimal control of SPDEs[END_REF]. These theories and their applications are now classic and mature.

If g has a particular form depending on u and ∂ ∂x u as well, such as the non-linear term in the Burgers equation, the SPDE has been considered by many authors. Mohammed and Zhang [START_REF] Mohammed | The Burgers equation with affine linear noise: dynamics and stability[END_REF] studied the dynamics of the stochastic Burgers equation on the unit interval driven by affine linear noise. Using multiplicative ergodic theory techniques, they established the existence of a discrete non-random Lyapunov spectrum for the cocycle. They also proved an existence theorem for solutions of the stochastic Burgers equation on the unit interval subject to the Dirichlet boundary condition and the anticipating initial velocities in [START_REF] Mohammed | Stochastic Burgers equation with random initial velocities: a Malliavin calculus approach[END_REF]. Wang et al. [START_REF] Wang | Log-Harnack inequality for stochastic Burgers equations and applications[END_REF] proposed an L 2 -gradient estimate for the corresponding Galerkin approximations, and the log-Harnack inequality was established for the semigroup associated to a class of stochastic Burgers equations. Hairer and Voss [START_REF] Hairer | Approximations to the stochastic Burgers equation[END_REF] discussed the numerical methods of various finite-difference approximations to the stochastic Burgers equation.

Recently, a class of special Gaussian processes called fractional Brownian motion (fBm) has been attracted attention due to their useful feature of preserving long term memory, and a large number of interesting results from scaling invariance to the description of their laws as random fields have been established by various authors. The study of these Gaussian processes has its historical motivation from their applications in hydrology and telecommunication, and have been applied to the mathematical finance, biotechnology and biophysics, see for example [START_REF] Odde | Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth[END_REF][START_REF] Guasoni | No arbitrage under transaction costs, with fractional Brownian motion and beyond[END_REF][START_REF] Kou | Stochastic modeling in nanoscale biophysics: subdiffusion within proteins[END_REF] and the literature therein. Coutin and Qian [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions[END_REF], Mandelbrot and Van Ness [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF] and some other authors have proposed a theory of stochastic calculus for a class of continuous stochastic processes with long time memory, including the fractional Brownian motions as arachtypical examples. Neuenkirch and Tindel [START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF] studied the least square-type estimator for an unknown parameter in the drift coefficient of a stochastic differential equation with additive fractional noise modeled by a fractional Brownian motion with Hurst parameter H > 1/2. Balan [START_REF] Balan | Some linear SPDEs driven by a fractional noise with Hurst index greater than 1/2. Infin[END_REF] identified necessary and sufficient conditions for the existence of a random field solution for some linear stochastic partial differential equations of parabolic and hyperbolic type. While, Bo et al. [START_REF] Bo | Stochastic Cahn-Hilliard equation with fractional noise[END_REF] considered stochastic Cahn-Hilliard equations with fractional noises, the existence, uniqueness and regularity of the solutions were obtained. In [START_REF] Jiang | Stochastic generalized Burgers equations driven by fractional noise[END_REF] the stochastic Burgers equation driven by the fractional noise was studied, a global mild solution was obtained and the existence of a distribution density of the solution was also established.

The goal of this paper is to study SPDE (1.1) where g is a function depending on both u and ∂ ∂x u, and where ḂH = B H (dt, dx) = ∂ 2 B H (t, x) ∂t∂x is a space-time fractional noise. We study the existence and uniqueness of solution to this class of SPDEs, and the regularity of its solution.

There are two key steps in the present approach. The first step is to study the following non-local SPDE:

       ∂u ∂t (t, x) = 1 2 ∆u(t, x) + g(u(t, x), u θ (t, x)) + ḂH , u θ (t, x) = 1 θ (u(t, x + θ) -u(t, x)) , u(t, 0) = 0, u(0, x) = u 0 (x), (1.2)
where θ ∈ R, θ = 0, is a parameter. Note that u θ is subject to the same boundary condition as that of u. For each θ = 0, the unique solution to the SPDE above depends on θ, and thus is denoted by u(t, x, θ). In the second step, we show that the family of solutions u(t, x, θ) converges in an appropriate function space to a limit u(t, x) as θ → 0, which provides the solution of SPDE (1.1). A space-time fractional noise is a two-parameter Gaussian random field which can be defined similarly as in one parameter case, and can be specified in terms of its covariance function. A few definitions about the stochastic integration theory for such space-time fractional noise will be recalled in the following sections. As matter of fact, the regularity properties of space-time fractional noises are fully reflected in the Hurst parameter H = (h 1 , h 2 ), and our main result of this paper can be simply described in terms of two parameters as following: if 2h 1 + h 2 > 2 (which thus excludes the case of space-time white noise for which h 1 = h 2 = 1 2 ), then SPDE (1.1) admits a unique solution which has nice regularity.

Hairer and Voss [START_REF] Hairer | Approximations to the stochastic Burgers equation[END_REF] studied a stochastic partial differential equation where g has a special form, driven by a space-time white noise. While, in our setting we allow the non-linear term which depends on both u and its space derivative ∂ ∂x u does not possess a convenient form, thus causes essential difficulty. While our stochastic equation is driven by a space-time fractional noises which in some sense alleviates the technical difficulties.

The paper is organized as following. After introducing the stochastic integration theory for fractional noise and the class of SPDEs in the next section, we study the well solvability of nonlocal SPDE, including existence, uniqueness and regularity of solutions in Section 3. Section 4 is devoted to the existence and uniqueness of the SPDE. We collect several estimates about Green functions used in the main text in the Appendix.

Throughout the paper, the generic positive constant C may be different from line to line.

Preliminaries

In this part, we first recall a few definitions about the fractional noise and their stochastic integrals.

The technical assumptions which will be enforced in the present paper are stated clearly, and some a priori estimates are established.

Fractional noise

A one-dimensional fractional Brownian motion W h = {W h t , t ∈ [0, T ]} with Hurst parameter h ∈ (0, 1) on [0, T ] is a centered Gaussian process on some probability space (Ω, F, P) with its covariance function given by

E W h t W h s = 1 2 t 2h + s 2h -|t -s| 2h .
The existence of such a Gaussian process and the regularity of its sample paths are well documented.

Other equivalent definitions of fractional Brownian motion and its analysis may be found in [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF][START_REF] Nualart | Stochastic integration with respect to fractional Brownian motion and applications[END_REF]. Similarly, we may generalize the definition to fractional noises with two parameters (see also Jiang et al. [START_REF] Jiang | Stochastic generalized Burgers equations driven by fractional noise[END_REF] for further details). Definition 2.1. A one-dimensional double-parameter fractional Brownian field B H = {B H (t, x), (t, x) ∈ [0, T ] × D} with Hurst parameter H = (h 1 , h 2 ) for h i ∈ (0, 1) and i ∈ {1, 2}, where D = (0, ∞), is a centered Gaussian field defined on some probability space (Ω, F, P) with covariance

E B H (t, x)B H (s, y) = 1 4 t 2h 1 + s 2h 1 -|t -s| 2h 1 × x 2h 2 + y 2h 2 -|x -y| 2h 2 := R(t, s; x, y) (2.1)
for all t, s ∈ [0, T ] and x, y ∈ D.

