
HAL Id: hal-01064202
https://hal.science/hal-01064202v1

Submitted on 15 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture Description Language for Cyber Physical
Systems Analysis: A Railway Control System Case

Study
Nesrine Darragi, El Miloudi El Koursi, Simon Collart-Dutilleul

To cite this version:
Nesrine Darragi, El Miloudi El Koursi, Simon Collart-Dutilleul. Architecture Description Language
for Cyber Physical Systems Analysis: A Railway Control System Case Study. 14th International
conference on Railway Engineering Design and Optimization (COMPRAIL), Jun 2014, Italy. 14p.
�hal-01064202�

https://hal.science/hal-01064202v1
https://hal.archives-ouvertes.fr

Architecture Description Language for Cyber
Physical Systems Analysis: A Railway Con-
trol System Case Study

N. Darragi1, E.M. El-Koursi1, S. Collart-Dutilleul1
1IFSTTAR-ESTAS, Universite Lille Nord de France

Abstract

Cyber Physical Systems (CPSs) are the next computing revolution and
the new generation of complex System of Systems (SoSs). CPSs are complex
and ubiquitous embedded devices coupled with global integration respecting
Moore’s Law. Therefore, to fit with their new characteristics, we are facing
several challenges, such as the proliferation and the integration of these
systems into scalable environment.
A main concern of embedded real-time systems is safety. For such safety-

critical systems, not only correct results count, but also the runtime duration
for producing them. To ensure the dependability of such systems, which is
not a local property of the system, but a global system property, the SoS
safety has to be assessed, evaluated and checked according to its specific
runtime context.
In an attempt to address the challenges, we propose two domain specific

languages for modeling the system architecture and the dynamic behavior
of heterogenous systems and their interactions. This paper shows how to
develop an approach of real-time system design based on an extension of
Milner’s Calculus Communicating Systems since languages which are based
on process algebra provide suitable features to formalise components com-
munications.

1 Introduction

CPSs are physical engineered systems whose operations are monitored, coor-
dinated, controlled and integrated by a computing and communication core.
The need to specify the architecture model of such systems is justified by
five main benefits [8]; the comprehension of the architectural description at
a level of abstraction, the reuse of the design pattern at multiple levels, the
identification of the system components and their dependencies, the sim-
plification of the evolution process and finally the provision of features to
analysis and consistency checking.
Development paradigms, such as object- oriented, component- oriented

and agent- oriented provide several mechanisms of abstraction, polymor-
phism and encapsulation to describe CPS architectures, which have an
impact on the system architecture appearance within the whole complex
implementation. The architecture description language (ADL) is used to
define the borders and bindings between system components. According to
[10], an ADL is a formal or semi-formal notations that could be textual or
graphical allowing to specify system dynamic architecture and behavior. In
the literature, several ADLS that rely on different paradigms, have been
developed to model system architecture and system analysis and design.
Some examples of well-known ADL are π-ADL [14] which is based on the
higher order typed π-calculus, AADL for (Architecture Analysis & Design
Language) [6], ACME/Plastik [11] which rely on first order predicate logic,
Dynamic Wright [1] which is based on communicating sequential processes,
... Several studies on ADL classification and comparison [12] [16], demon-
strate that these ADLs support one or many features as below and not all
of them; the architecture description, the behavior modeling, the dynamic
reconfiguration of the architecture (i.e., the modification of a software at
runtime).
In this work, we propose an ADL which relies on Milner’s π-calculus which

is an extension of Calculus for Communicating System (CCS) [15] and which
handles stochastic models. The ADL is based on a history-based specifica-
tion approach so-called GORE for Goal Oriented Requirement Engineering
[13]. The conceptualisation of the ADL with labelled transition systems is
to capture a meta-model or core model of structural and dynamic system
architecture. The benefits of GORE approach are various, such as the nat-
ural structuring of complex requirements specifications in different formal
levels (Semi-formal and formal modeling). In fact, in GORE, goals are con-
sidered as perspective assertions that should hold in the system concerning
software-to-be, execution environment, domain properties, expectations,...

