
HAL Id: hal-01064178
https://hal.science/hal-01064178

Submitted on 20 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of subdivision surface from network of curves
Zhihua Li, Ruding Lou

To cite this version:
Zhihua Li, Ruding Lou. Generation of subdivision surface from network of curves. TENTH INTER-
NATIONAL SYMPOSIUM ON TOOLS AND METHODS OF COMPETITIVE ENGINEERING -
TMCE 2014„ May 2014, Budapest, Hungary. pp.673-684. �hal-01064178�

https://hal.science/hal-01064178
https://hal.archives-ouvertes.fr

Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/8522

To cite this version :

Zhihua LI, Ruding LOU - Generation of subdivision surface from network of curves - In: TENTH
INTERNATIONAL SYMPOSIUM ON TOOLS AND METHODS OF COMPETITIVE
ENGINEERING – TMCE 2014,, Hungary, 2014-05-19 - TMCE 2014 - 2014

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/8522
mailto:archiveouverte@ensam.eu

GENERATION OF SUBDIVISION SURFACE FROM NETWORK OF CURVES

Zhihua Li
Institut Image-Le2i UMR CNRS 6306

Arts et Metiers ParisTech
School of Mechanical Engineering

Shanghai Jiao Tong University
France/China

2012-2353@ensam.eu

Ruding Lou
Institut Image-Le2i UMR CNRS 6306

Arts et Metiers ParisTech
France

Ruding.Lou@ensam.eu

ABSTRACT
Subdivision surfaces are usually used to construct
freeform surfaces from network of curves for its
ability and flexibility to deal with complex
wireframes. In freeform surface designing, the
designers usually draw at first some curves for
describing the models conceived in their mind which
form a curve network representing an object of
arbitrary topology. Then 3D surfaces are computed
to interpolate these curves in order to create a B-Rep
model. If the subdivision surface is used in the
workflow, its control polyhedrons generation from
curves polygons could be a time-consuming stage. In
this article, we develop an approach to generate
automatically a control polyhedral mesh from an
arbitrary topological curve network. One of common
problems in interpolating surface patch using
subdivision surfaces is how to determine the
connectivity of control points. Arbitrary topological
curve network has no restriction in topology
structure, so another problem is that it has more
ambiguousness in defining surface patches. There
are three steps in our approach. Firstly, we compute
a 1D mesh (a unique polygonal model) from curves.
Secondly, we identify on the polygon different cycles
that would be the boundaries of potential surface
patches. Finally, in each identified cycle we apply an
algorithm of quadrangulation to construct the
control mesh of subdivision.

KEYWORDS
Curve network, curve control polygon, subdivision

surface control polyhedron, quadrilateral mesh,
arbitrary topological

1. INTRODUCTION
Freeform surface, or freeform surfacing, is used in
CAD and other computer graphics software to
describe the skin of a 3D geometric element.
Freeform surfaces do not have rigid dimensions,
unlike regular surfaces such as planes, cylinders and
conic surfaces. A common task in freeform surface
modeling is interpolating a given network of smooth
curves by a smooth surface.

Subdivision surfaces [1] are usually used to construct
freeform surfaces from network of curves for its
ability and flexibility to deal with complex
wireframes. A typical solution is based on
associating curves network which defines the surface
with boundary polygon of subdivision surface. In this
article, boundary polygon is the control polygon of
input curves. Hence, the input curve network is
associated with a polygon network, and curve
interpolation conditions are translated into conditions
on the boundary polygons. Using these conditions,
control polyhedral mesh can be constructed to
generate subdivision surface. Then fairing techniques
[2, 3] can be used to optimizing control polyhedral
mesh satisfying the boundary conditions. Therefore,
by using subdivision surface curve interpolating can
be carried out for given networks of arbitrary
topology (see [4]).

In surface design, designers usually draw at first
some curves describing the models according to

http://en.wikipedia.org/wiki/CAD
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Plane_(mathematics)
http://en.wikipedia.org/wiki/Cylinder_(geometry)
http://en.wikipedia.org/wiki/Conic

their imagination which form a curve network of
arbitrary topology. Then boundary polygons
associating with the drawn curves are used to create
control polyhedral meshes. The subdivision surface
generated later on from the control mesh would
interpolate these initial curves. The process can be
seen in the following workflow illustrated in figure 1.
However, in many domains of creative design (ex.
jewellery design) the stage of control polyhedral
mesh generation from curves stays time-consuming.

