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Abstract

So far, the order completion method for solving PDEs, introduced in
1990, can solve by far the most general linear and nonlinear systems of
PDEs, with possible initial and/or boundary data. Examples of solv-
ing various PDEs with the order completion method are presented.
Some of such PDEs do not have global solutions by any other known
methods, or are even proved not to have such global solutions.
The presentation next aims to be as summary, and in fact, sketchy as
possible, even if by that it may create some difficulty. However, nowa-
days, being subjected to an ever growing “information overload”, that
approach may turn out to be not the worst among two bad alterna-
tives.
Details can be found in [1], while on the other hand, alternative longer
”short presentations” are in [6-8].

0. Bare bones presentation

The most general systems of nonlinear PDEs and possibly associated
initial and/or boundary problems have equations of the form

(0.1) T (x,D)U(x) = F (x, U(x), ..., Dp
xU(x), ...) = f(x), x ∈ Ω

where Ω ⊆ Rn are open, possibly unbounded, p ∈ Nn, |p| ≤ m, F
jointly continuous in all arguments, f continuous, except for certain
possible discontinuities on closed, nowhere dense subsets of Ω.
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Clearly, we have the associated mappings

(0.2) Cm(Ω) 3 U T (x,D)−→ T (x,D)U ∈ C0(Ω)

The essential ingredient in solving such general PDEs like in (0.1) by
the order completion method is the following rather trivial and easy
to prove classical analysis result on local, one-sided approximative so-
lutions of the equations (0.1), namely

Lemma

Given f ∈ C0(Ω) which satisfies condition (2.4) in the section 2 below,
then

(0.3)

∀ x0 ∈ Ω, ε > 0 :

∃ δ > 0, P polynomial in x ∈ Rn :

∀ x ∈ Ω :

||x− x0|| ≤ δ =⇒ f(x)− ε ≤ T (x,D)P (x) ≤ f(x)
�

Now it is easy to patch up globally nearly on the whole of Ω the local,
one-sided approximative solutions obtained in the Lemma above, and
obtain

Proposition

Given f ∈ C0(Ω) which satisfies condition (2.4) in the section 2 below,
then

(0.4)

∀ ε > 0 :

∃ Γε ⊆ Ω closed, nowhere dense, Uε ∈ Cm(Ω \ Γε) :

f − ε ≤ T (x,D)Uε ≤ f on Ω \ Γε
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and one can assume that

(0.5) mes(Γε) = 0, ε > 0
�

As consequence, one can always obtain the existence of global solu-
tions U of equations (0.1), by suitable Dedekind order completion of
appropriate extensions of the spaces of functions Cm(Ω) and C0(Ω) in
(0.2).

The remarkable fact - see Theorem in section 4 below - is that such
global solutions U on the whole domain Ω always exist, and in addi-
tion, they can be assimilated with usual measurable functions on Ω.
In fact, these global solutions U are even more regular, being Haus-
dorff continuous, [2,3,7,9].

Therefore, contrary to the general perception, including of “leading”
specialists in PDEs, [5], the above Theorem - as well as its various
developments in [1,10], offer for the first time in the literature :

• type independent, general, blanket global existence and regu-
larity results for such unprecedented general nonlinear systems
of PDEs and their possibly associated initial and/or boundary
problems, as given by the PDEs in (0.1).

Remarks

1) An essential feature of the above order completion method in solv-
ing PDEs is that the construction of the Dedekind order completion
does not involve algebra, and even less topology, but instead, only set
theory and partial order relations.

2) A most important consequence is that the order completion method
does not distinguish between linear and nonlinear PDEs.

3) One can - if one wishes - set aside the whole of the usual theories
of weak, generalized, distributional, Sobolev type, and other similar
solutions.
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4) Needless to say, the usual solution theories for PDEs, focused on
their many highly specialized types of equations, can deliver results
with additional properties for solutions, and therefore, they are useful.

5) The fact, however, remains that, so far, the order completion
method for solving PDEs, as introduced in [1], is the only such method
in the known literature which has the above properties 1), 2) and 3).

And now, some details ...

1. What does it mean to solve an equation ?

(1.1) T (x) = y

(1.2) T : X −→ Y, y ∈ Y given, x ∈ X, x =?

