Saida Boukhedouma
email: sboukhedouma@usthb.dz

Zaia Alimazighi
email: zalimazighi@usthb.dz

Mourad Oussalah
email: mourad.oussalah@univ-nantes.fr

Dalila Tamzalit
email: dalila.tamzalit@univ-nantes.fr

Adaptability of Service Based Workflow Models: The "Chained Execution" Architecture

Keywords: IOWF, Chained execution, Service, Cooperation pattern, Orchestration function, Adaptation, Evolution

Business processes are frequently subject to changes which must be supported by process models and systems implementing them. This paper deals with adaptability of Inter-Organizational Workflow (IOWF) process models based on services. It states conceptually, typical adaptations that can be operated on IOWF models obeying to the chained execution architecture. IOWF models are described through the concepts of service and orchestration function expressed using basic control flow operators. Thus, operations of adaptation turn to modification of services and transformation of orchestration functions describing the model. We particularly distinguish evolvable adaptation leading to expansion of the cooperation and/or the global functionality of the process.

Introduction

The B2B cooperation was initially supported by concepts and tools of Inter-Organizational workflow (IOWF) [START_REF] Aalst | Process oriented architectures for electronic commerce and interogranizational workflow[END_REF] and more recently by Service Oriented Architectures (SOA) and web services [START_REF] Papazoglou | Service Oriented Architectures: approaches, technologies and research issues[END_REF]. Also, many research works have been directed towards the combination of these technologies for the development of collaborative business applications. These last implement two kinds of cooperation: ad-hoc cooperation appropriate for non-durable cooperation and process models not completely defined at build time; or structured cooperation which is suitable for durable cooperation and clearly defined process models at build time.

In our research work, we are interested in structured cooperation supported by the concept of IOWF. In [START_REF] Aalst | Process oriented architectures for electronic commerce and interogranizational workflow[END_REF], generic architectures of IOWF have been defined; we talk about the capacity sharing, the chained execution, the subcontracting, the case transfer, the extended case transfer and the loosely coupled WF. We consider these architectures as basis of our research work because they cover a wide range of business processes since they express the different ways in which businesses can cooperate together. However in their initial form, these architectures were subject to criticisms because of their rigidity and the difficulty to adapt business processes to support changes. Then, our idea is to propose cooperation patterns based on services suitable to the basic architectures defined in [START_REF] Aalst | Process oriented architectures for electronic commerce and interogranizational workflow[END_REF], using a SOA based approach. According to constraints relative to IOWF architecture, this last can be implemented through global orchestration or distributed local orchestrations of services. Global orchestration means that services of different partners are orchestrated using a global WF process implemented at one site; where distributed local orchestrations mean that services of each partner are orchestrated by a WF process implemented locally. The goal behind the use of SOA is to obtain process models flexible enough to ease their adaptation because services are loosely coupled components and platform independent.

This paper deals with adaptability of IOWF process models suitable to structured cooperation; we focus particularly on adaptability relative to the control flow perspective. Also, according to various reasons of adaptation, we distinguish several types, then we talk about perfective adaptation [START_REF] Bastide | SCORPIO -An Approach for Structural adaptation of software components: application to ubiquitous environments[END_REF] in case of improvement of the process in order to meet the client's requirements, we talk about adaptive adaptation [START_REF] Bastide | SCORPIO -An Approach for Structural adaptation of software components: application to ubiquitous environments[END_REF] in case of new constraints to take into account and we talk about corrective adaptation [START_REF] Bastide | SCORPIO -An Approach for Structural adaptation of software components: application to ubiquitous environments[END_REF] if we need to correct errors in the process model. In our case, we globally talk about adaptation of process models. Another reason of adaptation is the evolution of process models called evolvable adaptation that we perceive through two perspectives: expansion of process functionalities and expansion of cooperation; we globally talk about evolution of process models.

The present work focuses on the chained execution architecture which connects two or more WFs in sequential manner. The paper describes the corresponding cooperation pattern based on services, states conceptually typical adaptations that can be operated on IOWF process models and describes the transformation of the orchestration function for each kind of adaptation.

For the rest of the paper, Section 2 presents some related works and explains the motivation of our work. Section 3 synthesizes the necessary background to understand the paper. Section 4 describes the chained execution pattern based on services and illustrates the concept of orchestration function. Section 5 and 6 describe respectively the different operations of adaptation and evolution of IOWF process models. Section 7 concludes the paper and talks about future works.