In order to improve the workflow and enhance the
product design efficiency, the current paper proposes
a computational approach to automate the generation
of control polyhedral mesh from curves. This
approach has been prototyped in java and it consists
of four steps: firstly, execute curve treatments to
associate the curves as well as their polygons;
secondly, identify face cycles from polygon network;
thirdly, generate polyhedral mesh in each cycle;
finally, apply fairing to optimize the mesh quality.
The prototyped operator has been experimented on
various examples and the results are very promising.
The paper is organized as follows. Section 2
discusses about the existing works relative to our
objective. An overview on our approach is presented
in the Section 3. Section 4 details how to generate a
well-connected polygon network from the input
curves. Section 5 illustrated the way to identify all
cycles in polygons. Section 6 present how each
identified cycle is filled by quadrangle meshes.
Finally we show and discuss about some
experimentation results of our approach in section 7
and section 8 presents our conclusions.

2. RELATED WORK
Some previous work in 3D modeling used input of
2D sketch, which is also called sketch-based
modeling. Modeling by sketching has a fundamental

problem of interpreting the 2D sketches to 3D curves
as well as 3D surfaces behind.

Koel et al [5] addressed the problem of creating a
freeform surface from a network of curves which
were generated from 2D sketches. They introduced a
method to find a 3D curve network from 2D sketches
where the projection of the 3D curves match well the
input 2D sketches. This method does not give a
unique 3D curve network therefore the one which has
minimum curvature among all the solutions is chosen.
Then subdivision surface was generated to
interpolate these 3D space curves having minimum
curvature. However, the presented method of 3D
mesh generation may not be feasible when the 3D
curves are drawn directly by designers. Since in 3D
space, the curves drawn by designers may not
intersect correctly.

Gonen and Akleman [6] introduced a method for
sketching 3D models in arbitrary topology. Their
method converted 2D sketches to 3D meshes that
mostly consists of quadrilaterals and then generated
subdivision surfaces using Catmull-Clark scheme.
But their algorithm can only deal with simple
sketches where there is no intersection between any
curves.

Our problem is a little different from sketch-based
modeling because the input in this paper is 3D curves
network instead of 2D sketches.

However, most of previous works in subdivision
surface generation using 3D curves have focused
either on how to fill a specified surface patch and
maintain higher smoothness of refined surface, or on
developing new subdivision approaches for lofting.

Doo and Sabin [7] focused on the behavior of
recursively divided surfaces near extraordinary
points. The behavior of the limits surface defined by
recursive divisions can be analyzed in terms of the
eigenvalues of a set of matrices. This analysis
predicts effects actually observed, and leads to
suggestions for the further improvement of
subdivision surface smoothness.

Nasri [4] has developed subdivision methods for
lofting based on the concept of a polygonal complex.
A method that extends the capability of the recursive
subdivision technique to generate surfaces that
interpolate predefined curves is described. The
technique consists of a one-step division of the initial
polygon network and a topological modification of
the face vertices generated from the edges and
vertices of the given control polygon.

Figure 1 Workflow of freeform surface creation from
curve drawing.

Levin [8] presented a subdivision algorithm for the
computation and representation of a smooth surface
of arbitrary topology that interpolates a given
network of smooth curves. While subdivision
schemes operate on a given mesh and generate a new
mesh, his subdivision schemes generate the new
mesh taking into consideration additional conditions
- such as boundary conditions, and transfinite
interpolation conditions - that are prescribed on the
limit surface. But their algorithm is restricted to nets
of curves where no more than two curves intersect at
one point, which is a considerable restriction for
many applications.

While there has been considerable success with these
approaches in interpolating a single surface patch
from curve network, there isn’t much work focusing
on generation of control meshes from network of
curves.

Schaefer et al [3] described a method to solve the
problem of constructing a surface using curve
network. They raised an algorithm to determine the
topological structure of the control mesh and
generate the subdivision surface automatically in
specified surface patch. The method automatically
quadrangulates cycles formed by the network of
polygons and then fair the resulting mesh. However,
the quality of control mesh generated using his
algorithm was dependent on control points’
distribution to some extent. Method for identification
the cycles of network was not mentioned.