Three cases :

(1.3.1) T bijective =⇒ ∀ y ∈ Y : ∃! x ∈ X : T (x) = y

(1.3.2) T surjective =⇒ ∀ y ∈ Y : ∃ x ∈ X : T (x) = y

and the difficult case :

(1.3.3) T not surjective =⇒ ∃ y ∈ Y : ∀ x ∈ X : T (x) 6= y

The following two most simple examples appear to exhaust all the
kind of situation that may appear when trying to solve equations by
the Dedekind order completion method :

Pythagoras

(1.4) x2 = 2

(1.5) X = Q 3 x T−→ T (x) = x2 ∈ Y = Q, y = 2 ∈ Q = Y

In this case, a solution of equation (1.4) is given by the Dedekind cut
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x = {r ∈ Q | r2 ≤ 2} ∈ R, thus this solution x ∈ R can be perfectly
approximated on the left side by rational numbers r in the mentioned
Dedekind cut.

Complex Numbers

(1.6) x2 + 1 = 0, x2 = −1

(1.7) X = R 3 x T−→ T (x) = x2 ∈ Y = R, y = −1 ∈ R = Y

Here, there is no way to set up a partial order on R, so as to obtain a
Dedekind cut in R which would approximate well enough the solution
x = i ∈ C of equation (1.6).

Fortunately, nonlinear systems of PDEs even of such generality as
those in (0.1) prove to belong to the first above case, that is, the case
of the equation (1.4) of Pythagoras.

2. The generality of PDE systems solved by order completion

(2.1) T (x,D)U(x) = F (x, U(x), ..., Dp
xU(x), ...) = f(x), x ∈ Ω

Ω ⊆ Rn open, possibly unbounded, p ∈ Nn, |p| ≤ m, F jointly con-
tinuous in all arguments, f continuous, except for certain possible
discontinuities on closed, nowhere dense subsets of Ω.

Let

(2.2) Rx =

{
F (x, ξ0, ..., ξp, ...)

p ∈ Nn, |p| ≤ m
ξp ∈ R

}
, x ∈ Ω

and the corresponding conditions :

(2.3) f(x) ∈ Rx, x ∈ Ω

(2.4) f(x) ∈ int(Rx), x ∈ Ω
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Obviously

(2.5) ( Rx = R, x ∈ Ω ) =⇒ (2.4) =⇒ (2.3)

We shall assume (2.4).

3. Local one-sided solutions

Lemma

Given f ∈ C0(Ω), then

(3.1)

∀ x0 ∈ Ω, ε > 0 :

∃ δ > 0, P polynomial in x ∈ Rn :

∀ x ∈ Ω :

||x− x0|| ≤ δ =⇒ f(x)− ε ≤ T (x,D)P (x) ≤ f(x)

Proposition

Given f ∈ C0(Ω), then

(3.2)

∀ ε > 0 :

∃ Γε ⊆ Ω closed, nowhere dense, Uε ∈ Cm(Ω \ Γε) :

f − ε ≤ T (x,D)Uε ≤ f on Ω \ Γε

and one can ssume that

(3.3) mes(Γε) = 0, ε > 0

Corollary
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Given f ∈ C0(Ω), then

(3.4)

∀ x0 ∈ Ω :

∃ δ > 0 :

∀ A ⊆ B(x, δ), A finite :

∃ U ∈ C∞(Ω) :

T (y,D)U(y) = f(y), y ∈ A

and furthermore

(3.5)

∀ A ⊆ Ω, A discrete :

∃ U ∈ C∞(Ω) :

T (x,D)U(x) = f(x), x ∈ A

4. Global solutions

For 0 ≤ l ≤ ∞, let

(4.1) Clnd(Ω) =

 u
∃ Γ ⊆ Ω, Γ closed, nowhere dense :

u ∈ Cl(Ω \ Γ)


Then

(4.2) Cm(Ω) ⊂ Cmnd(Ω)
T (x,D)−→ C0nd(Ω) ⊂ M̂0

nd(Ω)
id−→ P(C0nd(Ω))

and thus we have the injective mapping

(4.3) M̂m
T (Ω)

T̂−→ M̂0
nd(Ω)

id−→ P(C0nd(Ω))

where X̂ denotes the Dedekind order completion of the poset (X,≤),
according to MacNeille, 1937, [1].
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Also, we have the commutative diagram

Cmnd(Ω) 3 U T (x,D)−→ T (x,D)U ∈ C0nd(Ω)
(4.4) ↓ ↓

M̂m
T (Ω) 3< U ]

