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ABSTRACT 
Subdivision surfaces are usually used to construct 
freeform surfaces from network of curves for its 
ability and flexibility to deal with complex 
wireframes. In freeform surface designing, the 
designers usually draw at first some curves for 
describing the models conceived in their mind which 
form a curve network representing an object of 
arbitrary topology. Then 3D surfaces are computed 
to interpolate these curves in order to create a B-Rep 
model. If the subdivision surface is used in the 
workflow, its control polyhedrons generation from 
curves polygons could be a time-consuming stage. In 
this article, we develop an approach to generate 
automatically a control polyhedral mesh from an 
arbitrary topological curve network. One of common 
problems in interpolating surface patch using 
subdivision surfaces is how to determine the 
connectivity of control points. Arbitrary topological 
curve network has no restriction in topology 
structure, so another problem is that it has more 
ambiguousness in defining surface patches. There 
are three steps in our approach. Firstly, we compute 
a 1D mesh (a unique polygonal model) from curves. 
Secondly, we identify on the polygon different cycles 
that would be the boundaries of potential surface 
patches. Finally, in each identified cycle we apply an 
algorithm of quadrangulation to construct the 
control mesh of subdivision.   
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surface control polyhedron, quadrilateral mesh, 
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1. INTRODUCTION
Freeform surface, or freeform surfacing, is used in 
CAD and other computer graphics software to 
describe the skin of a 3D geometric element. 
Freeform surfaces do not have rigid dimensions, 
unlike regular surfaces such as planes, cylinders and 
conic surfaces. A common task in freeform surface 
modeling is interpolating a given network of smooth 
curves by a smooth surface. 

Subdivision surfaces [1] are usually used to construct 
freeform surfaces from network of curves for its 
ability and flexibility to deal with complex 
wireframes. A typical solution is based on 
associating curves network which defines the surface 
with boundary polygon of subdivision surface. In this 
article, boundary polygon is the control polygon of 
input curves. Hence, the input curve network is 
associated with a polygon network, and curve 
interpolation conditions are translated into conditions 
on the boundary polygons. Using these conditions, 
control polyhedral mesh can be constructed to 
generate subdivision surface. Then fairing techniques 
[2, 3] can be used to optimizing control polyhedral 
mesh satisfying the boundary conditions. Therefore, 
by using subdivision surface curve interpolating can 
be carried out for given networks of arbitrary 
topology (see [4]). 

In surface design, designers usually draw at first 
some curves describing the models according to 
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their imagination which form a curve network of 
arbitrary topology. Then boundary polygons 
associating with the drawn curves are used to create 
control polyhedral meshes. The subdivision surface 
generated later on from the control mesh would 
interpolate these initial curves. The process can be 
seen in the following workflow illustrated in figure 1. 
However, in many domains of creative design (ex. 
jewellery design) the stage of control polyhedral 
mesh generation from curves stays time-consuming. 

In order to improve the workflow and enhance the 
product design efficiency, the current paper proposes 
a computational approach to automate the generation 
of control polyhedral mesh from curves. This 
approach has been prototyped in java and it consists 
of four steps: firstly, execute curve treatments to 
associate the curves as well as their polygons; 
secondly, identify face cycles from polygon network; 
thirdly, generate polyhedral mesh in each cycle; 
finally, apply fairing to optimize the mesh quality. 
The prototyped operator has been experimented on 
various examples and the results are very promising. 
The paper is organized as follows. Section 2 
discusses about the existing works relative to our 
objective. An overview on our approach is presented 
in the Section 3. Section 4 details how to generate a 
well-connected polygon network from the input 
curves. Section 5 illustrated the way to identify all 
cycles in polygons. Section 6 present how each 
identified cycle is filled by quadrangle meshes. 
Finally we show and discuss about some 
experimentation results of our approach in section 7 
and section 8 presents our conclusions. 

2. RELATED WORK
Some previous work in 3D modeling used input of 
2D sketch, which is also called sketch-based 
modeling. Modeling by sketching has a fundamental 

problem of interpreting the 2D sketches to 3D curves 
as well as 3D surfaces behind. 