The existing works doesn’t include a framework to
interpolate a curve network using subdivision
surface, nor generate a polyhedral control mesh from
curve network, which is what we want to focus on in
this paper. With existing works even few methods is
able to treat the cases where the curves don’t form
neither a connected network nor closed cycles. An
example of open curves is shown in figure 14, it is
easy to understand that the pretreatment of the curves
is quite important for the following meshing stage.

Lou et al [9] proposed a method for merging Finite
Element meshes. An algorithm was developed to
search the created holes after removing the
intersecting faces. Since the polygons network was
not closed, their algorithm included the addition of
some edges in order to form face loops. However, the
problem of identification of the cycles in the article is
easier because the face loops in this case have more
topological constraint.

3. OVERVIEW OF APPROACH
Generally speaking, a designer draws curves in a
CAD system. These curves will be the input of our
operator proposed in the current paper. Our operator
will then provide to the designer the control
quadrilateral mesh, with which the designer could
obtain smooth subdivision surfaces interpolating the
initial curves. The subdivision surface design process
using our approach can be seen in Figure 2. This
process is also illustrated on an example for
designing a ring (fig.3). As input of our operator the
user draws the curves to describe the shape they want
to obtain (fig.3.1).

 At first stage our operator does some treatments on
the curve network in order to generate a well-
connected control polygon network behind the
curves (fig.1.2).

 Then a set of elementary cycles are identified in the
polygon network using a graph algorithm and they
will be the boundaries of surface patches (fig.1.3).

 At end quadrilateral meshes are generated in each
cycle (fig.1.4).This will be the control polygon
mesh for generating subdivision surface.

Using an existing subdivision scheme the user could
obtain the smooth surface (fig.1.5) that interpolates
the initial curves he/she has drawn at beginning. In
compare with the previous works which focus on a
certain part of interpolation of curves, our approach
proposes a complete process to answer the needs of
generating the initial polyhedral mesh for subdivision.
This framework improves the time-costing manual
generation of initial mesh, compensates the lack of

Figure 2 Subdivision surface design process with
automatic generation of control polyhedral
mesh

research in generation of initial mesh from arbitrary
topology networks.

4. CONSTRUCTION OF POLYGONS
Being given as input a network of 3D curves the first
stage is to compute the network of control polygons.
This polygon network should be well connected from
which the control polyhedral mesh will be generated
later on. In addition the smooth surface generated by
subdividing the control polyhedral mesh should
interpolate the initial curves. Therefore the polygon
network should not be the discretization of the curves
but an association of all control polygons of curves.
The figure 4 is a zoom of the picture in figure.3.2.
The curves are drawn in black color and the control
polygons (vertices and edges) are drawn in red color.

However, the polygon network obtained directly
from the curve network can’t be used to generate the
polyhedral mesh due to following 4 aspects.

1) Curves may intersect each other while their
control polygons may not intersect. For example
in figure 5.a the two curves A and B intersect
whereas their control polygons A’ and B’ do not
interest each other.

2) It can happen also that the intersection points of
the curves and polygons are not at the same
position. In figure 5.c the two curves A and B
intersect at point O but their control polygons A’
and B’ intersect at a different point O’.

3) Sometimes designers draw several curves which
form an entire curve (fig.6.a). In this case the
points generated on the polygons may not well
distribute for further generated control mesh (fig.
6.b).

4) The density of control points could be very high
(fig.7.a) whereas the density of the subdivision
control mesh should be relatively low.

The first two points lead to incoherence between the
intersections present in the curve network and the
ones existing among the control polygons. To solve
this problem we split the curves at intersection point
in order to impose a common intersection point both
on the curves and on their control polygons. For the
third aspect the piecewise curves should be merged
(fig.6.d) in order to generating control mesh of good
quality (fig.6.e). Concerning to the fourth aspect the
high density of nodes would also penalize the
following mesh generation stage in terms of
computation time. Therefore it is necessary to
simplify the curve control polygons (fig.7.b).

In sum three kinds of curve treatments are necessary
and detailed in the following paragraphs: splitting
curves, merging curves and adjusting density of
control points.