Related Works and Motivation

Many research works deal with the combination of WF, SOA and web services technologies for the development of flexible business collaborative applications [START_REF] Chen | Empowering collaborative commerce with web services enabled business process management system[END_REF], [START_REF] Leymann | Web Services and Business Process Management[END_REF], [START_REF] Gorton | StPowla: SOA, Policies and Workflows[END_REF]. This had a great impact in promoting B2B relationships since several approaches and platforms have been proposed to support business cooperation using WF and SOA. In structured cooperation for example, we can cite some approaches like CoopFlow [START_REF] Chebbi | CoopFlow -an approach for ascendant cooperation of workflows in virtual enterprises[END_REF], CrossFlow [START_REF] Grefen | Crossflow: Cross-organizational workflow management for service outsourcing in dynamic virtual enterprises[END_REF], CrossWork [START_REF] Mehandjiev | Interoperability contributions of Crosswork[END_REF], Pyros [START_REF] Belhajjame | Pyros -an environment for building and orchestrating open services[END_REF] and e-Flow [START_REF] Casati | Dynamic and adaptive composition of e-services[END_REF]. Also, flexibility is an important propriety to be satisfied by business processes and their systems allowing them to support changes. Even if some approaches like CoopFlow, Pyros and e-Flow provide internal adaptation of workflows without compromising the coherence of the global process, a large number of the proposed solutions are not flexible enough because they are closely coupled with the platforms. So for any changes, they impose to re-adapt the interfaces and to newly build the structure of interaction. Moreover, WF flexibility is perceived at two complementary levels: (i) at the system level, the flexibility defines the ability of WFMS (WF management system) to face unexpected and erroneous situations [START_REF] Sadiq | On capturing Exceptions in workflow process models[END_REF], [START_REF] Meng | DynaFlow -a dynamic inter-organisational workflow management system[END_REF], [START_REF] Muller | AGENT-WORK: a workflow system supporting rule-based workflow adaptation[END_REF]. (ii) at the level of process models that defines the ability of a process model to be adaptable, evolvable and reusable. For that, many research works have been proposed describing different techniques such as adaptation patterns [START_REF] He | Adaptation of Web Service Composition Based on Workflow Patterns[END_REF], [START_REF] Döhring | Flexible Workflows at Design-and Runtime Using BPMN2 Adaptation Patterns[END_REF], [START_REF] Weber | Change patterns and change support features-Enhancing flexibility in process-aware information systems[END_REF], rule-based adaptation patterns [START_REF] Döhring | Extended workflow flexibility using rulebased adapatation patterns with eventing semantics[END_REF] and constraint-based modeling [START_REF] Pesic | Constraint-Based Workflow Models: Change Made Easy[END_REF].

The goal of this paper is to deal with adaptability of IOWF process models based on services especially obeying to the chained execution architecture. First, we introduce the concept of cooperation pattern that we define through two dimensions: the partitioning of the process among the partner's sites and the control of execution. Then, we express this cooperation pattern using SOA approach in order to deal with IOWF models easily adaptable. The use of SOA is motivated by the fact that services are loosely coupled components, easily invoked through their interfaces, business oriented and platform independent and SOA paradigm supports integration, reuse and composition of services.

Basic Definitions and Concepts

Definition and Architectures of IOWF

An IOWF can be defined as a manager of activities involving two or more workflows autonomous, possibly heterogeneous and interoperable in order to achieve a common business goal [START_REF] Aalst | Process oriented architectures for electronic commerce and interogranizational workflow[END_REF].

In [START_REF] Aalst | Process oriented architectures for electronic commerce and interogranizational workflow[END_REF], generic architectures of IOWF have been defined to support structured cooperation; we talk about the capacity sharing, the chained execution, the subcontracting, the case transfer, the extended case transfer and the loosely coupled WF. These architectures are characterized according to two main dimensions: the partitioning of the process and the control of execution. The partitioning of the process defines the way in which the process fragments of IOWF are distributed among the partner's sites (process partitioning) and the location of process instances at runtime (instance partitioning). The second dimension which is the control of execution defines the manner in which the execution of process instances is managed by the systems of partners. The control is centralized if the execution of process instances is delegated to one system that also manages all interactions between the systems of partners. The control is decentralized if the execution of instances is distributed among the systems of all partners and each system manages itself its interactions with other systems. We say that a control is hierarchized if each system manages its own WF and there is one principal system that controls interactions with one or more secondary systems. In some cases, the control can be a mixture of previous modes. The chained execution architecture supports a model of cooperation that connects two or more business partners, each of which implements its own WF process. Workflows implied in the cooperation are executed in sequential. The results of execution of WFi are input data of WFi+1. In this architecture, we have process partitioning since each partner implements a fragment of the global WF and instance partitioning because at each moment a process instance is at one location; the control of execution is decentralized.