Let E denote the collection of all step functions defined on [0, T ] × D and L 2 H denote the Hilbert space of the closure of E under scalar product

I [0,t]×[0,x] , I [0,s]×[0,y] L 2 H = R(t, s; x, y).
Then the mapping I [0,t]×[0,x] → B H (t, x) can be extended to an isometry between L 2 H and the Gaussian space H associated with B H . Remark 2.2. In this paper we only consider the one-dimensional double-parameter fractional Brownian field with Hurst parameter H = (h 1 , h 2 ), where

h i ∈ ( 1 2 , 1), i = 1, 2. Introduce the square integrable kernel K H (t, s; x, y) = c H s 1 2 -h 1 y 1 2 -h 2 ˆt s ˆx y (u -s) h 1 -3 2 u h 1 -1 2 (z -y) h 2 -3 2 z h 2 -1 2 dzdu
and its derivative

∂ 2 ∂t∂x K H (t, s; x, y) = c H (t -s) h 1 -3 2 t s h 1 -1 2 (x -y) h 2 -3 2 x y h 2 -1 2 . Define the operator K * H from E to L 2 ([0, T ] × D) by (K * H φ)(s, y) = ˆT s ˆ∞ y φ(t, x) ∂ 2 ∂t∂x K H (t, s; x, y)dtdx.
It is easy to check that

(K * H I [0,t]×[0,x] )(s, y) = K H (t, s; x, y)I [0,t]×[0,x] (s, y),
and

K * H I [0,t]×[0,x] , K * H I [0,s]×[0,y] L 2 ([0,T ]×D) = R H (t, s; x, y) = I [0,t]×[0,x] , I [0,s]×[0,y] L 2 H .
Hence, the operator K * H is an isometry between E and L 2 ([0, T ] × D) which can be extended to L 2 H . By definition

B(t, x) = B H K * H -1 (I [0,t]×[0,x] ) , (t, x) ∈ [0, T ] × D,
is a Brownian sheet, and in turn the fractional noise has a representation

B H (t, x) = ˆt 0 ˆx 0 K H (t, s; x, y)B(ds, dy).
The following embedding property enables us to define the integral for φ ∈ L 2 H with respect to

B H . Proposition 2.3. For h > 1/2, L 2 ([0, T ] × D) ⊂ L 1 h ([0, T ] × D) ⊂ L 2 H .
The integral ´t 0 ´x 0 φ(s, y)B H (ds, dy) is defined by

ˆt 0 ˆx 0 φ(s, y)B H (ds, dy) = ˆt 0 ˆx 0 (K * H φ)(s, y)B(ds, dy). (2.2) For 0 ≤ s < t ≤ T and x, y ∈ D define Ψ h (t, s, x, y) := 4h 1 h 2 (2h 1 -1)(2h 2 -1)|t -s| 2h 1 -2 |x -y| 2h 2 -2 .
A routine calculation shows the equivalence of the stochastic integrals defined in Jiang et al. [START_REF] Jiang | Stochastic generalized Burgers equations driven by fractional noise[END_REF] and those in this section for functions in

L 2 H . Proposition 2.4. For f, g ∈ L 2
H we have

E ˆt 0 ˆD f (s, x)B H (dx, ds) = 0 and E ˆt 0 ˆD f (s, x)B H (dx, ds) ˆt 0 ˆD g(s, x)B H (dx, ds) = ˆ[0,t] 2 ˆD2 Ψ h (u, v, x, y)f (u, x)g(v, y)dydxdvdu.
In what follows, {F t , t ∈ [0, T ]} denotes the natural filtration generated by the fractional noise B H , that is, F t is the completion of σ B H (s, x), s ≤ t, x ∈ D , which thus satisfies the usual conditions.

Remark 2.5. The following embedding lemma (see [START_REF] Mémin | Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion[END_REF]) yields directly Proposition 2.3.

Lemma 2.6. If h ∈ ( 1 2 , 1) and f, g ∈ L 1 h ([a, b]), then ˆb a ˆb a f (u)g(v)|u -v| 2h-2 dudv ≤ C(h) f L 1 h ([a,b]) g L 1 h ([a,b])
, where C(h) > 0 is a constant depending only on h.

Several technical estimates

We are concerned with the following SPDE driven by a space-time fractional Brownian field:

   ∂u ∂t (t, x) = 1 2 ∆u(t, x) + g(u(t, x), ∂ ∂x u(t, x)) + ḂH , u(t, 0) = 0, u(0, x) = u 0 (x), (2.3) for (t, x) ∈ [0, T ] × D, where ḂH = B H (dt, dx) = ∂ 2 B H (t, x) ∂t∂x is a fractional Brownian field on (Ω, F, P) with Hurst parameter H = (h 1 , h 2 ) for h i ∈ (0, 1) and i ∈ {1, 2}.
Throughout the remaining part of the paper, the Hurst parameter

H = (h 1 , h 2 ) satisfies the following hypothesis H h 1 ,h 2 : Hypothesis 2.1. (1) h i ∈ ( 1 2 , 1), i = 1, 2, and (2) 2h 1 + h 2 > 2.
The initial data u 0 : D → R satisfies the following hypothesis H u 0 :

Hypothesis 2.2. (1) ||u 0 || ∞ := sup x |u 0 (x)| < ∞, ( 2 
) ||u ′ 0 || ∞ < ∞, (3) u ′ 0 (x) is κ-Hölder continuous in x with κ ∈ (0, 1).
The function g : R × R → R satisfies the following hypothesis H g :

Hypothesis 2.3. There exists a constant L > 0 such that |g(x 1 , y 1 ) -g(x 2 , y 2 )| ≤ L(|x 1 -x 2 | + |y 1 -y 2 |).
Let us consider the following non-local SPDE:

       ∂u ∂t (t, x) = 1 2 ∆u(t, x) + g(u(t, x), u θ (t, x)) + ḂH , u θ (t, x) = 1 θ (u(t, x + θ) -u(t, x)) , u(t, 0) = 0, u(0, x) = u 0 (x) (2.4) where θ ∈ R, θ = 0, (t, x) ∈ [0, T ] × D and (t, x + θ) ∈ [0, T ] × D. Suppose p(t, x, y) is the Green function of ∂ ∂t -1 2 ∆ in D subject to the Dirichlet boundary condition, that is, p(t, x, y) = 1 √ 2πt e -(x-y) 2 2t -e -(x+y) 2 2t
, then we may rewrite Eq. (2.4) as the following    u(t, x) = ´D p(t, x, y)u 0 (y)dy + ´t 0 ´D p(t -s, x, y)g(u(s, y), u θ (s, y))dyds

+ ´t 0 ´D p(t -s, x, y)B H (ds, dy), u θ (t, x) = 1 θ (u(t, x + θ) -u(t, x)) .
Note that, from (2.2),

ˆt 0 ˆD p(t -s, x, y)B H (ds, dy) = ˆt 0 ˆD(K * H p)(t -s, x, y)B(ds, dy).
The following lemma provides the key estimate we need in what follows.