Goals provide also a precise criterion for sufficient completeness and perti-
nence.Furthermore, a goal model may easily express the complex constraints
or the complex dependent behavior between agents of the system. IPL sup-
ports the dynamic reconfiguration of embedded and mobile systems.
In this paper, we give a brief description of our framework INSAC (INtel-

ligent SAfety Checker) which use the proposed ADL. INSAC is based on
GORE methodology which used to express system requirements in a high
level of abstraction in terms of objectives and goals to achieve under con-
straints. It uses semantic nets for conceptual modeling of goals (services or
quality of services), agents (active system components), objects (entities,
relationships, events) and operations (Input-Output relations over objects),
the first-order logic for the specification of goals and objects and state-base
specifications for operations.
Our works focus on the verification and validation of CPSs. Therefore,

we proposed the framework INSAC for the specification of CPSs require-
ments , the modeling and the formal verification. In this paper, we present a
high-level architecture description language (ADL) to describe the complex
architecture of CPSs and the scalable runtime environment interactions by
using a description language IPL (INSAC Prescription Language), and sec-
ond, to describe the dynamic of the system by using the modeling language
IML (INSAC Modeling Language).
This work is structured as follows. Section 2 describes the framework, its

scope and its architecture. Section 3 motivates this work thanks to the exam-
ple of railway telecommunication system GSM-R of the European Railway
Traffic Management System (ERTMS). The GSM-R architecture is illus-
trated by making use of the proposed ADL. In the same section, an exten-
sion of IPL so-called IML for INSAC Modeling Language is presented in
order to describe the dynamic behavior model of the CPS.

2 Intelligent Safety Checking Framework

2.1 The scope

The INSAC framework focus on the analysis, the design and the simulation
processes of the system life-cycle. From the system requirement specifica-
tions (SRS), structured requirements with templates guided by a context-
free grammar and based on a domain-specific ontology, are generated [3].
The analysis process is verified and validated by a testing method [4]. The
second process is the design of specifications which provides an offline model
of the SoS describing the architecture and the dynamic behavior of each sys-

tem coupled with other systems. This step is also verified and validated by
several approaches, such as well-known and widely-used provers and model-
checkers in a comparison study. The last step is the dependability verifi-
cation and the safety checking of the CPS based on the simulation. This
process provides online models which are the refinement of offline ones. The
simulation is based on MAS (Multi-Agent Systems).

Figure 1: The scope of INSAC Framework

2.2 The architecture

A component by definition [19] is ”a piece of software offering (via an inter-
face) a predefined service and which is able to communicate with other
components”. A component may be composed of other components and
encapsulated for a longer lifetime of implementations. Components allow a
multiple-use which means the support of distributed and parallel execution
of sub-services. It is non-context-specific. Therefore, it could be exchange-
able and it allows the linkage avoidance of different software units.
In fact, a component is a trend to describe mechanical or electrical systems

without the need to know details about all components of the system and
the SoS. The model of a component that we proposed is shown in figure 2.
The component model shows its main characteristics, such as the signature
or the identification ID, the type and the category of the component named

in the figure 2 role, tasks which represent functional requirements, states of
the components or the functioning modes, used resources which could be
local or distributed data or objects, constraints of the run-time execution
which represent in reality the non-functional requirements, such as the safety
requirements and, finally, what we call here by communication protocol,
which is the interaction strategy with other components.
CPSs are complex SoSs composed of several components with hard time

constraints. New SoS designs should take into account the complexity of
coupled models of different involved systems and also unexpected interac-
tions with components from run-time environments. The previous model
(figure 2) allows only the description of the human interactions with the
system via interfaces, but not the behavior of the human agent as a ”com-
ponent” of the system which could be identified and defined as an entity
that has an impact on the dependability and the safety of the system.