IOWF Meta-model, Adaptability and Evolutivity

An IOWF process model is defined by a set of WF fragments and a cooperation pattern (see Fig. 1). The cooperation pattern defines a specific architecture; it links two or more WF through a set of interaction points. Each WF is attached to a partner, manipulates data and is submitted to condition of control flow. A cooperation pattern is defined through the two dimensions of IOWF: the partitioning of the process and the control of execution. Through the concepts of the meta-model, the IOWF model covers four main axes: process (concepts of IOWF, WF, condition and cooperation pattern), organization (concept of partner), data and interaction (concept of interaction point). Consequently, we can affirm that the constraints of flexibility in IOWF model are not limited to one axis, but cover all axes that define it. However, the flexibility is mainly reflected in the process and interaction axes although it involves and also draws on other levels -data and organization.

IOWF evolutivity: An IOWF model is evolvable if it allows expansion of the global functionality or expansion of cooperation (additional business partners and so additional WF fragments).

As already said, we focus on the chained execution architecture of IOWF. For that, we describe the corresponding cooperation pattern (called "chained execution pattern") based on services in order to deal with IOWF models easily adaptable and evolvable. Then, we introduce the concept of orchestration function.

Cooperation Pattern and Orchestration Function

To define a cooperation pattern suitable to a specific architecture of IOWF, the question is to decide which parts of the WF process should be encapsulated within services in order to abstract them and to invoke them from outside. Specifically, it is to encapsulate a WF process or a sub-process in a service. In the following, we present the chained execution pattern.

The "Chained Execution" Pattern Based on Services

For the chained execution architecture, we propose to entirely encapsulate WF of each partner within a service that means service Si encapsulates WFi provided by partner i. Process instances are executed according to the sequence of services implemented (see Fig. 2). Thus, the first service (S1) of the sequence is triggered by an external event (the occurrence of a new instance), the other services (Si+1) of the sequence, each of which is triggered by the service (Si) that precedes it.

Fig. 2. Schema and meta-model of the "Chained Execution" Pattern

We can say that this architecture is implemented as choreography of services with decentralized control because services of several partners interact directly together without need to central orchestrator. Also, a reply to the service invoker can be facultative, hence the dotted arrow on the schema. The chained execution pattern is described through the meta-model on the right of Fig. 2, using UML notation.

At internal level, services S1 and S2 can be implemented as composite services encapsulating WFs of partner1 and partner2; it means that each internal activity of WFi is implemented as a local service Sij. Then, we propose implementation of a local orchestration function at each partner where maintaining a decentralized control of execution in the IOWF (see Fig. 3). The local orchestrator of partner i has to receive input data (through a service Sini) from another orchestrator to invoke its local composite service (Si) with this input data and then to invoke service S of the next partner by sending results (output) of its local service through service Souti; this is implemented at each partner of the IOWF.

Fig. 3. Illustration of local orchestrators

Orchestration Function and Control Flow

On the meta-model of Fig. 2, the concept of orchestration function describes the control flow between services composing the WF. The orchestration function is expressed using a combination of basic control flow operators. On Fig. 4, we introduce these basic operators and we express them using a general notation independently from any language or platform.

Fig. 4. Basic operators of control flow

Remark. To describe multi-choice -respectively multi-parallel -(more than two edges), we can decompose on several simple choices -respectively several simple parallel blocs. For example, Alt (S1, S2, S3) is expressed as Alt (Alt (S1, S2), S3) or Alt (S1, Alt (S2, S3)).