Lemma 2.7. Suppose ψ(t, x) is a measurable function, and suppose

|H(t, x, y)| ≤ t -ρ e -C(x-y) 2 t ,
where ρ < 3 2 . Then there exists a constant C T > 0 such that for t ∈ [0, T ],

E ˆt 0 ˆD H(t -s, x, y)ψ(s, y)dyds 2 ≤ C T ˆt 0 (t -s) 1 2 -ρ sup y E ψ 2 (s, y) ds. (2.5)
Proof. Applying the Cauchy-Schwarz inequality, we get

E ˆt 0 ˆD H(t -s, x, y)ψ(s, y)dyds 2 ≤ ˆt 0 ˆD H(t -s, x, y)dyds × E ˆt 0 ˆD H(t -s, x, y)ψ 2 (s, y)dyds ≤ C T ˆt 0 (t -s) 1 2 -ρ sup y E ψ 2 (s, y) ds,
which completes the proof.

Remark 2.8. The previous estimate is applicable to

H(t, x, y) = 1 θ (p(t, x + θ, y) -p(t, x, y)) ,
so that

E ˆt 0 ˆD H(t -s, x, y)ψ(s, y)dyds 2 ≤ C T ˆt 0 (t -s) -1 2 sup y E ψ 2 (s, y) ds.
In fact,

H(t, x, y) = 1 θ (p(t, x + θ, y) -p(t, x, y)) = ˆ1 0 ∂ ∂x p(t, x + aθ, y)da,
and (see also Lemma 5.1)

∂ ∂x p(t, x, y) ≤ Ct -1 e -(x-y) 2 4t
.

Thus, by the Fubini Theorem, we deduce that

ˆt 0 ˆD H(t -s, x, y)dyds = ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t, x + aθ, y)dadyds = ˆ1 0 ˆt 0 ˆD ∂ ∂x p(t, x + aθ, y)dyds da ≤ C ˆ1 0 t 1 2 da ≤ C T . Therefore E ˆt 0 ˆD H(t -s, x, y)ψ 2 (s, y)dyds = E ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t, x + aθ, y)ψ 2 (s, y)dadyds = E ˆ1 0 ˆt 0 ˆD ∂ ∂x p(t, x + aθ, y)ψ 2 (s, y)dyds da ≤ C T ˆt 0 (t -s) -1 2 sup y E ψ 2 (s, y) ds.
We also need an estimate on the second moment of some stochastic integrals.

Lemma 2.9. Suppose f (t, x) ∈ L 2 H , then

E ˆt 0 ˆDf (s, x)B H (dx, ds) 2 ≤ C(h 1 , h 2 ) ˆt 0 ( f (s, •) L 1 h 2 (D) ) 1 h 1 ds 2h 1 . (2.6)
Proof. By Proposition 2.6, we have

E ˆt 0 ˆDf (s, x)B H (dx, ds) 2 = ˆ[0,t] 2 ˆD2 Ψ h (s 1 , s 2 , y 1 , y 2 )f (s 1 , y 1 )f (s 2 , y 2 )dy 1 dy 2 ds 1 ds 2 = C(h 1 , h 2 ) ˆ[0,t] 2 ˆD2 |s 1 -s 2 | 2h 1 -2 |y 1 -y 2 | 2h 2 -2 f (s 1 , y 1 )f (s 2 , y 2 )dy 1 dy 2 ds 1 ds 2 ≤ C(h 1 , h 2 ) ˆ[0,t] 2 |s 1 -s 2 | 2h 1 -2 f (s 1 , •) L 1 h 2 (D) f (s 2 , •) L 1 h 2 (D) ds 1 ds 2 ≤ C(h 1 , h 2 ) ˆt 0 ( f (s, •) L 1 h 2 (D) ) 1 h 1 ds 2h 1
, and the proof of this lemma is complete.

Solvability of non-local SPDE

This section is devoted to the study of non-local SPDE. We study the uniqueness, existence and regularity of the solution.

Uniqueness

S denotes the collection of all functions u :

D × [0, T ] → R such that for every t ∈ [0, T ], sup x E|u(t, x)| 2 < ∞.
In fact, for the solution set S: 

sup x E|u(t, x)| 2 is
= ˆt 0 ˆD p(t -s, x + θ, y) -p(t -s, x, y) θ × g(u(s, y), u θ (s, y)) -g(ũ(s, y), ũθ (s, y)) dyds.
According to (2.5), we have

sup x E|u θ (t, x) -ũθ (t, x)| 2 ≤ C ˆt 0 (t -s) -1 2 sup y E|u(s, y) -ũ(s, y)| 2 ds +C ˆt 0 (t -s) -1 2 sup y E|u θ (s, y) -ũθ (s, y)| 2 ds. (3.2) Let Γ(t) = sup x E|u(t, x) -ũ(t, x)| 2 + sup x E|u θ (t, x) -ũθ (t, x)| 2 .
Then from (3.1) and (3.2), we have

Γ(t) ≤ C ˆt 0 1 + (t -s) -1 2 sup y E|u(s, y) -ũ(s, y)| 2 ds +C ˆt 0 1 + (t -s) -1 2 sup y E|u θ (s, y) -ũθ (s, y)| 2 ds = C ˆt 0 1 + (t -s) -1 2 Γ(s)ds,
thus it follows from the Gronwall inequality (see e.g. Lemma 1.1 in [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]) that

Γ(t) = 0, as t ∈ [0, T ]. Hence sup x E|u(t, x) -ũ(t, x)| 2 = 0, as t ∈ [0, T ],
and therefore sup

x E|u θ (t, x) -ũθ (t, x)| 2 = 0, as t ∈ [0, T ]. That is, (u(t, x), u θ (t, x)) = (ũ(t, x), ũθ (t, x)), (t, x) ∈ [0, T ] × D,
in L 2 sense. The proof thus is completed.

Existence

Theorem 3.2. Suppose that H h 1 ,h 2 , H u 0 and H g hold, then there exists one solution (u, u θ ) of the SPDE (2.4), where u ∈ S and u θ ∈ S.