Koel et al [5] addressed the problem of creating a 
freeform surface from a network of curves which 
were generated from 2D sketches. They introduced a 
method to find a 3D curve network from 2D sketches 
where the projection of the 3D curves match well the 
input 2D sketches. This method does not give a 
unique 3D curve network therefore the one which has 
minimum curvature among all the solutions is chosen. 
Then subdivision surface was generated to 
interpolate these 3D space curves having minimum 
curvature. However, the presented method of 3D 
mesh generation may not be feasible when the 3D 
curves are drawn directly by designers. Since in 3D 
space, the curves drawn by designers may not 
intersect correctly. 

Gonen and Akleman [6] introduced a method for 
sketching 3D models in arbitrary topology. Their 
method converted 2D sketches to 3D meshes that 
mostly consists of quadrilaterals and then generated 
subdivision surfaces using Catmull-Clark scheme. 
But their algorithm can only deal with simple 
sketches where there is no intersection between any 
curves.  

Our problem is a little different from sketch-based 
modeling because the input in this paper is 3D curves 
network instead of 2D sketches.  

However, most of previous works in subdivision 
surface generation using 3D curves have focused 
either on how to fill a specified surface patch and 
maintain higher smoothness of refined surface, or on 
developing new subdivision approaches for lofting.  

Doo and Sabin [7] focused on the behavior of 
recursively divided surfaces near extraordinary 
points. The behavior of the limits surface defined by 
recursive divisions can be analyzed in terms of the 
eigenvalues of a set of matrices. This analysis 
predicts effects actually observed, and leads to 
suggestions for the further improvement of 
subdivision surface smoothness. 

Nasri [4] has developed subdivision methods for 
lofting based on the concept of a polygonal complex. 
A method that extends the capability of the recursive 
subdivision technique to generate surfaces that 
interpolate predefined curves is described. The 
technique consists of a one-step division of the initial 
polygon network and a topological modification of 
the face vertices generated from the edges and 
vertices of the given control polygon.  

Figure 1 Workflow of freeform surface creation from 
curve drawing. 



Levin [8] presented a subdivision algorithm for the 
computation and representation of a smooth surface 
of arbitrary topology that interpolates a given 
network of smooth curves. While subdivision 
schemes operate on a given mesh and generate a new 
mesh, his subdivision schemes generate the new 
mesh taking into consideration additional conditions 
- such as boundary conditions, and transfinite 
interpolation conditions - that are prescribed on the 
limit surface. But their algorithm is restricted to nets 
of curves where no more than two curves intersect at 
one point, which is a considerable restriction for 
many applications. 

While there has been considerable success with these 
approaches in interpolating a single surface patch 
from curve network, there isn’t much work focusing 
on generation of control meshes from network of 
curves.   

Schaefer et al [3] described a method to solve the 
problem of constructing a surface using curve 
network. They raised an algorithm to determine the 
topological structure of the control mesh and 
generate the subdivision surface automatically in 
specified surface patch. The method automatically 
quadrangulates cycles formed by the network of 
polygons and then fair the resulting mesh. However, 
the quality of control mesh generated using his 
algorithm was dependent on control points’ 
distribution to some extent. Method for identification 
the cycles of network was not mentioned.  

The existing works doesn’t include a framework to 
interpolate a curve network using subdivision 
surface, nor generate a polyhedral control mesh from 
curve network, which is what we want to focus on in 
this paper. With existing works even few methods is 
able to treat the cases where the curves don’t form 
neither a connected network nor closed cycles. An 
example of open curves is shown in figure 14, it is 
easy to understand that the pretreatment of the curves 
is quite important for the following meshing stage. 

Lou et al [9] proposed a method for merging Finite 
Element meshes. An algorithm was developed to 
search the created holes after removing the 
intersecting faces. Since the polygons network was 
not closed, their algorithm included the addition of 
some edges in order to form face loops. However, the 
problem of identification of the cycles in the article is 
easier because the face loops in this case have more 
topological constraint. 

3. OVERVIEW OF APPROACH
Generally speaking, a designer draws curves in a 
CAD system.  These curves will be the input of our 
operator proposed in the current paper. Our operator 
will then provide to the designer the control 
quadrilateral mesh, with which the designer could 
obtain smooth subdivision surfaces interpolating the 
initial curves. The subdivision surface design process 
using our approach can be seen in Figure 2. This 
process is also illustrated on an example for 
designing a ring (fig.3). As input of our operator the 
user draws the curves to describe the shape they want 
to obtain (fig.3.1).   