Fig. 5 bellow illustrates the concept of orchestration function using our notation; we give an example of IOWF obeying to the chained execution pattern. The process schema describes an IOWF implying two partners, partner 1 and partner 2 implementing their WFs as services S1 and S2 respectively. Partner 1 provides his WF composed by internal services S11, S12, S13, S14, S15 and partner 2 provides his WF composed by internal services S21, S22 and S23; in this case, the service Sout1 corresponds to invocation of S2 from S1. For more readability and less complexity of the orchestration function, we can structure the process fragments into blocs Bij of sequential, parallel or alternative services. In hierarchical manner, a bloc can be expressed using other blocs. The orchestration function can be represented by a binary tree with two types of nodes: operators and services.

Adaptability of IOWF Models

According to the previous definition, adaptation of process models turns to modifications of the entities composing it that means services or orchestration functions. A modification of a service can be adding, removing, replacing, merging of two services and decomposing a service into a bloc of two services expressing sequential, parallel or alternative execution. Adaptation of a service usually induces modification on the orchestration function using it or a modification of closely attached attributes like condition or data (see Fig. 2). Also, other operations of adaptation can affect only the control flow in the process that means the orchestration function while maintaining all services composing the process.

Adding, Removing and Substituting of Services

For adding or removing of services, it is to distinguish adding or removing of a service on one edge composed by sequential services or in a bloc composed by two edges expressing parallel or alternative execution. The part on the top of Fig. 6 describes the basic operations of adding of services illustrated by generic schemas, the corresponding orchestration functions and the sequence of operations done in order to obtain the new orchestration function from the initial one. Let's notice that the adding of service in a bloc of exclusive choice or parallel execution is not represented in the figure because it is done in the same manner as inclusive choice.

Fig. 6. Adding and Removing of a service

The reverse operation of adding is the removing of services. It is also to distinguish the removing of a service from one edge composed by sequential services or from a bloc composed by two edges according to parallel or alternative execution. Fig. 6 (the part on the bottom) shows typical operations of removing of services (service S2 for example). For non sequential bloc, we only describe the removing from alternative bloc expressing inclusive choice; the same scenario is applied for exclusive choice or parallel execution. Let's notice that two configurations are possible when removing a service S from a bloc with two edges: (i) service S is in sequence with other services, (ii) service S is alone on the edge; this results on two different scenarios for operations done like shown on Fig. 6.

Another basic operation of adaptability concerns the substitution (replacing) of services. This is typically a removing of service to replace followed by an adding of the new service. Particularly, the replacing of an interactional service Sini or Souti by another is done to adapt the interface of a service Si implied in the IOWF.

Fusion and Decomposition of Services

The operation of fusion can concern two services related by a sequence, an inclusive choice, an exclusive choice or a parallel execution, in order to simplify the process model and to abstract several services into one. The part on the top of Fig. 7 describes these basic operations, the set of operations done and the corresponding orchestration functions modified after each operation for merging S2, S3 in a single service S'. We can see on Fig. 7, that since services to merge are in the same bloc, they become easier to remove and to replace because the bloc Alt (S2, S3), Par(S2,S3) or Exl (S2, S3) is considered as a single composite service to be replaced.

Fig. 7. Fusion and decomposition of services

More elaborated operations of fusion concern configurations such as services to merge are not in the same bloc. For example in a model described by the function Seq(Seq(S1, Par(S2,S3)), S4), the operation of merging S1 and S2 cannot be done directly since we must know if we maintain the parallelism or not; this information should be provided as additional parameter. In both cases, this must be decomposed into elementary operations of removing and adding of single services or blocs.

The reverse operation of fusion is the decomposition of a service to obtain a bloc of two services that can be sequential, parallel or alternative. We can see on the bottom of Fig. 7 that the decomposition of a service consists to remove a single service (S2 for example) and to add a bloc composed by two services (S' and S") linked by sequence, alternative or parallel operator. The decomposition of services is done in order to improve the parallelism in the process (parallelization of services) or to add condition (inclusive or exclusive choice) due to new constraints or to have more control on the execution of the process (sequence of services).

Adapting the Orchestration Function

Another category of adaptation on IOWF models concerns modification of orchestration function without modifying services, this is typically a replacing of an operator of control flow by another; we can replace for example a sequence operator (seq) by parallel operator (par) to improve the execution time of process instances, or vice versa if an execution of a service becomes dependant from another service.