Figure 2: The traditional component composition

According to this criterion, a new definition of system ”components” is
proposed and shown by figure 3. Due to the complexity of SoS architectures
and interactions, it is very important to show the interaction between sys-
tems, which could be resumed on five modes; the computation components,
shared resources, controlled plant, human operators or the larger environ-
ment.
We distinguish two categories of agents; atomic agents and compound

agents. The first category or the so-called atomic agents are those that
have a simple structure without explicit parallel composition but could per-
form sequential or parallel tasks. The second category concerns the so-called

compound agents which are composed of at least two atomic agents working
simultaneously.
New added characteristics are shown in bold in figure 3. The system com-

ponents are represented by agents which could be physical, logical or human
entities. An agent, according to [9],[7], is adaptive (i.e., able to understand),
rational (i.e., entities that do ”right things” given what they know [18]),
autonomous entity that is able to communicate with other agents and to
react within its environment. An agent belongs to an environment in which
there is a ”problem” to which rational agents are a ”solution”.
Typically, each agent has a set of capabilities (i.e., the set of methods

that an agent could perform), tasks which are the same for components, but
they are re-defined to support the new agent characteristics (see figure 3),
goals (i.e., the non-functional requirements concerning the quality of services
that should be held until the execution of tasks), a set of responsibilities,
the knowledge (i.e., the internal data and rules which are the results of
” social experiences” within the execution environment with other agents.
Knowledge is changeable and adaptable to new constraints), belief concerns
the vision of the agent on its environment (i.e., the set of environment
states), a set of faults which are incorporated in the definition of the system
agent.

Figure 3: The INSAC agent model

3 CPS Architecture Description using IPL

3.1 Introduction

The most important characteristic of distributed systems is communication.
When there are communication between logical components or human and
computational systems, there are some activities that should be taken into
account, such as the establishment and the generation of the communication,
the interpretation of responses and interactions, the understanding of these
interactions and the internalisation of the knowledge issued and required
for the communication by a learning process to be reused in the future with
similar situations. Since the IPL is used to describe the logical, physical and
human communication inside the SoS architecture, the proposed syntax
plays an important part in guiding the user in the complex architecture
modeling process. IPL is a language with a grammar similar to the Extended
Backus-Naur Form (EBNF) providing a specific language in order to avoid
ambiguity, to have a brief and ordered descriptions.

3.2 Abstract IPL Syntax

The IPL uses many concepts that are considered essential to define the
dynamic architecture and, in future works, the dynamic behavior of CPSs.
In ADL these concepts are presented as reserved words.
Agent represents a physical, logical or human entities of the SoS. It is an

adaptive, rational entity that is able to communicate with other entities of
the same ”world” (i.e., System or Subsystem). Another definition says that
an agent is an object with process characteristics and which is guided by its
own goals and constraints.
Role is the main function or behavior of an agent which could be processing,

communicating,...
Goal is the set of requirements that must be achieved, ceased, maintained

or avoided during the execution of tasks. A goal is composed of a pattern [5],
a status and a set of states used to determine a predicate (i.e., assertions on
agent properties). This latter describes ”Desires” of a BDI(Belief- Desire-
Intention) agent [2]. A goal describes situations that are desirable for the
agent.
States define the belief of a BDI agent which is a predicate describing a

set of states.
Capabilities represent services, actions and abstract plans which the agent

is able to perform.

Faults represent failure modes of an agent. A fault has a type, a prior-
ity{Low, Medium, High, Critical}, a status{corrected,
non-corrected, under-correction}
Responsibilities indicate if the agent is mainly responsible for maintaining

a goal or achieving a plan. This is used only in the case of a shared goal or
plan.
Resources designates characteristics that an agent needs to perform a

task.
Bindings are dynamic interactions (i.e., a single or sequence of events

or actions exchanged between agents according to a specification. It desig-
nates the agent interfaces which include actuators (or effectors) and sensors.
Called also connector, it is an architectural entity which defines connections
between agents.
Knowledge is a structured base of concepts representing information and

data aquired by the agent about its environment and formal rules (i.e., a
set of condition-action rules) determining how these data represent objects
or attributes of the current or other agents and their relationships.
CommunicationProtocol is a domain-specific ontology composed of struc-

tured terms, which describe words used to communicate between the sender
and the receiver, and rules determining how terms are structured and used.
Configuration is a topology of agents describing how connections are

established between them.
Plan defines a sequence of sequential or parallel tasks.