4.1. Curve splitting
Some curves need to be split at the intersection point
in order to get a well-connected control polygon
network.

In some cases, while input curves intersect, their
corresponding control polygons may not intersect.

Figure 3 Example, subdivision surface design process

Figure 4 Construction of polygons from curves network
of a ring model

For example in figure 5.a, the curves A and B are
intersecting whereas their control polygons A’ and B’
do not intersect each other. In other cases, curves
intersect each other but their control polygons
intersect at a different position. Typically in the
example shown in figure 5.c where the two curves A
and B intersect at the point O but their control
polygons intersect at O’. The two intersection points
O and O’, do not have the same position which will
cause the fact that future subdivision surface will not
correctly interpolate the initial curves.

 (a) (b)

 (c) (d)
Figure 5 Splitting curves; (a) Curves intersect while their

polygons don’t intersect; (b) Split the curves in
(a); (c) Polygons intersect at a different position
with the curves’ intersection; (d) Split the
curves in (c).

In order to avoid the different intersection points on
curves and polygons, these curves should to be split.
Therefore the intersection points become endpoints
where the curves and their control polygons end at
the same point. Splitting curves is in fact inserting
knots [10] into the curves to separate the curve into
two. Knot insertion is adding a new knot into the
existing knot vector without changing the shape of
the curve. The inserted knot should lie exactly at the
position of the intersection point of curves so the
original curves can be considered as split into two.

Coming back to the introduced example (fig. 5.a), the
initial curve A is split into two curves A1 and A2
therefore the three curves (A1, A2 and B) meet at the
intersection point where their polygons (A1’, A2’
and B’) also intersect (fig.5.b). For the other example
(fig.5.c), the two initial curves A and B are split into
four curves A1, A2, B1 and B2 intersecting at point O
(fig.5.d), so that their control polygons (A1’, A2’, B1’
and B2’) intersect as well at the point O.

(a) (d)

 (b) (e)

 (c) (f)

Figure 6 The ring model. (a) Two elementary curves that
form an entire curve; (b) bad quality of
generated control mesh; (c) bad shape of
subdivision surface; (d) A unique curve is
created by merging two elementary curves; (e)
Mesh generated after merging curves; (f)
Subdivision surface generated after merging
curves.

4.2. Curve merging
In some cases, several elementary curves are
connected successively to form an entire smooth
curve. These piecewise curves might be produced
due to default of design. These curves introduce extra
intersection points, which not only burden the mesh
generation process, but also harm the quality of the
generated control mesh.

In figure 6.a, there are two curves (Curve 1 and
Curve 2) that form actually an entire curve. The
generated control polyhedral mesh and smooth
subdivision surface created from this curve network
can be seen in figures 6.b and 6.c. In the circled area,
the quadrilaterals are irregular (fig.6.b) and the

subdivision surface is sinking (fig.6.c). This is
because these points connecting the two elementary
curves will constrain the generation of control mesh
and subdivision surface.

To solve this problem, we firstly define the criteria to
search all the curves that need to be merged. Two
intersecting curves are merged into one curve if the
three conditions below are true:

- their extremities are enough close to the
intersection point;

- their tangents on these extremities are
approximately equal;

- their curvature are almost equal;

For sure to evaluate these conditions three thresholds
should be chosen correctly. Concerning the example
in figure 6.a, Curve 1 and Curve 2 are merged into
Curve 3 (fig. 6.d).

Merging curves is in fact a process of knot removal
[10] which is opposite to the knot insertion used in
4.1. The knots to remove should be the extra
intersection points that separate an entire curve into
different parts. Our operator is able to detect this kind
of curves and to merge them. The result of
implementation after merging the curves is more
satisfying, with all the quadrilaterals well arranged
(fig.6.e), no sinking problem in the generated surface
(fig. 6.f).

4.3. Control point density adjustment
Besides knot insertion and knot removal to treat the
input curves, the control point density of a curve
should be also adjusted while preserving its shape.
Here, the density means the ratio between the
number of control points of the curve and the curve
length.