T̂−→ T̂ (< U ]) ∈ M̂0
nd(Ω)

where for U, V ∈ Clnd(Ω), we have

(4.5) U ≤ V ⇐⇒ U(x) ≤ V (x), x ∈ Ω \ Γ

with U, V ∈ Cl(Ω \ Γ), Γ ⊂ Ω, Γ closed, nowhere dense, and

(4.6) < U ] = {V ∈ Clnd(Ω) | V ≤ U}

Theorem

We have

(4.7) T̂ (M̂m
T (Ω)) = M̂0(Ω)

In other words

(4.8)

∀ A ∈ Ĉ0nd(Ω) :

∃! F ∈ M̂m
T (Ω) :

T̂ (F ) = A

Remark

Let U ∈ Cm(Ω \ Γ), where Γ ⊂ Ω, Γ closed, nowhere dense, be such
that

(4.9) T (x,D)U(x) = f(x), x ∈ Ω \ Γ

then F =< U ] is a solution of (4.8).
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5. Examples ( see [1], pp. 65-73)

Questions :

1) What is the nature of the generalized solutions obtained in (4.8) ?

2) How are these generalized solutions connected to the earlier known
classical, weak, distributional, Sobolev space, and other such general-
ized solutions ?

3) What is the meaning of the uniqueness property of solutions in
(4.8) ?

Answer to questions 1) and 2) : The generalized solutions in (4.8) can
be assimilated to usual measurable functions on Ω. Furthermore, due
to very important results obtained by Roumen Anguelov, they can
be assimilated with significantly more regular functions, namely with
Hausdorff continuous ones, [2,3,5-8]. And still more, due to similarly
important result obtained by Jan-Harm van der Walt, such general-
ized solutions can be even more regular,[10].
Consequently, the whole earlier theory of generalized functions and
solutions is no longer necessary.
Not to mention that that earlier theory cannot come anywhere near
to the solution of such general systems of nonlinear PDEs and the
possibly associated initial and/or boundary problems.

The answer to question 3) is as follows. The unique generalized solu-
tion in (4.8) simply contains all the possible solutions of the respective
PDE. This fact can also be seen in the examples next.

Example 1

Let Ω ⊂ R2 an open bounded set, and let f ∈ C0(R) be a non-
differentiable function on a dense subset S ⊂ R. We consider the
PDE, more precisely, the ODE

(5.1) DtU(t, y) = f(y), x = (t, y) ∈ Ω
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Then the PDE (5.1) does not have any solution U ∈ C1nd(Ω).

However, the unique generalized solution F ∈ M̂m
T (Ω) in (4.8) con-

tains all the functions U ∈ C1(Ω \ Γ), where Γ ⊂ Ω closed, nowhere
dense, and

(5.2) DtU(t, y) ≤ f(y), x = (t, y) ∈ Ω \ Γ

Example 2

Let

(5.3) DtU(t) = 0, t ∈ Ω = (−1, 1) ⊂ R

whose classical solutions are

(5.4) U(t) = c, t ∈ Ω = (−1, 1)

where c ∈ R are given arbitrary. We shall now follow the way the
unique generalized solution F ∈ M̂m

T (Ω) in (4.8) are constructed. It
is easy to see that F contains all the functions of the form

(5.5) U(t) = ενt+ cν , t ∈ Ων

where for ν ∈ N, we have εν , cν ∈ R, εν ≤ 0, Ων ⊆ (−1, 1), open,
pair-wise disjoint, and such that

⋃
ν∈N Ων dense in (−1, 1). Thus

(5.6) DtU(t) ≤ 0, t ∈
⋃
ν∈N Ων ⊂ (−1, 1)

Some further details

Here we try do convey the essence of the order completion method,
and do so without getting in all the details. However, the following
minimal details may be useful. We start, as we have seen, with the
equation, see (1.1)

(5.7) T (x,D)U(x) = f(x), x ∈ Ω
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and thus with the mapping, see (1.2)

(5.8) Cm(Ω)
T (x,D)−→ C0(Ω)

In view of the above Proposition, we extend it to the mapping

(5.9) Cmnd(Ω)
T (x,D)−→ C0nd(Ω)

which extension is obvious, since C0(Ω) ⊂ C0nd(Ω) and Cm ⊂ (Ω)Cmnd(Ω),
thus we have the commutative diagram

Cm(Ω)
T (x,D)−→ C0(Ω)

(5.10) ↓⊂ ↓⊂
Cmnd(Ω)

T (x,D)−→ C0nd(Ω)

Now it is convenient, from the point of view of order completion, to
go to the mapping