To prove Theorem 3.2, let us consider the Picard iteration {(u n (t, x), u θ n (t, x))} n≥0 defined by

   u n+1 (t, x) = ´D p(t,
x, y)u 0 (y)dy + ´t 0 ´D p(t -s, x, y)g(u n (s, y), u θ n (s, y))dsdy

+ ´t 0 ´D p(t -s, x, y)B H (ds, dy), u θ n (t, x) = 1 θ (u n (t, x + θ) -u n (t, x))
where u 0 (t, x) := ˆD p(t, x, y)u 0 (y)dy.

If u n (t, x) ∈ S, then clearly u θ n (t, x) ∈ S. We check that u n+1 ∈ S. Note that E ˆD p(t, x, y)u 0 (y)dy

2 ≤ ||u 0 || 2 ∞ ,
so that, by Lemma 2.7, we have

E ˆt 0 ˆD p(t -s, x, y)g(u n (s, y), u θ n (s, y))dsdy 2 ≤ C 1 + ˆt 0 sup y E|u n (s, y)| 2 ds + ˆt 0 sup y E|u θ n (s, y)| 2 ds .
While, by Lemma 2.9, one gets

E ˆt 0 ˆD p(t -s, x, y)B H (ds, dy) 2 ≤ C(h 1 , h 2 ) ˆt 0 ( p(t -s, x, •) L 1 h 2 (D) ) 1 h 1 ds 2h 1 and p(t -s, x, •) L 1 h 2 (D) = ˆD |p(t -s, x, y)| 1 h 2 dy h 2 ≤ C ˆD(t -s) -1 2h 2 exp(- 1 4h 2 |x -y| 2 t -s )dy h 2 ≤ C (t -s) 1 2 (1-1 h 2 ) h 2 = C(t -s) 1 2 (h 2 -1)
.

Then

E ˆt 0 ˆD p(t -s, x, y)B H (ds, dy) 2 ≤ C(h 1 , h 2 ) ˆt 0 ( p(t -s, x, •) L 1 h 2 (D) ) 1 h 1 ds 2h 1 ≤ C(h 1 , h 2 )t 2h 1 +h 2 -1 ≤ C(h 1 , h 2 , T ) (3.3)
and therefore

sup x E|u n+1 (t, x)| 2 ≤ C + C ˆt 0 sup y E|u n (s, y)| 2 ds +C ˆt 0 sup y E|u θ n (s, y)| 2 ds. (3.4)
On the other hand, 

u θ n+1 (t, x) = ˆD 1 θ (p(t, x + θ, y) -p(t, x, y)u 0 (y)) dy + ˆt 0 ˆD 1 θ (p(t -s, x + θ, y) -p(t -s, x, y)) g(u n (s,
≤ C(h 1 , h 2 )   ˆt 0 ˆ1 0 ∂ ∂x p(t -s, x + aθ, •)da L 1 h 2 (D) 1 h 1 ds   2h 1 ≤ C(h 1 , h 2 ) ˆt 0 (t -s) 1 2h 1 (h 2 -2) ds ≤ C(h 1 , h 2 , T ), (3.5) 
where we have used the assumption that 2h 1 + h 2 -2 > 0, the Fubini theorem and Lemma 5.1 which yields that

ˆ1 0 ∂ ∂x p(t -s, x + aθ, •)da L 1 h 2 (D) = ˆD ˆ1 0 ∂ ∂x p(t -s, x + aθ, y)da 1 h 2 dy h 2 ≤ C ˆD ˆ1 0 ∂ ∂x p(t -s, x + aθ, y) 1 h 2 dady h 2 ≤ C ˆ1 0 ˆD(t -s) -1 h 2 exp(- 1 4h 2 |x + aθ -y| 2 t -s )dy da h 2 ≤ C (t -s) 1 2h 2 (h 2 -2) h 2 = C(t -s) 1 2 (h 2 -2) . Therefore sup x E|u θ n+1 (t, x)| 2 ≤ C + C ˆt 0 (t -s) -1 2 sup y E|u n (s, y)| 2 ds + ˆt 0 (t -s) -1 2 sup y E|u θ n (s, y)| 2 ds . (3.6) Let Ψ n (t) = sup x E|u n (t, x)| 2 + sup x E|u θ n (t, x)| 2 and Ψ(t) = lim sup n Ψ n (t).
Then, by (3.4) and (3.6), we get

Ψ n+1 (t) ≤ C + C ˆt 0 1 + (t -s) -1 2 sup y E|u n (s, y)| 2 ds +C ˆt 0 1 + (t -s) -1 2 sup y E|u θ n (s, y)| 2 ds = C + C ˆt 0 1 + (t -s) -1 2 Ψ n (s)ds,
and therefore

Ψ(t) ≤ C + C ˆt 0 1 + (t -s) -1 2 Ψ(s)ds.
By applying the Gronwall inequality, to obtain that

Ψ(t) < ∞ for t ∈ [0, T ]. It follows that sup x E|u n (t, x)| 2 < ∞, as t ∈ [0, T ],
and sup

x E|u θ n (t, x)| 2 < ∞, as t ∈ [0, T ].
Therefore, for any n and (t,

x) ∈ [0, T ] × D, u n (t, x) ∈ S, u θ n (t, x) ∈ S.
We next prove that the sequences {(u n (t, x)} n≥0 and {(u θ n (t, x)} n≥0 are Cauchy sequences in S. To this end, consider

   u n+k+1 (t, x) -u n+1 (t, x) = ´t 0 ´D p(t -s, x, y) g(u n+k (s, y), u θ n+k (s, y)) -g(u n (s, y), u θ n (s, y)) dyds u θ n (t, x) = 1 θ (u n (t, x + θ) -u n (t, x)) ,
where k = 1, 2, 3 The limits of these sequences are denoted by u(t, x) and u θ (t, x) which also belong to S. Therefore the pair (u(t, x), u θ (t, x)) is a solution of the SPDE (2.4).