It can be imagined that with a model where some
curves have a high control point density and others
have a low one, the inhomogeneity of different
curves’ control point density causes difficulty in
generating polyhedral mesh. In Figure 7(a), the red
color implies the control points. It can be seen that
curves in the ring model are of different density. For
the top part, the curves have very few control points
whereas for the curves at lower part their control
points much more dense. The very different densities
of the control points will cause later on skinning
mesh elements in the subdivision control
polyhedrons. In addition the control polygon mesh
for a subdivision surface is generally not very dense.

Therefore what would be respected is more like the
model shown in Figure 7(b), where all the control
points of all curves have similar and low densities.

 (a) (b)
Figure 7 (a) Ring model with inhomogeneous density

control points; (b) Ring model after adjusting
the density.

In adjusting the control point density, both efficiency
and precision of shape approximation should be
taken in consideration. It’s sure that a model of high
control point density can result a better precision of
interpolation. However, the searching of face cycles
and mesh generation will become much more time-
consuming. Therefore, an algorithm is required to
adjust density of control points in order to
compromise between efficiency and precision.

A preliminary algorithm is used here to adjust the
density of control points.

If the length of the shortest input curve is L0, let the
number of control point for this shortest curve be n0,
which is set by user. In case of the ring model (fig.
7.b) in this paper, n0 is set as 4, which means there
are three edges in the polygon created from the
shortest curve. The control point numbers on other
curves are proportional to their lengths. Hence, for
the rest of the curves, their lengths are denoted as Li.
Then the number of control points for the rest curves
can be expressed in the following equation:

(1)

And we take integer ni as the number of control
points for the ith curve. C is the model constant that
depends on the different requirement of precisions or
efficiency.

5. IDENTIFICATION OF FACE CYCLES

5.1. Pre-computation of cycles
In this section, face cycles or cycle basis [11] are
computed in the polygon network.

Most previous work in face cycles computing has
focused on two dimensional drawings of wireframe
models, sometimes with holes or non-planar faces.
For non-manifold surfaces from two-dimensional
inputs, Shpitatni and Lipson [12] described a method
for identifying the faces of a wireframe object
depicted by a single two-dimensional projection.
However, the problem they dealt with is significantly
different from ours because their input is strictly two-
dimensional, rather than three-dimensional, which
introduces more ambiguities. The most relevant is
probably proposed by Fatemeh and Nina [13]. They
developed a simple and robust framework for
extracting patches from 3D wireframe models. In this
article, an algorithm that is similar with Depth-First-
Search [14] is developed.

Starting with an arbitrary edge and an ending point of
this edge as starting point, our cycle detection is a
process of searching next vertex continually until it
finds the starting point. During this process, it’s not
allowed to use a point more than once. An example
of cycle searching is shown in figure 8. Starting with
the vertex no. 1 and the edge connecting the two
vertices no. 1 and no. 2 (fig.8.a), four possible paths
are identified (fig.8.b). Actually only two paths no. 1
and no. 3 allow to reach the starting point (vertex no.
1) without going through more than once the other
vertices. Whereas the paths no. 2 and no. 4 are
abandoned because they meet the vertex no. 3 twice
before reaching the starting point. It can be seen that
more than one cycle would be detected starting from
a vertex, one of which is the wanted face cycle.

 (a) (b)
Figure 8 (a) Starting from a vertex and a direction, search

all the possible paths in a graph; (b) All the
possible paths;

5.2. Selection of face cycles
Beginning with a vertex, we can find a series of
cycles. However, not all these cycles are the face
cycles. Therefore a weighting function is used here to
define these face cycles, or the shortest cycles. Three
factors are used in defining face cycles, which are list
in the following:

 Number of edges in the cycle (n);

 Number of connected components after deleting
edges in the cycle (m);

 Bounding box volume of cycle;

Using these factors, the weighting function k is
defined as:

(1)k n n m   (2)

The cycle with minimal value of k is selected as the
shortest cycle. Usually, cycles that separate the
curves into different components should be avoided.
That’s why there is a term of n(m-1) in the formula.
If there is more than one cycle having the same
minimal value for k, then the cycles with smallest
bounding box volume are preferred. This selected
cycle is then added into the set of validated cycles
that will be used to generate mesh.