When services to be restructured are in the same bloc, the operation of adaptation can be easily done by substituting operators; it is to replace the initial operator by another one in the orchestration function. For example, in the orchestration function seq (seq (S1,S2), S3), if we want to parallelize (S1, S2), we just replace the operator seq by the operator par to obtain the transformed function seq (par(S1,S2), S3). By contrary, if services to be restructured are not in the same bloc, operations of adaptation are less evident; for example in the orchestration function seq (seq (seq (S1,S2), S3), S4), the parallelization of (S2,S3) cannot be done directly but we must remove S2 to obtain seq (seq (S1, S3), S4), then remove S3 to obtain seq (S1, S4), and finally add a bloc par (S2,S3) between S1 and S4 to obtain the transformed orchestration function seq(seq (S1,par (S2,S3)), S4).

Evolutivity of IOWF Models

As already explained, the evolutivity (or evolvable adaptability) of IOWF process models is reflected at two perspectives: the functionality and the cooperation of the IOWF. Hence, an IOWF model evolves if it can be extended to additional functionalities and/or it allows expansion of cooperation to involve more partners and more external services; the two perspectives are not exclusive.

Expanding Functionalities

Expansion of functionalities of the IOWF can be done by adding internal services Sij (resp. blocs) with novel functionalities into the WF of one or more partner(s) or by replacing a service (resp. bloc) by another that covers more functionalities. To do that, we can refer to operations of section 5.1, the only difference is that the injected services implement additional functionalities of the IOWF. At external level, the expansion of functionalities can be realized by replacing an external service Si encapsulating a WF fragment by another external service.

Expanding Cooperation

According to the second perspective, it is the capacity to open the IOWF to more partners. This can occur in two cases: (a) an additional external service is added to the sequence of external services composing the IOWF, in order to extend the functionality of the global process or (b) replacing an external service by a bloc of exclusive choice of two external services according to new constraints. Starting with an IOWF model initially composed by a sequence of three services Sx, Sy and Sz provided by partners x, y and z respectively, Fig. 8 shows the possible configurations of evolution previously described. We assume that each service Sp provided by partner p is composed by a sequence Sinp, Spp (the composite business service) Fig. 8. Expansion of the cooperation and invocation of the following service in the sequence or Soutp for the last service in the sequence. In case of evolution (a), we have to add the orchestration function of service w and to ensure interaction between the pairs of services (Sy,Sw) and (Sw , Sz). In evolution (b), we have to add the orchestration functions of services Sr and Sw, to implement the exclusive choice in Service Sx and to ensure interaction between pairs of services (Sx, Sw), (Sw, Sz),(Sx, Sr) and (Sr, Sz). Let's notice that the chained execution pattern is preserved since instances are executed according to one path of sequential services (Sx, Sw, Sz) or (Sx, Sr, Sz).

Conclusion and Future Works

In this paper, we focused on the issue of adaptability of IOWF models in case of structured cooperation. We have considered process models obeying to the chained execution architecture defined in [START_REF] Aalst | Process oriented architectures for electronic commerce and interogranizational workflow[END_REF]. In order to deal with process models flexible enough, we have proposed a cooperation pattern based on services to implement IOWF obeying to the architecture considered in this paper. So, we have introduced the concept of orchestration function that is built on basic operators of control flow to orchestrate internal services composed to build a fragment of WF provided by a partner. To maintain decentralized control, each partner implements his orchestration function and interactional services insuring the communication with external services. We distinguish operations of evolution (evolvable adaptation) from other adaptations basis on two perspectives the functionality of the IOWF process and the cooperation; so, we talk about evolutivity if the functionality of the IOWF is expanded and/or the cooperation is expanded. The operations of adaptation and evolution of process models are described at a conceptual level showing the transformation of orchestration functions for each type of adaptation or evolution. Also, with the proposed approach, we can deal with reusability (well supported by SOA) of IOWF process models which is another aspect of flexibility allowing the combination of several IOWF obeying to the same or different architectures, in order to build more complex business processes based on existing ones.

We are currently working to implement these operations of adaptation and evolution as adaptation patterns by translating them to a specific language of business process definition. Furthermore, we must provide mechanisms to check the correctness of models after adaptation.

Fig. 1 .

 1 Fig. 1. Generic meta-model of IOWF IOWF adaptability: An IOWF model is adaptable if one or more of the entities -WF, conditions, data and interaction points -composing it can be modified without affecting the global functionality and the cooperation (circle of partners). IOWF evolutivity: An IOWF model is evolvable if it allows expansion of the global functionality or expansion of cooperation (additional business partners and so additional WF fragments).

Fig. 5 .

 5 Fig. 5. Illustration of orchestration function