Regularity of the unique solution

Let (u(t, x), u θ (t, x)) be the solution of the stochastic equation (2.4) under the assumptions as in Theorem 3.2. Then u(t, x) ∈ S and u θ (t, x) ∈ S. We next discuss the Hölder continuity of u(t, x) and u θ (t, x). Theorem 3.3. Assume that H h 1 ,h 2 , H u 0 and H g hold, and that u(t, x) is the solution of the equation (2.4). Then u(t, x) is µ 1 -Hölder continuous in t and ν 1 -Hölder continuous in x, where µ 1 ∈ (0, 1 2 ) and ν 1 ∈ (0, 1). Moreover, u θ (t, x) is µ 2 -Hölder continuous in t and ν 2 -Hölder continuous in x, where µ 2 ∈ (0, min{ κ 2 , 2h 1 +h 2 -1 3 }) and ν 2 ∈ (0, min{κ,

2h 1 +h 2 -1 2 }).
The remainder of the section is devoted to the proof of the theorem above. Without loss of generality, we suppose that 0 ≤ s ≤ t ≤ T and 0 ≤ y ≤ x. First observe that

E(u(t, x) -u(s, y)) 2 ≤ 2 E(u(t, x) -u(t, y)) 2 + E(u(t, y) -u(s, y)) 2 .
It is elementary to see that

E(u(t, x) -u(t, y)) 2 ≤ C E ˆD(p(t, x, z) -p(t, y, z))u 0 (z)dz 2 +E ˆt 0 ˆD(p(t -r, x, z) -p(t -r, y, z))g(u(r, z), u θ (r, z))dzdr 2 +E ˆt 0 ˆD(p(t -r, x, z) -p(t -r, y, z))B H (dr, dz) 2 = C(I 1 + I 2 + I 3 ).
According to Hypothesis 2.2, we have

|u 0 (x) -u 0 (y)| = |u ′ 0 (•)||x -y| ≤ u ′ 0 ∞ |x -y|.
By Lemma 5.2,

I 1 = E ˆD(p(t, x, z) -p(t, y, z))u 0 (z)dz 2 ≤ C|x -y| 2 .
Let us deal with I 2 . Clearly

ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| g(u(r, z), u θ (r, z))dyds ≤ C ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| 1 + |u(r, z)| + |u θ (r, z)| |dzdr ≤ C ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| dzdr + ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| |u(r, z)|dzdr + ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| |u θ (r, z)|dzdr .
While, by Lemma 5.1 and the Fubini theorem, one gets

E ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| |u(r, z)|dzdr 2 ≤ ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| dzdr × ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| |u(r, z)| 2 dzdr ≤ C ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| 2 dzdr = C|x -y| 2 ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, y + a(x -y), z)da dzdr 2 ≤ C|x -y| 2 ˆ1 0 ˆt 0 ˆD(t -r) -1 e -(y+a(x-y)-z) 2 4(t-r) dzdr da 2 ≤ C|x -y| 2 ,
and

ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)| |u θ (r, z)|dzdr = (x -y) ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, y + a(x -y), z)da |u θ (r, z)|dzdr.
Thus, by using Lemma 5.1 and Remark 2.8, we have

E ˆt 0 ˆD |p(t -r, x, z) -p(t -r, y, z)||u θ (r, z)|dzdr 2 ≤ C|x -y| 2 ˆt 0 (t -r) -1 2 sup z E|u θ (r, z)| 2 dr ≤ C|x -y| 2 ,
and therefore,

I 2 ≤ C|x -y| 2 .
Next we estimate I 3 . Let γ ∈ (0, min{2h 1 + h 2 -1, 1}) = (0, 1). Then

I 3 = E ˆt 0 ˆD(p(t -r, x, z) -p(t -r, y, z))B H (dr, dz) 2 = ˆ[0,s] 2 ˆD2 Ψ h (r, r, z, z)|p(t -r, x, z) -p(t -r, y, z)| ×|p(t -r, x, z) -p(t -r, y, z)|dzdzdrdr = p(t -•, x, •) -p(t -•, y, •) 2 L 2 H = |p(t -•, x, •) -p(t -•, y, •)| γ |p(t -•, x, •) -p(t -•, y, •)| 1-γ 2 L 2 H ≤ C(γ) |p(t -•, x, •) -p(t -•, y, •)| γ |p(t -•, x, •)| 1-γ 2 L 2 H + |p(t -•, x, •) -p(t -•, y, •)| γ |p(t -•, y, •)| 1-γ 2 L 2 H := C(γ)(I 31 + I 32 ).
On other hand, according to Lemma 5.1 and the Fubini theorem, one can get

I 31 ≤ ˆ1 0 ∂ ∂x p(t -•, y + a(x -y), •)da γ |x -y| γ |p(t -•, x, •)| 1-γ 2 L 2 H = |x -y| 2γ ˆ[0,T ] 2 ˆD2 ˆ1 0 ∂ ∂x p(t -r, y + a(x -y), z)da γ |p(t -r, x -z)| 1-γ ×Ψ h (r, r, z, z) ˆ1 0 ∂ ∂x p(t -r, y + a(x -y), z)da γ |p(t -r, x -z)| 1-γ dzdzdrdr ≤ C(h 1 , h 2 , γ)|x -y| 2γ ×    ˆT 0   ˆD ˆ1 0 ∂ ∂x p(t -r, y + a(x -y), z)da γ |p(t -r, x -z)| 1-γ 1 h 2 dz   h 2 h 1 dr    2h 1 ≤ C(h 1 , h 2 , γ)|x -y| 2γ ˆ1 0 ˆT 0 (t -r) -γ-1 2 (1-γ) h 1 (t -r) h 2 2h 1 dr 2h 1 da ≤ C(h 1 , h 2 , γ)|x -y| 2γ ˆT 0 (t -r) h 2 -1-γ 2h 1 dr 2h 1 ≤ C(h 1 , h 2 , γ)|x -y| 2γ .
Similarly, we have

I 32 ≤ C(T, h 1 , h 2 )|x -y| 2γ .
Therefore we deduce that

I 3 ≤ C(T, h 1 , h 2 )|x -y| 2γ , (3.9) 
hence

E(u(t, x) -u(t, y)) 2 ≤ C|x -y| 2ν 1 for ν 1 ∈ (0, min{2h 1 + h 2 -1, 1}) = (0, 1)
. By a similar argument as above, we can get

E(u(t, y) -u(s, y)) 2 ≤ C|t -s| 2µ 1 for µ 1 ∈ (0, 1 2 min{2h 1 + h 2 -1, 1}) = (0, 1 2 
). That is, u(t, x) is µ 1 -Hölder continuous in t and ν 1 -Hölder continuous in x, where µ 1 ∈ (0, 1 2 ) and ν 1 ∈ (0, 1).