(5.11) Mm
T (Ω)

T−→M0(Ω)

constructed as follows. For 0 ≤ l ≤ ∞, we define the equivalence
relation ≈ on Clnd(Ω) by

(5.12) u ≈ v ⇐⇒ ∃ Γ ⊂ Ω closed, nowhere dense : u = v on Γ

and then

(5.13) M0(Ω) = C0(Ω)/ ≈

Further, we define the equivalence relation ≈T on Cm(Ω) by

(5.14) u ≈ v ⇐⇒ T (x,D)u ≈ T (x,D)v

and then

(5.15) Mm
T (Ω) = Cm(Ω)/ ≈T
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And now, the commutative diagram (5.10) obviously extends to the
commutative diagram, see (5.11)

Cm(Ω)
T (x,D)−→ C0(Ω)

↓⊂ ↓⊂
(5.16) Cmnd(Ω)

T (x,D)−→ C0nd(Ω)
↓ ↓
Mm

T (Ω)
T−→M0(Ω)

to which the 1937 Dedekind order completion method of MacNeille is
applied, [1], leading to the commutative diagram

Cm(Ω)
T (x,D)−→ C0(Ω)

↓⊂ ↓⊂
Cmnd(Ω)

T (x,D)−→ C0nd(Ω)
(5.17) ↓ ↓

Mm
T (Ω)

T−→M0(Ω)
↓ ↓

M̂m
T (Ω)

T̂−→ M̂0(Ω)

Example 3

Here are several further examples of PDEs or systems of PDEs which
do not have solutions or are proved not to have solutions, be they
local or global, classical, weak, distributional, Sobolev, or any usual
generalized ones.

In view of Example 1, the PDE

(5.18) (Dt + λDy)U(t, y) = f(y − λt), x = (t, y) ∈ Ω ⊆ R2

where λ ∈ R is given, cannot have solutions U ∈ C1nd(Ω), for arbitrary
f ∈ C0(Ω).

Similarly, the second order hyperbolic PDE
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(5.19) (Dt+λDy)(Dt+µDy)U(t, y) = f(y−λt), x = (t, y) ∈ Ω ⊆ R2

where λ, µ ∈ R is given, cannot have solutions U ∈ C2nd(Ω), for arbi-
trary f ∈ C0(Ω).

Further, let Ω be the open unit ball in R3. Then it is known that there
exist functions f ∈ C0(Ω̄) and dense subsets S ⊂ Ω, such that every
weak solution U on Ω of the PDE

(5.20) ∆U(x) = f(x), x ∈ Ω

is not C2-smoth at any point of S, thus in particular, we cannot have
U ∈ C2nd(Ω).

Let us now recall a classical 1928 result of Perron for systems of PDEs
in two unknown functions U, V , of the form

(5.21)
DtU(t, y)−DyU(t, y)−DyV (t, y) = 0

aDyU(t, y)−DtV (t, y) +DyV (t, y) + f(t+ y) = 0

where a ∈ R is given, while x = (t, y) ∈ [0,∞) × R, and the initial
data hold

(5.22)
U(0, y) = 0

V (0, y) = 0

for y ∈ R.

Then it is known that the necessary and sufficient condition for the
existence of a C1-smooth solution U, V is to have satisfied on of the
three conditions :

(5.23) f ∈ C0, if a > 0

(5.24) f ∈ C2, if a = 0

(5.25) f analytic, if a < 0
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Therefore, (5.21), (5.22) cannot have solutions U, V in C1nd.

Two more examples.

It was shown that the PDE

(5.26) Dy(u(x, y) + iv(x, y)) + iyDx(u(x, y) + iv(x, y)) =

= f(x, y) + ig(x, y), (x, y) ∈ R2

does not have any distributional solutions in any neighbourhood of
(0, 0) ∈ R2, for certain C∞-smooth f, g. Now, if we re-write (5.26) as
the system

(5.27)
Dyu(x, y)− yDXv(x, y) = f(x, y)

Dyv(x, y) + yDxu(x, y) = g(x, y)

then it is covered by the above Theorem’s extension to systems.

Last, the celebrated 1957 example of Hans Lewy is the PDE

(5.28) DxU(x, y, z) + iDyU(x, y, z)− 2i(x+ iy)DzU(x, y, z) =

= f(x, y, z), (x, y, z) ∈ R3

which does not have distributional solutions in any neighbourhood of
any point in R3, for a large class of C∞-smooth functions f .
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