The relationship between agents are managed by some reserved words as
below; ”isA” designates the instantiation of an agent from a category of enti-
ties. ”as” designates the nature of an agent which could be HumanEntity,

PhysicalEntity, LogicalEntity.” belongsTo” is used to represent the
hierarchy of the agent (i.e,. its instantiation)

3.3 GSM-R Specification using IPL

The European Railway Traffic Management System (ERTMS) is composed
of three major systems; the train-based computer ETCS (European Train
Control System), the system of telecommunication GSM-R (Global Sys-
tem Mobile communication for Railway) used for communication on-board/
Trackside and vice versa, and the traffic management system ETML (Euro-
pean Traffic Management Layer) which is currently still in the demonstra-
tion phase.
To allow interoperability and to ensure the transition between different

Figure 4: The GSM-R in ERTMS Infrastructure

signalling systems, trains are equipped by embedding subsystems so-called
EVC for European Vital Computer and the specific system of transmission,
STM, for the Specific Transmission Module.
In ETCS level 2, the trackside is composed of many elements, as shown in

figure 4, such as the Radio Block Center or Controller (RBC) which is the
management module of radio transmissions between trackside and on-board
for a limited area and the entity that delivers the movement authority (MA).
RBC handles entry and exit of trains of the controlled area including the
handover, train localisations, the allocation of free tracks. It handles pertur-
bations and incidents, deals with real-time data and requests for MA and
works as an interface for trains with different and various communication
protocols as shown in figure 5.
To show how to extract a prescription of the system architecture, we

consider a communication protocol example in the listing 1.1.

Figure 5: The GSM-R Architecture

Listing 1.1: ERTMS Architecture using IPL

ERTMS isA C o n f i g u r a t i o n ;

Agent ETCS b e l o n g s T o ERTMS;

Agent ETCS−ONB b e l o n g s T o ETCS;

Agent ETCS−TRS b e l o n g s T o ETCS;

Agent GSM−R−System b e l o n g s T o ERTMS;

Agent GSM−R−FN b e l o n g s T o GSM−R−System

b e l o n g s T o ETCS−TRS; /∗Fixed Network∗/

Agent GSM−R−MRD work s GSM−R−System work s ETCS−ONB:

/∗Mobile Radio Device (with sim card)∗/

Ro l e := Communicating .

Goa l := ”Achieve a secured message t ransmi s s i on ” .

S t a t e s := {wait ing , r e c e i v i ng , sending ,

e s t a b l i s h i n gFa i l , i nd i c a t i onLo s i ng } .

C a p a b i l i t i e s := { s t a r t S e r v i c e () , f i n i s h S e r v i c e () ,

reqData () , a l e r t () , r e po r tPo s i t i on () ,

connect () , deconnect () } .

B i n d i n g s := {Ef fec torPort , SensorPort } .

F a u l t s := { connect ingError , receivingMSGError ,

sendingMSGError , p roce s s ingError ,

connect ionLosses , t ransmis s ionError ,

handoverError , f a i l edToAct ivate ,

fai ledToConnext , fa i l edToTerminate } .

R e s p o n s i b i l i t i e s := processingLocalMSG .

Re s o u r c e s := SimCard ,

Knowledge := {CryptologyKey , HomeLocationRegister ,

IMSI , MSISDN, PIN ,

PIN2 , RoamingData , MCC, MNC, TMSI} .

Commun i c a t i o nP r o t o c o l := GSMROntology .

;

Agent ETCS−MERID work s ETCS−ONB:

/∗Mobile Euro−radio in t e r f a c e device ∗/

Agent ETCS−FERID work s ETCS−TRS;

/∗Fixed Euro−radio in t e r f a c e device ∗/

Agent RBC work s ERTMS;

Agent BSS b e l o n g s T o GSM−R−System ;

/∗Base Stat ion System Def in i t ion ∗/

Agent BTS b e l o n g s T o BSS :

Ro l e := Communicating .

Goa l :=”Achieve a secured message t ransmi s s i on ” .

S t a t e s := {wait ing , r e c e i v i ng , sending } .