On the other hand, for any θ > 0, we recall

u θ (t, x) = 1 θ (u(t, x + θ) -u(t, x)),
and u θ (t, x) ∈ S, and

u θ (t, x) = ˆD 1 θ (p(t, x + θ, z) -p(t, x, z)) u 0 (z)dz + ˆt 0 ˆD 1 θ (p(t -s, x + θ, z) -p(t -s, x, z)) g(u(s, z), u θ (s, z))dzds + ˆt 0 ˆD 1 θ (p(t -s, x + θ, z) -p(t -s, x, z)) B H (ds, dz) = ˆD ˆ1 0 ∂ ∂x p(t, x + aθ, z)u 0 (z)dadz + ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -s, x + aθ, z)g(u(s, z), u θ (s, z))dadzds + ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -s, x + aθ, z)daB H (ds, dz). (3.10) 
Thus

u θ (t, x) -u θ (t, y) = ˆD ˆ1 0 ∂ ∂x p(t, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t, y + aθ, z)da u 0 (z)dz + ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da g(u(r, z), u θ (r, z))dzdr + ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da B H (dr, dz).
By Hypothesis 2.2 and Lemma 5.2, one gets

E ˆD ˆ1 0 ∂ ∂x p(t, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t, y + aθ, z)da u 0 (z)dz 2 (3.11) = E ˆ1 0 -ˆD (p(t, x + aθ, z) -p(t, y + aθ, z)) u ′ 0 (z)dz da 2 ≤ C|x -y| 2κ . Moreover E ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da g(u(r, z), u θ (r, z))dzdr 2 ≤ ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da dzdr × ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da E(g(u(r, z), u θ (r, z))) 2 dzdr ≤ C ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da dzdr 2 = C ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da ̺ × ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da 1-̺ dzdr 2 ≤ C|x -y| 2̺ ˆt 0 ˆD ˆ1 0 ˆ1 0 ∂ 2 ∂x 2 p(t -r, y + b(x -y) + aθ, z)dadb ̺ × ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da 1-̺ dzdr 2 ≤ C|x -y| 2̺ ˆt 0 ˆD ˆ1 0 ˆ1 0 ∂ 2 ∂x 2 p(t -r, y + b(x -y) + aθ, z)dadb ̺ × ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da 1-̺ dzdr 2 + ˆt 0 ˆD ˆ1 0 ˆ1 0 ∂ 2 ∂x 2 p(t -r, y + b(x -y) + aθ, z)dadb ̺ ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da 1-̺ dzdr 2    ,
where ̺ ∈ (0, 1). While, from Lemma 5.1 and Fubini theorem,

ˆt 0 ˆD ˆ1 0 ˆ1 0 ∂ 2 ∂x 2 p(t -r, y + b(x -y) + aθ, z)dadb ̺ ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da 1-̺ dzdr ≤ C ˆt 0 ˆD ˆ1 0 ˆ1 0 ˆ1 0 ∂ 2 ∂x 2 p(t -r, y + b(x -y) + aθ, z) ̺ ∂ ∂x p(t -r, x + cθ, z) 1-̺ dadbdcdzdr ≤ C ˆ1 0 ˆ1 0 ˆ1 0 ˆt 0 ˆD (t -r) -3 2 e -(y+b(x-y)+aθ-z) 2 4t ̺ (t -r) -1 e -(x+cθ-z) 2 4(t-r) 1-̺ dzdr dadbdc ≤ C ˆ1 0 ˆ1 0 ˆ1 0 ˆt 0 ˆD(t -r) -1-1 2 ̺ e -(y+b(x-y)+aθ-z) 2 4(t-r) drdz dadbdc ≤ C ˆt 0 (t -r) -1 2 -1 2 ̺ dr < ∞,
with -1 2 -1 2 ̺ > -1 as ̺ < 1. Similarly, by using the argument as in the proof of (3.9), we have

E ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -r, x + aθ, z)da - ˆ1 0 ∂ ∂x p(t -r, y + aθ, z)da B H (dr, dz) 2 = ˆ1 0 ∂ ∂x p(t -•, x + aθ, •)da - ˆ1 0 ∂ ∂x p(t -•, y + aθ, •)da 2 L 2 H = ˆ1 0 ∂ ∂x p(t -•, x + aθ, •)da - ˆ1 0 ∂ ∂x p(t -•, y + aθ, •)da γ ′ × ˆ1 0 ∂ ∂x p(t -•, x + aθ, •)da - ˆ1 0 ∂ ∂x p(t -•, y + aθ, •)da 1-γ ′ 2 L 2 H ≤ C(h 1 , h 2 , γ)|x -y| 2γ ′ where γ ′ ∈ (0, min{ 2h 1 +h 2 -1 2 , 1}) = (0, 2h 1 +h 2 -1 2 
). Putting together the estimates above, we deduce that

E(u θ (t, x) -u θ (t, y)) 2 ≤ C|x -y| 2ν 2 (3.12)
where ν 2 ∈ (0, min{κ, 2h 1 +h 2 -1

2

, 1}) = (0, min{κ, 2h 

2 ≤ C(T, h 1 , h 2 )|t -s| 2ι ,
where σ ∈ (0, 1 2 ) and ι ∈ 2h 1 +h 2 -1

3

. Therefore

E(u θ (t, x) -u θ (s, x)) 2 ≤ C|t -s| 2µ 2 ,
where

µ 2 ∈ 0, min κ 2 , 1 2 , 2h 1 + h 2 -1 3 = 0, min κ 2 , 2h 1 + h 2 -1 3 .
Thus we finish the proof of the theorem.

Well Solvability of SPDE

In this part, we study SPDE (2.3). Let v(t, x) = ∂ ∂x u(t, x). Then the SPDE (2.3) has the following equivalence expression:

   ∂u ∂t (t, x) = 1 2 ∆u(t, x) + g(u(t, x), v(t, x)) + ḂH , u(t, 0) = 0, u(0, x) = u 0 (x), (4.1)
which in turn means that the pair (u(t, x), v(t, x)) satisfies the coupled stochastic integral system: In fact, we only need to show that SPDE (4.1) possesses a solution (ū(t, x), v(t, x)), where ū(t, x) ∈ S and v(t, x) ∈ S.

         u(t, x) = ´D p(t,
As we have demonstrated, if(u(t, x), u θ (t, x)) is the solution of the equation (2.4), then u(t, x) ∈ S and u θ (t, x) ∈ S.

Let us consider

E(u θ 1 (t, x) -u θ 2 (t, x)) 2
as θ 1 → 0 and θ 2 → 0. According to (3.6), for τ 1 , τ 2 ∈ (0, 1), we may write and it follows that

u θ 1 (t, x) -u θ 2 (t, x) = ˆD ˆ1 0 ∂ ∂x p(t,
B 2 = ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -s, x + aθ 1 , y) g(u(s, y), u θ 1 (s, y)) -g(u(s, y), u θ 2 (s, y)) dadyds + ˆt 0 ˆD ˆ1 0 ∂ ∂x p(t -s, x + aθ 1 , y)da - ˆ1 0 ∂ ∂x p(t -s, x + aθ 2 , y)da g(u(s, y), u θ 2 (s, y))dyds := B 21 + B 22 .
By the same argument as in the proof of (3.12), we may conclude that

B 1 ≤ C|θ 1 -θ 2 | 2κ , B 22 ≤ C|θ 1 -θ 2 | 2̺ , and B 3 ≤ C|θ 1 -θ 2 | 2γ ′ .
Again by Lemma 5.1, one gets

B 21 ≤ C ˆt 0 (t -s) -1 2 sup y E u θ 1 (s, y) -u θ 2 (s, y) 2 ds.
Combining the estimates above, we have

E u θ 1 (t, x) -u θ 2 (t, x) 2 ≤ C |θ 1 -θ 2 | ̟ + C ˆt 0 (t -s) -1 2 sup y E u θ 1 (s, y) -u θ 2 (s, y) 2 ds, (4.3) 
where ̟ = min{2κ, 2̺, 2γ ′ }. Sending θ 1 → 0 and θ 2 → 0 and using Gronwall inequality, we get

sup x E u θ 1 (t, x) -u θ 2 (t, x) 2 → 0, t ∈ [0, T ].
Therefore, {u θ (t, x)} θ is a Cauchy sequence on S. The limit of these sequences exists (also belong to S), which is v(t, x).