5.3. Exhaustive identification of cycles
It can be noted that if all the face cycles are found
and their corresponding faces form closed solid, all
the edges in the graph should be used in exactly two
cycles. Therefore the two steps (5.1 and 5.2) should
be repeated till all the edges appear exactly in two
cycles. An algorithm below could summarize the
general process of cycle identification. Initially the
set freeEdges contains all edges from which cycles
should be identified. At the end this set should be
empty and the set validatedCyles should contain all
the cycles.
Algorithm. exhaustive identification of
cyclesWhile freeEdges is not empty

Pre-compute cycles in freeEdges using a random edge

Select one cycle from pre-computed cycles

Add the cycle into the set of validatedCycles

Foreach edge in freeEdges

If edge appear in two validated cycles

Remove edge from freeEdges

End If

End Foreach

End While

(a) (b) (c) (d)

Figure 9 An advancing front method to fill the cycle

6. GENERATION OF CONTROL MESH

6.1. Cycle quadrangulation
The polygon network is constructed from curves
(section 4) and different face cycles are identified
(section 5). In this section, we will present how to
generate polyhedral mesh in each cycle. To complete
the prototype of our global approach, we have
implemented the advancing front meshing algorithm
presented in [3] for quadrangulating each cycle.
Generally speaking, a cycle is considered as a hole
(fig.9.a) and the algorithm will fill the hole iteratively
from the boundary to the center (fig.9). At the first
iteration the first mesh elements are created on the
boundary (fig.9.b) and the hole becomes smaller. In
the next iteration we generate other mesh elements
on the new boundary of the smaller hole (fig.9.c).
The filling process is repeated until the hole is
completely filling (fig.9.d). During this process, the
connectivity of mesh is determined without
calculating the positions of each vertex.

(a) (b)

(c)
Figure 10 (a)A part of a cycle to be filled; (b)

Connectivity constructed in the cycle; (c)
Calculation of positions of interior vertices.
Solid points are the boundary vertices and
hollow points are the interior vertices

For a control mesh, there are boundary vertices and
interior vertices. While boundary vertices are the
original vertices of the control polygons, interior
vertices are newly generated vertices inside each
cycle. In figure 10 the solid points are the vertices on
the hole boundary whereas the hollow points are the
one newly generated in each iteration. The positions
of the newly generated interior vertices are not
computed for each iteration in the method proposed
in [3] during the meshing process. Therefore we
propose here a formula (eq. 3) to calculate the
preliminary positions of the newly generated vertices
based on the boundary vertices.

(3)

Where the vector vi starts from a boundary vertex and
ends at an interior vertex; v0, vn are two vectors,
formed by boundary vertices connected to the chosen
polyline(using the method in 6.1) and extreme
vertices of the chosen polyline; Li is the length of the
ith edge of the boundary polygon (fig.10).

6.2. Mesh faring
In this part we present how to improve the quality of
the generated mesh so that its infinitely subdivided
surface interpolates the curve network and has a
smooth appearance, which is called mesh fairing in
this article. It is actually an optimization problem
where the objective function is defined by an energy
quantity computed from the mesh. The optimal
positions of mesh nodes allow us to minimize the
energy quantity.

Using the preliminary positions computed by
equation 3 the control mesh generated in the model
of ring is shown in figure 11.a. However, the quality
of generated quadrilaterals is not optimal. For
example, in the circled part (fig. 11.b) the mesh
elements could be improved as those shown in figure
11.c. Usually, fairing computes the positions of the
interior vertices where an energy function [15 and
16] is minimized. Therefore the shape of
quadrilaterals in the mesh is more regular, with each
angle of the quadrangle more close to 90° (fig. 11.c).

Figure 11 Control polyhedral for the ring model. (a)
Preliminary mesh; (b)Quadrilaterals of bad
quality; (c) Preferred quadrilaterals.