C a p a b i l i t i e s := { r e c e i v e () , send () , s t a r t S e r v i c e () ,

f i n i s h S e r v i c e () , estConnect ion () ,

a u t h e n t i f i c a t i o n () , TCHAssgnment () ,

ca l lCon f i rmat i on () , setCipheringMode () ,

a l e r t () } .

B i n d i n g s :={SensorPort , E f f e c t o rPor t }

F a u l t s :={ connect ingError , receivingMSGError ,

sendingMSGError , p ro c e s s i ngEr ro r } .

R e s p on s ab i l i t i e s := ach iev ingTransmiss ion .

Commun i c a t i o nP r o t o c o l := GSMROntology .

;

Listing 1.2: Simplified GSM-R in ERTMS configuration

ERTMS i sA C o n f i g u r a t i o n :

connector1 i sA Conn e c t o r .

connector2 i sA Conn e c t o r .

system1 i sA GSM−R−MRD.

system2 i sA BTS.

P l an i sCompo s ed {

i n P a r a l l e l := system1 . s t a r t S e r v i c e () ,

system2 . s t a r t S e r v i c e () .

}

connector1 b i n d s system1 : : SensorPort t o

system2 : : E f f e c t o rPor t .

connector2 b i n d s system2 : : SensorPort t o

system1 : : E f f e c t o rPor t .

;

A configuration consists of the interconnections and bindings and inter-
faces of agents. In the listing 1.2, ERTMS specifies a part of the configuration
of the SoS and which is composed by two components (atomic agents) and
connections between them. These latters are designated by (Connector) via
bindings (SensorPort, EffectorPort).

3.4 IPL extension for modeling dynamic behavior

A CPS is a collection of heterogenous models and specifications. Each model
is a formal description of a system of subsystems. CPS is a set of systems
working concurrently with interactions, which is central to distributed real-
time systems such as embedded. The extension of IPL will be the IML for
INSAC Modeling Language and which is dedicated to describe the dynamic
behavior of the CPS.
We distinguish two different models; the atomic model (AM) describes

the dynamic behavior of every atomic agent and the so-called cyber model

(CM) which is a coupled model driven by goals and operations where cyber
capabilities (i.e. integration capability) are performed by agents. The CM
describes the dynamic behavior of compound agents. The communication of
every agent with its environment is via interfaces or communication ports
called also channels. In the example (Listing 1.3), we show a simplified
behavioral model of the mobile device onboard which has two parallel pro-
cesses (Sensoring(), reportPosition()).

Listing 1.3: The dynamic behavior of the mobile device

Agent GSM−R−MRD work s GSM−R−System work s ETCS−ONB:

P l an i sCompo s ed {

i n P a r a l l e l := Sensor () , r epo r tPo s i t i on () .

}

p e r f o rm i n g Sensor () b e g i n

on () do{

r e c e i v e (REQUEST ChannReq) .

}

p r o v i d e s connect () .

end

p e r f o rm i n g r epo r tPo s i t i on () b e g i n

s t a r t C l o c k .

on (wait (rand)) do {

c h o o s e {

connect () .

o r

a l e r t (FailedToConnect) .

}

} c a t c h (e r r o r)

/∗wait (5) means tha t the system

i s i d l i n g for a de termis t i c de lay (5 time uni t s) and

rand i s a s t o cha s t i c de lay with duration guided by

a random var i ab l e ∗/

end ;

4 Conclusion

Due to the size and the complexity of CPSs, many challenges are encoun-
tered when checking the safety of systems. First, we have a large amount
of system information and knowledge to extract, to handle, to understand
and to design in different levels of granularity and various perspectives.
This paper presents the INSAC Prescription Language which is a high-

level domain specific languages destinated to design cyber physical systems
and the complex interactions between components called agents. The goal-
oriented requirement engineering is used to provide the framework method-
ology of INSAC which use IPL at different levels of modeling.
IPL allows the description of the architecture of concurrent systems mod-

eled by multi-agent systems. We are working on IML, which is an extension
of IPL.It is supposed to provide features to describe the dynamic behav-
ior of system agents and their interactions and communications. They will
support various levels of abstractions (from high level specification to a
fine granular level) which allow the description of the concurrency, the task
distribution, the real-time environmental characteristics, the timed agents,

stochastic tasks and, finally, synchronous and asynchronous communica-
tions.