Finally letting θ → 0, we denote the limit of (u(t, x), u θ (t, x)) by (ū(t, x), v(t, x)), which is the solution of the SPDE (4.1). The proof of this theorem is thus complete. 

Uniqueness

E (v 1 (t, x) -v2 (t, x)) 2 ≤ C ˆt 0 (t -s) -1 2 sup y E (v 1 (s, y) -v2 (s, y)) 2 ds +C ˆt 0 (t -s) -1 2 sup y E (ū 1 (s, y) -ū2 (s, y)) 2 ds. (4.5) Let Λ(t) = sup x E(ū 1 (t, x) -ū2 (t, x)) 2 + sup x E (v 1 (t, x) -v2 (t, x)) 2 .
Jointing with (4.4) and (4.5), we get

Λ(t) ≤ C ˆt 0 1 + (t -s) -1 2 Λ(s)ds. So Λ(t) = 0, as t ∈ [0, T ]. Then (ū 1 (t, x), v1 (t, x)) = (ū 2 (t, x), v2 (t, x)), as (t, x) ∈ [0, T ] × D,
in L 2 sense. Then we get the result of this theorem.

Regularity

Let (u(t, x), v(t, x)) be the solution of the equation (4.2). Then u(t, x) ∈ S and v(t, x) ∈ S, and u(t, x) is the solution of the equation (2.3). By similar arguments as in the proof of the Hölder continuity of the solution pair (u(t, x), u θ (t, x)) to the equation (2.4) in Section 3.3, one can show the Hölder continuity of u(t, x) and v(t, x) which we state as the following theorem, its proof is omitted.

Theorem 4.3. Assume that H h 1 ,h 2 , H u 0 and H g hold. Let u(t, x) be the solution of the equation (2.3). Then u(t, x) is µ 1 -Hölder continuous in t and ν 1 -Hölder continuous in x, where µ 1 ∈ (0, 1 2 ) and ν 1 ∈ (0, 1). Moreover, v(t, x) = ∂ ∂x u(t, x) is µ 2 -Hölder continuous in t and ν 2 -Hölder continuous in x, where µ 2 ∈ (0, min{ κ 2 , 2h 1 +h 2 -1 3 }) and ν 2 ∈ (0, min{κ, 2h 1 +h 2 -1 2 }).

Appendix

In this section, we review, for the convenience of the reader, a few elementary estimates about the Green function which are used in the paper. Recall that p(t, x, y) is the fundamental solution of the heat operator ∂ ∂t - For simplicity, set

ϕ(t, x) = 1 √ 2πt e -x 2 2t .
Then p(t, x, y) = ϕ(t, x -y) -ϕ(t, x + y).

If y > x > 0 and λ = y -x, then ˆD p(t, x, z)u 0 (z)dz -ˆD p(t, y, z)u 0 (z)dz = ˆD(ϕ(t, z -x) -ϕ(t, z -y))u 0 (z)dz This completes the proof of the lemma.

1 2 ∆.Lemma 5 . 1 ..≤ 2 dy= C|t -s| ω 2 .

 25122 on [0, ∞) subject to the Dirichlet boundary condition, given by the following explicit formulap(t, x, y) = 1 √ 2πt e -(x-y) 2 2t -e -(x+y) 2 2t For (t, x, y) ∈ [0, T ] × D × D, we have |p(t, x, y)| ≤ Ct -1 2 e -(x-y, x, y) ≤ Ct -1 e -(x-y, x, y) ≤ Ct -3 2 e -(x-y) 2 4t , ∂ 2 ∂x 2 p(t, x, y) ≤ Ct -3 2 e -(x-yx, y) ≤ Ct -2 e -(x-y) 2 4tLet us for example prove the second one, and the proofs for others are similar. SinceCt -1 e -(x-y) 2 4tand the proof is complete.Similarly, as in Bally et al.[START_REF] Bally | Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equation[END_REF], we have the following result. Lemma 5.2. Let u 0 be a ω-Hölder continuous real function with 0 < ω ≤ 1. Then ˆD p(t, x, z)u 0 (z)dz -ˆD p(s, y, z)u 0 (z)dz ≤ C |t -s| ω 2 + |x -y| ω for any s, t ∈ [0, T ] and x, y ∈ D = [0, ∞). In fact, by the semigroup property of p(t, x, y), we have ˆD p(t, x, z)u 0 (z)dz -ˆD p(s, x, z)u 0 (z)dz = ˆD ˆD p(s, x, y)p(t -s, y, z)u 0 (z)dydz -ˆD p(s, x, y)u 0 (y)dy = ˆD p(s, x, y) ˆD p(t -s, y, z)(u 0 (z) -u 0 (y))dz dy, so that ˆD p(t, x, z)u 0 (z)dz -ˆD p(s, x, z)u 0 (z)dz ≤ C ˆD p(s, x, y) ˆD p(t -s, y, z)|z -y| ω dz dy ≤ C ˆD p(s, x, y)|t -s| ω

-

  ˆD(ϕ(t, z + x) -ϕ(t, z + y))u 0 (z)dz= ˆD ϕ(t, z -x)(u 0 (z) -u 0 (z + λ))dz + ˆ0 -λ ϕ(t, z -x)u 0 (z + λ)dz -ˆ+∞ λ ϕ(t, z + x)(u 0 (z) -u 0 (z -λ))dz -ˆλ 0 ϕ(t, z + x)u 0 (z)dz ≤ ˆD ϕ(t, z -x)(u 0 (z) -u 0 (z + λ))dz + ˆ+∞ λ ϕ(t, z + x)(u 0 (z) -u 0 (z -λ))dz + ˆλ 0 ϕ(t, z + x)u 0 (z)dz -ˆ0 -λ ϕ(t, z -x)u 0 (z + λ)dz ≤ Cλ ω ˆD p(t, x, z)dz + ˆ0 λ ϕ(t, z + x)(u 0 (z) -u 0 (λ -z))dz ≤ Cλ ω + C ˆλ 0 ϕ(t, z + x)|2z -λ| ω dz ≤ Cλ ω = C|x -y| ω .