 At first stage our operator does some treatments on
the curve network in order to generate a well-
connected control polygon network behind the
curves (fig.1.2).

 Then a set of elementary cycles are identified in the
polygon network using a graph algorithm and they
will be the boundaries of surface patches (fig.1.3).

 At end quadrilateral meshes are generated in each
cycle (fig.1.4).This will be the control polygon
mesh for generating subdivision surface.

Using an existing subdivision scheme the user could 
obtain the smooth surface (fig.1.5) that interpolates 
the initial curves he/she has drawn at beginning. In 
compare with the previous works which focus on a 
certain part of interpolation of curves, our approach 
proposes a complete process to answer the needs of 
generating the initial polyhedral mesh for subdivision. 
This framework improves the time-costing manual 
generation of initial mesh, compensates the lack of 

Figure 2 Subdivision surface design process with 
automatic generation of control polyhedral 
mesh 



research in generation of initial mesh from arbitrary 
topology networks. 

4. CONSTRUCTION OF POLYGONS
Being given as input a network of 3D curves the first 
stage is to compute the network of control polygons. 
This polygon network should be well connected from 
which the control polyhedral mesh will be generated 
later on. In addition the smooth surface generated by 
subdividing the control polyhedral mesh should 
interpolate the initial curves. Therefore the polygon 
network should not be the discretization of the curves 
but an association of all control polygons of curves. 
The figure 4 is a zoom of the picture in figure.3.2. 
The curves are drawn in black color and the control 
polygons (vertices and edges) are drawn in red color.  

However, the polygon network obtained directly 
from the curve network can’t be used to generate the 
polyhedral mesh due to following 4 aspects.  

1) Curves may intersect each other while their
control polygons may not intersect. For example
in figure 5.a the two curves A and B intersect
whereas their control polygons A’ and B’ do not
interest each other.

2) It can happen also that the intersection points of
the curves and polygons are not at the same
position. In figure 5.c the two curves A and B
intersect at point O but their control polygons A’
and B’ intersect at a different point O’.

3) Sometimes designers draw several curves which
form an entire curve (fig.6.a). In this case the
points generated on the polygons may not well
distribute for further generated control mesh (fig.
6.b).

4) The density of control points could be very high
(fig.7.a) whereas the density of the subdivision
control mesh should be relatively low.

The first two points lead to incoherence between the 
intersections present in the curve network and the 
ones existing among the control polygons.  To solve 
this problem we split the curves at intersection point 
in order to impose a common intersection point both 
on the curves and on their control polygons. For the 
third aspect the piecewise curves should be merged 
(fig.6.d) in order to generating control mesh of good 
quality (fig.6.e). Concerning to the fourth aspect the 
high density of nodes would also penalize the 
following mesh generation stage in terms of 
computation time. Therefore it is necessary to 
simplify the curve control polygons (fig.7.b). 

In sum three kinds of curve treatments are necessary 
and detailed in the following paragraphs: splitting 
curves, merging curves and adjusting density of 
control points. 

4.1. Curve splitting 
Some curves need to be split at the intersection point 
in order to get a well-connected control polygon 
network.  

In some cases, while input curves intersect, their 
corresponding control polygons may not intersect. 

Figure 3 Example, subdivision surface design process 

Figure 4 Construction of polygons from curves network 
of a ring model 



For example in figure 5.a, the curves A and B are 
intersecting whereas their control polygons A’ and B’ 
do not intersect each other. In other cases, curves 
intersect each other but their control polygons 
intersect at a different position. Typically in the 
example shown in figure 5.c where the two curves A 
and B intersect at the point O but their control 
polygons intersect at O’. The two intersection points 
O and O’, do not have the same position which will 
cause the fact that future subdivision surface will not 
correctly interpolate the initial curves. 

    (a)   (b) 

          (c)                                    (d) 
Figure 5 Splitting curves; (a) Curves intersect while their 

polygons don’t intersect; (b) Split the curves in 
(a); (c) Polygons intersect at a different position 
with the curves’ intersection; (d) Split the 
curves in (c).  