References

[1] Allen, A., Douence, R., Garlan, D.: Specifying dynamism in soft-
ware architectures. In proceedings of the workshop on Foundations of
Componenets-Based Systems, pages 11-22.(1997)

[2] Bratman, M., E.: Intention, Plans, and Practical Reason. CSLI Publi-
cations. ISBN 1-57586-192-5.(1987)

[3] Darragi, N., Collart-Dutilleul, S., El-Miloudi, E.: Requirements Specifi-
cation Methodology Based On Knowledge Engineering: A case Study of
Railway Control system. Journal of Information and Knowledge Man-
agement. ISSN (Paper)2224-5758. pages 37-47(2014)

[4] Darragi, N., Collart-Dutilleul., S., El-Miloudi, E.: Modeling and Veri-
fication Methodology for Control Systems. In proceeding of Transport
Research Arena Europe. To appear (2014)

[5] Darragi, N., Bon, P., Collart-Dutilleul, S., El-Koursi, E.: Tropos for
Embedded REal-time Control System Modeling and Simulation. In Pro-
ceeding Workshop on Analysis Tolls and Methodologies for Embedded
and Real-tie Systems.(2013)

[6] Feiler, P., H., Gluch, D., P., Hudak, J., J.: The Architecture Analysis &
Design Language (AADL): An Introduction. Publisher: Software Engi-
neering Institute. CMU/SEI-2006-TN-011. (2006)

[7] Ferber J., Eco Problem Solving: how to solve a problem by interactions,
In proceedings of 9th workshop on Distributed Artificial Intelligence.
(1989)

[8] Fulkner, S., Kolp, M., Wautelet, Y., Achbany, Y.:A formal description
Language for MA Architectures.In AOIS2006, LNAI 4898, pp.143-163,
Springer-Verlag (2008)

[9] Gasser, L., Rouquette, N., Hill, R., W., Lieb, J.: Representing and Using
Organizational Knowledge in Distributed AI Systems. In Les Gasser
and Huhns, M.N., Distributed Artificial Intelligence, Volume II. Pitman
Publishers, Ltd., London. (1989)

[10] Garlan, D., Monoroe, R., Wile, D.: ACME: Architectural description
interchange language. In Proceedings of conference of the Centre for
Advaanced Studies on Collaborative research. IBM Press.(1997)

[11] Garlan, D., Monoroe, R., Wile, D.: ACME: Architectural descrip-
tion of component-based systems. In Foundations of Component-based
Systems,pages47-68.(2000)

[12] Kacem, M.H., Jmaiel, M., Kacem, A.H, Drira, K.: Evaluation and com-
parison of ADL based approaches for the description of dynamic of soft-
ware architectures. In proceedings of the Seventh International Confer-
ence on Entreprise Information Systems, pages 189-195.(1997)

[13] Lamsweerde, A., V.: Formal specification: a roadmap. ICSE - Future
of SE Track: 147-159 (2000)

[14] Medvidovic, N., Taylor, R.:A classification and comparison framework
for software architecture description languages. IEEE Transactions on
Software Engineering, 26(1):70-79(2000)

[15] Milner, R.: A Calculus for Communicating Systems, LNCS92. (1980)
[16] Minora, L.,A., Buisson, J., Batista, T., V., Oquendo, F.: Issues of Archi-

tectural Description Languages for Handling Dynamic Reconfiguration.
In Proceedings of CAL’12. (2012)

[17] Oquendo, F.: π-ADL: An architecture description based on the higher-
order typed π-calculus for specifying dynamic and mobile software. In
Software Engineering Notes, 29(4):1-14.(2004)

[18] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach.
ISBN-13: 978-0-13-207148-2. Third Edition. Pearson Edition.

[19] Szyperski, C.: Component Software: Beyond Object-Oriented Program-
ming. ISBN 0201178885