  locally integrable in t in order to apply Henry's Gronwall type inequality later. Theorem 3.1. Suppose H h 1 ,h 2 , H u 0 and H g hold, then there exists at most one solution (u(t, x), u θ (t, x)) of the SPDE (2.4), where u(t, x) ∈ S and u θ (t, x) ∈ S.Proof. Suppose (u(t, x), u θ (t, x)) and (ũ(t, x), ũθ (t, x)) are two solutions of the equation (2.2), then |u(t, x) -ũ(t, x)|

	=	ˆt 0	ˆD p(t -s, x, y) g(u(s, y), u θ (s, y)) -g(ũ(s, y), ũθ (s, y)) dyds
	≤ C	ˆt 0	ˆD |p(t -s, x, y)| |u(s, y) -ũ(s, y)| + |u θ (s, y) -ũθ (s, y)| dyds,
	so that, by Lemma 2.7,
		sup x	E|u(t, x) -ũ(t, x)| 2 ≤ C	ˆt 0	sup y	E|u(s, y) -ũ(s, y)| 2 ds
						+C	ˆt 0	sup y	E|u θ (s, y) -ũθ (s, y)| 2 ds.	(3.1)
	Since				
						u

θ (t, x) -ũθ (t, x)

  Using the same approach to (3.11), together with Lemma 5.2 and the Fubini theorem, we obtain

				E		ˆ1 0		∂ ∂x	p(t, x + aθ, z)da -	ˆ1 0	∂ ∂x	p(s, x + aθ, z)da u 0 (z)dz	2	≤ C|t -s| κ .
	On the other hand, by Lemma 5.1,
										∂ 2 ∂x∂t	p(t, x, y) ≤ Ct -2 e -(x-y) 2 4t	.
	So that							
				E	ˆt s	ˆD ˆ1 0	∂ ∂x	p(t -r, x + aθ, z)g(u(r, z), u θ (r, z))dadzdr	2	≤ C|t -s| 2σ ,
		E	ˆs 0	ˆD ˆ1 0		∂ ∂x	p(t -r, x + aθ, z) -	∂x ∂	p(s -r, x + aθ, z) g(u(r, z), u θ (r, z))dadzdr	2
	≤ C|t -s| 2σ			
	and								
						E		ˆ1 0	∂ ∂x	p(t -r, x + aθ, z) -	∂ ∂x	p(s -r, x + aθ, z) daB H (dr, dz)
	Next let us deal with the difference	1 +h 2 -1 2	}).
	=	u θ (t, x) -u θ (s, x) ˆD ˆ1 0 ∂ ∂x p(t, x + aθ, z)da -	ˆ1 0	∂ ∂x	p(s, x + aθ, z)da u 0 (z)dz
		+	ˆt s	ˆD ˆ1 0	∂ ∂x	p(t -r, x + aθ, z)g(u(r, z), u θ (r, z))dadzdr
		+	ˆs 0	ˆD ˆ1 0	∂ ∂x	p(t -r, x + aθ, z)da -	ˆ1 0	∂ ∂x	p(s -r, x + aθ, z)da g(u(r, z), u θ (r, z))dzdr
		+	ˆt 0	ˆD ˆ1 0	∂ ∂x	p(t -r, x + aθ, z)da -	ˆ1 0	∂ ∂x	p(s -r, x + aθ, z)da B H (dr, dz).

  Suppose the assumptions H h 1 ,h 2 , H u 0 and H g hold, then SPDE (2.3) possesses a solution in S.

	4.1 Existence	
	Theorem 4.1.	
	x, y)u 0 (y)dy + ´t 0 ´D p(t -s, x, y)g(u(s, y), v(s, y))dyds + ´t 0 ´D p(t -s, x, y)B H (ds, dy), v(t, x) = ´D ∂ ∂x p(t, x, y)u 0 (y)dy + ´t 0 ´D ∂ + ´t 0 ´D ∂ ∂x p(t -s, x, y)B H (ds, dy). ∂x p(t -s, x, y)g(u(s, y), v(s, y))dyds	(4.2)

  Theorem 4.2. Suppose the assumptions H h 1 ,h 2 , H u 0 and H g hold, then SPDE (2.3) has a unique solution in S. -s, x, y) (g(ū 1 (s, y), v1 (s, y)) -g(ū 2 (s, y), v2 (s, y))) dyds.

	= ˆD p(t Once again by using Lemma 5.1 and Lemma 2.7, ˆt 0
		sup x	E(ū 1 (t, x) -ū2 (t, x)) 2
	≤	ˆt 0	sup y	E(ū 1 (s, y) -ū2 (s, y)) 2 ds +	ˆt 0	sup y	E(v 1 (s, y) -v2 (s, y)) 2 ds.	(4.4)
	On the other hand,						
	v1 (t, x) =	ˆD ∂ ∂x	p(t, x, y)u 0 (y)dy +	ˆt 0	ˆD ∂ ∂x	p(t -s, x, y)g(ū 1 (s, y), v1 (s, y))dyds
		+	ˆt 0	ˆD ∂ ∂x	p(t -s, x, y)B H (ds, dy),
	and							
	v2 (t, x) =	ˆD ∂ ∂x	p(t, x, y)u 0 (y)dy +	ˆt 0	ˆD ∂ ∂x	p(t -s, x, y)g(ū 2 (s, y), v2 (s, y))dyds
	+ p(t -s, x, y)B Note that ˆt 0 ˆD ∂ ∂x
									vi (t, x) = lim
	Proof. Suppose (ū 1 (t, x), v1 (t, x)) and (ū 2 (t, x), v2 (t, x)) are two solutions on the equation (4.2).
	Then							
	ū1 (t, x) = ˆD p(t, x, y)u 0 (y)dy +	ˆt 0	ˆD p(t -s, x, y)g(ū 1 (s, y), v1 (s, y))dyds
				+	ˆt 0	ˆD p(t -s, x, y)B H (ds, dy),
	and							
	ū2 (t, x) = ˆD p(t, x, y)u 0 (y)dy +	ˆt 0	ˆD p(t -s, x, y)g(ū 2 (s, y), v2 (s, y))dyds
				+	ˆt 0	ˆD p(t -s, x, y)B H (ds, dy).
	Then							
		ū1 (t, x) -ū2 (t, x)

H (ds, dy). θ→0 ūθ i (t, x) ∈ S, with i = 1, 2. Similarly, by a similar argument for (4.3), we get sup x
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