In order to avoid the different intersection points on 
curves and polygons, these curves should to be split. 
Therefore the intersection points become endpoints 
where the curves and their control polygons end at 
the same point. Splitting curves is in fact inserting 
knots [10] into the curves to separate the curve into 
two. Knot insertion is adding a new knot into the 
existing knot vector without changing the shape of 
the curve. The inserted knot should lie exactly at the 
position of the intersection point of curves so the 
original curves can be considered as split into two. 

Coming back to the introduced example (fig. 5.a), the 
initial curve A is split into two curves A1 and A2 
therefore the three curves (A1, A2 and B) meet at the 
intersection point where their polygons (A1’, A2’ 
and B’) also intersect (fig.5.b). For the other example 
(fig.5.c), the two initial curves A and B are split into 
four curves A1, A2, B1 and B2 intersecting at point O 
(fig.5.d), so that their control polygons (A1’, A2’, B1’ 
and B2’) intersect as well at the point O.  

(a)  (d) 

 (b)  (e) 

 (c)  (f) 

Figure 6 The ring model. (a) Two elementary curves that 
form an entire curve; (b) bad quality of 
generated control mesh; (c) bad shape of 
subdivision surface; (d) A unique curve is 
created by merging two elementary curves;  (e) 
Mesh generated after merging curves; (f) 
Subdivision surface generated after merging 
curves. 

4.2. Curve merging 
In some cases, several elementary curves are 
connected successively to form an entire smooth 
curve. These piecewise curves might be produced 
due to default of design. These curves introduce extra 
intersection points, which not only burden the mesh 
generation process, but also harm the quality of the 
generated control mesh.  

In figure 6.a, there are two curves (Curve 1 and 
Curve 2) that form actually an entire curve. The 
generated control polyhedral mesh and smooth 
subdivision surface created from this curve network 
can be seen in figures 6.b and 6.c. In the circled area, 
the quadrilaterals are irregular (fig.6.b) and the 



subdivision surface is sinking (fig.6.c). This is 
because these points connecting the two elementary 
curves will constrain the generation of control mesh 
and subdivision surface. 

To solve this problem, we firstly define the criteria to 
search all the curves that need to be merged. Two 
intersecting curves are merged into one curve if the 
three conditions below are true: 

- their extremities are enough close to the 
intersection point; 

- their tangents on these extremities are 
approximately equal; 

- their curvature are almost equal; 

For sure to evaluate these conditions three thresholds 
should be chosen correctly. Concerning the example 
in figure 6.a, Curve 1 and Curve 2 are merged into 
Curve 3 (fig. 6.d).  

Merging curves is in fact a process of knot removal 
[10] which is opposite to the knot insertion used in 
4.1. The knots to remove should be the extra 
intersection points that separate an entire curve into 
different parts. Our operator is able to detect this kind 
of curves and to merge them. The result of 
implementation after merging the curves is more 
satisfying, with all the quadrilaterals well arranged 
(fig.6.e), no sinking problem in the generated surface 
(fig. 6.f). 

4.3. Control point density adjustment 
Besides knot insertion and knot removal to treat the 
input curves, the control point density of a curve 
should be also adjusted while preserving its shape. 
Here, the density means the ratio between the 
number of control points of the curve and the curve 
length. 

It can be imagined that with a model where some 
curves have a high control point density and others 
have a low one, the inhomogeneity of different 
curves’ control point density causes difficulty in 
generating polyhedral mesh. In Figure 7(a), the red 
color implies the control points. It can be seen that 
curves in the ring model are of different density. For 
the top part, the curves have very few control points 
whereas for the curves at lower part their control 
points much more dense. The very different densities 
of the control points will cause later on skinning 
mesh elements in the subdivision control 
polyhedrons. In addition the control polygon mesh 
for a subdivision surface is generally not very dense. 

Therefore what would be respected is more like the 
model shown in Figure 7(b), where all the control 
points of all curves have similar and low densities. 

          (a)                                    (b) 
Figure 7  (a) Ring model with inhomogeneous density 

control points; (b) Ring model after adjusting 
the density. 

In adjusting the control point density, both efficiency 
and precision of shape approximation should be 
taken in consideration. It’s sure that a model of high 
control point density can result a better precision of 
interpolation. However, the searching of face cycles 
and mesh generation will become much more time-
consuming. Therefore, an algorithm is required to 
adjust density of control points in order to 
compromise between efficiency and precision.  

A preliminary algorithm is used here to adjust the 
density of control points. 

If the length of the shortest input curve is L0, let the 
number of control point for this shortest curve be n0, 
which is set by user. In case of the ring model (fig. 
7.b) in this paper, n0 is set as 4, which means there 
are three edges in the polygon created from the 
shortest curve. The control point numbers on other 
curves are proportional to their lengths. Hence, for 
the rest of the curves, their lengths are denoted as Li. 
Then the number of control points for the rest curves 
can be expressed in the following equation:    

(1) 

And we take integer ni as the number of control 
points for the ith curve. C is the model constant that 
depends on the different requirement of precisions or 
efficiency.  



5. IDENTIFICATION OF FACE CYCLES

5.1. Pre-computation of cycles 
In this section, face cycles or cycle basis [11] are 
computed in the polygon network.  

Most previous work in face cycles computing has 
focused on two dimensional drawings of wireframe 
models, sometimes with holes or non-planar faces. 
For non-manifold surfaces from two-dimensional 
inputs, Shpitatni and Lipson [12] described a method 
for identifying the faces of a wireframe object 
depicted by a single two-dimensional projection. 
However, the problem they dealt with is significantly 
different from ours because their input is strictly two-
dimensional, rather than three-dimensional, which 
introduces more ambiguities. The most relevant is 
probably proposed by Fatemeh and Nina [13]. They 
developed a simple and robust framework for 
extracting patches from 3D wireframe models. In this 
article, an algorithm that is similar with Depth-First-
Search [14] is developed.  

Starting with an arbitrary edge and an ending point of 
this edge as starting point, our cycle detection is a 
process of searching next vertex continually until it 
finds the starting point. During this process, it’s not 
allowed to use a point more than once. An example 
of cycle searching is shown in figure 8. Starting with 
the vertex no. 1 and the edge connecting the two 
vertices no. 1 and no. 2 (fig.8.a), four possible paths 
are identified (fig.8.b). Actually only two paths no. 1 
and no. 3 allow to reach the starting point (vertex no. 
1) without going through more than once the other
vertices. Whereas the paths no. 2 and no. 4 are 
abandoned because they meet the vertex no. 3 twice 
before reaching the starting point. It can be seen that 
more than one cycle would be detected starting from 
a vertex, one of which is the wanted face cycle.  

        (a)                                     (b) 
Figure 8 (a) Starting from a vertex and a direction, search 

all the possible paths in a graph; (b) All the 
possible paths; 

5.2. Selection of face cycles 
Beginning with a vertex, we can find a series of 
cycles. However, not all these cycles are the face 
cycles. Therefore a weighting function is used here to 
define these face cycles, or the shortest cycles. Three 
factors are used in defining face cycles, which are list 
in the following:  

 Number of edges in the cycle (n);

 Number of connected components after deleting
edges in the cycle (m); 

 Bounding box volume of cycle;

Using these factors, the weighting function k is 
defined as:  

( 1)k n n m    (2) 

The cycle with minimal value of k is selected as the 
shortest cycle. Usually, cycles that separate the 
curves into different components should be avoided. 
That’s why there is a term of n(m-1) in the formula. 
If there is more than one cycle having the same 
minimal value for k, then the cycles with smallest 
bounding box volume are preferred. This selected 
cycle is then added into the set of validated cycles 
that will be used to generate mesh. 

5.3. Exhaustive identification of cycles 
It can be noted that if all the face cycles are found 
and their corresponding faces form closed solid, all 
the edges in the graph should be used in exactly two 
cycles. Therefore the two steps (5.1 and 5.2) should 
be repeated till all the edges appear exactly in two 
cycles. An algorithm below could summarize the 
general process of cycle identification. Initially the 
set freeEdges contains all edges from which cycles 
should be identified. At the end this set should be 
empty and the set validatedCyles should contain all 
the cycles. 
Algorithm. exhaustive identification of 
cyclesWhile freeEdges is not empty 

Pre-compute cycles in freeEdges using a random edge 

Select one cycle from pre-computed cycles 

Add the cycle into the set of validatedCycles 

Foreach edge in freeEdges  

If edge appear in two validated cycles 

Remove edge from freeEdges 

End If 

End Foreach 



End While 

(a)                  (b)                  (c)                    (d) 

Figure 9 An advancing front method to fill the cycle 

6. GENERATION OF CONTROL MESH

6.1. Cycle quadrangulation 
The polygon network is constructed from curves 
(section 4) and different face cycles are identified 
(section 5). In this section, we will present how to 
generate polyhedral mesh in each cycle. To complete 
the prototype of our global approach, we have 
implemented the advancing front meshing algorithm 
presented in [3] for quadrangulating each cycle. 
Generally speaking, a cycle is considered as a hole 
(fig.9.a) and the algorithm will fill the hole iteratively 
from the boundary to the center (fig.9). At the first 
iteration the first mesh elements are created on the 
boundary (fig.9.b) and the hole becomes smaller. In 
the next iteration we generate other mesh elements 
on the new boundary of the smaller hole (fig.9.c). 
The filling process is repeated until the hole is 
completely filling (fig.9.d). During this process, the 
connectivity of mesh is determined without 
calculating the positions of each vertex. 

(a)  (b) 

(c) 
Figure 10 (a)A part of a cycle to be filled; (b) 

Connectivity constructed in the cycle; (c) 
Calculation of positions of interior vertices. 
Solid points are the boundary vertices and 
hollow points are the interior vertices 

For a control mesh, there are boundary vertices and 
interior vertices. While boundary vertices are the 
original vertices of the control polygons, interior 
vertices are newly generated vertices inside each 
cycle. In figure 10 the solid points are the vertices on 
the hole boundary whereas the hollow points are the 
one newly generated in each iteration. The positions 
of the newly generated interior vertices are not 
computed for each iteration in the method proposed 
in [3] during the meshing process. Therefore we 
propose here a formula (eq. 3) to calculate the 
preliminary positions of the newly generated vertices 
based on the boundary vertices. 

(3) 

Where the vector vi starts from a boundary vertex and 
ends at an interior vertex; v0, vn are two vectors, 
formed by boundary vertices connected to the chosen 
polyline(using the method in 6.1) and extreme 
vertices of the chosen polyline; Li is the length of the 
ith edge of the boundary polygon (fig.10). 

6.2. Mesh faring 
In this part we present how to improve the quality of 
the generated mesh so that its infinitely subdivided 
surface interpolates the curve network and has a 
smooth appearance, which is called mesh fairing in 
this article. It is actually an optimization problem 
where the objective function is defined by an energy 
quantity computed from the mesh. The optimal 
positions of mesh nodes allow us to minimize the 
energy quantity. 

Using the preliminary positions computed by 
equation 3 the control mesh generated in the model 
of ring is shown in figure 11.a. However, the quality 
of generated quadrilaterals is not optimal. For 
example, in the circled part (fig. 11.b) the mesh 
elements could be improved as those shown in figure 
11.c. Usually, fairing computes the positions of the 
interior vertices where an energy function [15 and 
16] is minimized. Therefore the shape of
quadrilaterals in the mesh is more regular, with each 
angle of the quadrangle more close to 90° (fig. 11.c). 



Figure 11 Control polyhedral for the ring model. (a) 
Preliminary mesh; (b)Quadrilaterals of bad 
quality; (c) Preferred quadrilaterals. 

The mesh fairing process actually is considered as an 
optimization problem. The mesh nodes are 
repositioned in order to minimize a certain quantity. 
The border vertices positions should not be changed 
since they inherit the positions of the initial curve 
control points. Whereas the interior vertices could be 
repositioned in order to improve the mesh quality. So 
we can formulate the optimization problem:  

Min E ( p )    where p = ( x0, y0, z0,..., xn, yn, zn ) 

E(p) is an objective function defining a kind of 
energy relative to the interior vertices position vector 
p. To complete the prototype of our global approach
we have adopted the energy function we used is 
presented in the article [3]. Nevertheless this function 
could be changed according to different needs for 
different applications.  This energy function is not so 
computationally expensive and requires less effort to 
implement. By minimizing this energy function, the 
control mesh is relaxed such as removing any 
external forces applied on a mass-spring system. 
Therefore the quads get arranged regular in the mesh. 
Although it is known to be far from optimal for fine 
meshes; however, the difference on relatively coarse 
meshes, such as the typical control meshes of 
subdivision surfaces, appears to be less significant. 

2 2 2( ) (( ) ( ) ( ) )
i j i j i j i

i i i
j j j j j j

p p N p N p N
E p p p p  

  

     
      (4) 

Ni is the one ring of the vertex pi. We define the one 
ring of pi as the set containing pi itself and its 
neighbor vertices.  The parameters α, β and γ are 
assigned according to the following algorithm. 

The fairing result for a simple example can be seen in 
figure 12. The polyhedral mesh after fairing is more 
regular compared to the preliminary mesh. 

7. RESULTS AND DISCUSSION
In this chapter, we tested our algorithm in three 
models and gave the implementation results: the 
input curve of a ring, a bottle and a spoon (figures 
15-17). For example, figure 15.a shows the input 
curves of a ring model; The control polygon of the 
ring model after curve treatment is presented in 
figure 15.b; Figure 15. c. They illustrate the face 
cycles of the model identified by our algorithm; 
Figures 15.d and 15.e show respectively the control 
polyhedral mesh and smooth subdivision surface.   

From the result of implementation, it can be seen that 
the result of the generated subdivision surfaces is 
very encouraging. The final surface interpolates the 
input curves and is well smoothed. However, there 
are still some aspects that need further improvement 
to get a better interpolation.  

 (a)  (b)    (c) 
Figure 12 Mesh fairing example. (a) Boundary vertices 

of a cycle; (b) The preliminary generated 
mesh; (c) Mesh after fairing 

Algorithm. fairing parameters 

Denote the valence of pi as ki. 
If i≠j, then we have 

Foreach ki 
If  ki ≠4 
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Else 
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End If 
End Foreach 

Else 
0, 1i i i

i i i       (7) 
End If 



Firstly, in the part of curve treatment, the equation (1) 
used for the control point density adjusting takes only 
into account the length of each curve as the influence 
factor, so that the number of control points of each 
curve is proportional to its length. However, this way 
of adjusting can cause the incompatibility between 
curves while constructing the mesh. This may result 
in quads irregular, harming the mesh quality. A better 
solution should also consider the curvature of curves. 
Besides, the model constant C in equation (1) used to 
make a compromise between precision and efficiency 
is not easy to fix before trials. 

Secondly, in the patch cycle identification, our 
algorithm fails when dealing with curve network 
which consists of several connected components. The 
Depth-First-Search method we implemented can’t go 
further if there isn’t any bridge to link these 
connected components.  And it fails when the model 
includes surface features, like holes. In this case, 
some curve treatment can be added in future in order 
to avoid finding these cycles. Or a user interface can 
be designed to help detect the cycles. For example, in 
the model of the ring (fig. 13), the cycles that 
represent the holes of the ring have been deleted 
manually. If the designers want to present a hole in 
this model they may have to add some new edges (as 
shown in the figure 13) in order to drive our 
approach to the “wall” of the hole. 

Thirdly, concerning the mesh fairing stage, the 
energy function (eq. 4) may not be optimal because it 
can only rearrange the quads to be more regular, but 
not change the shape. In the case where we need to 
change the shape of the mesh, a nonlinear function 
formulated in terms of curvature approximations is 
probably to yield somewhat better results. Besides, 
fairing in mesh is an indirect way to improve the 
final subdivision surface. Post-treatment, like a 
function evaluated on the final subdivision surface, is 
direct and preferred because it will be more reliable 
though also more computationally expensive. 

Figure 13: The ring model with surface feature: holes 

8. CONCLUSION AND FUTURE WORK
In this article, a new framework is proposed in order 
to accelerate the freeform shape design process using 
3D curves. This framework combines together the 
curve treatment, the polygon construction, cycle 
identification, and mesh generation, with the goal to 
generate a coarse mesh for subdivision surface from 
curves. An instance of this framework has been 
prototyped and experimented with various models.  

For long term future works, the generation of 
subdivision surface from network containing open 
curves could be interesting. Open curve is the curve 
whose starting position is different with that of the 
ending position (fig. 14). This is much more difficult 
because open curves don’t form face cycles. The 
possible solution would be that during curve 
treatment new curves should be created or the curves 
should be prolonged so that all the curves form close 
cycles. 

Figure 14  Curves network with open curves 
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