The mesh fairing process actually is considered as an
optimization problem. The mesh nodes are
repositioned in order to minimize a certain quantity.
The border vertices positions should not be changed
since they inherit the positions of the initial curve
control points. Whereas the interior vertices could be
repositioned in order to improve the mesh quality. So
we can formulate the optimization problem:

Min E (p) where p = (x0, y0, z0,..., xn, yn, zn)

E(p) is an objective function defining a kind of
energy relative to the interior vertices position vector
p. To complete the prototype of our global approach
we have adopted the energy function we used is
presented in the article [3]. Nevertheless this function
could be changed according to different needs for
different applications. This energy function is not so
computationally expensive and requires less effort to
implement. By minimizing this energy function, the
control mesh is relaxed such as removing any
external forces applied on a mass-spring system.
Therefore the quads get arranged regular in the mesh.
Although it is known to be far from optimal for fine
meshes; however, the difference on relatively coarse
meshes, such as the typical control meshes of
subdivision surfaces, appears to be less significant.

2 2 2() (() () ())
i j i j i j i

i i i
j j j j j j

p p N p N p N
E p p p p  

  

     
 (4)

Ni is the one ring of the vertex pi. We define the one
ring of pi as the set containing pi itself and its
neighbor vertices. The parameters α, β and γ are
assigned according to the following algorithm.

The fairing result for a simple example can be seen in
figure 12. The polyhedral mesh after fairing is more
regular compared to the preliminary mesh.

7. RESULTS AND DISCUSSION
In this chapter, we tested our algorithm in three
models and gave the implementation results: the
input curve of a ring, a bottle and a spoon (figures
15-17). For example, figure 15.a shows the input
curves of a ring model; The control polygon of the
ring model after curve treatment is presented in
figure 15.b; Figure 15. c. They illustrate the face
cycles of the model identified by our algorithm;
Figures 15.d and 15.e show respectively the control
polyhedral mesh and smooth subdivision surface.

From the result of implementation, it can be seen that
the result of the generated subdivision surfaces is
very encouraging. The final surface interpolates the
input curves and is well smoothed. However, there
are still some aspects that need further improvement
to get a better interpolation.

 (a) (b) (c)
Figure 12 Mesh fairing example. (a) Boundary vertices

of a cycle; (b) The preliminary generated
mesh; (c) Mesh after fairing

Algorithm. fairing parameters

Denote the valence of pi as ki.
If i≠j, then we have

Foreach ki
If ki ≠4

42 / cos()

42 / sin()

1

i
j i

i

i
j

i

i
j

i

jk
k

jk
k

k






















(5)

Else
1/ 4cos()

1/ 4sin()

i
j

i
j

j

j

 

 

 



(6)

End If
End Foreach

Else
0, 1i i i

i i i      (7)
End If

Firstly, in the part of curve treatment, the equation (1)
used for the control point density adjusting takes only
into account the length of each curve as the influence
factor, so that the number of control points of each
curve is proportional to its length. However, this way
of adjusting can cause the incompatibility between
curves while constructing the mesh. This may result
in quads irregular, harming the mesh quality. A better
solution should also consider the curvature of curves.
Besides, the model constant C in equation (1) used to
make a compromise between precision and efficiency
is not easy to fix before trials.

Secondly, in the patch cycle identification, our
algorithm fails when dealing with curve network
which consists of several connected components. The
Depth-First-Search method we implemented can’t go
further if there isn’t any bridge to link these
connected components. And it fails when the model
includes surface features, like holes. In this case,
some curve treatment can be added in future in order
to avoid finding these cycles. Or a user interface can
be designed to help detect the cycles. For example, in
the model of the ring (fig. 13), the cycles that
represent the holes of the ring have been deleted
manually. If the designers want to present a hole in
this model they may have to add some new edges (as
shown in the figure 13) in order to drive our
approach to the “wall” of the hole.

Thirdly, concerning the mesh fairing stage, the
energy function (eq. 4) may not be optimal because it
can only rearrange the quads to be more regular, but
not change the shape. In the case where we need to
change the shape of the mesh, a nonlinear function
formulated in terms of curvature approximations is
probably to yield somewhat better results. Besides,
fairing in mesh is an indirect way to improve the
final subdivision surface. Post-treatment, like a
function evaluated on the final subdivision surface, is
direct and preferred because it will be more reliable
though also more computationally expensive.

Figure 13: The ring model with surface feature: holes

8. CONCLUSION AND FUTURE WORK
In this article, a new framework is proposed in order
to accelerate the freeform shape design process using
3D curves. This framework combines together the
curve treatment, the polygon construction, cycle
identification, and mesh generation, with the goal to
generate a coarse mesh for subdivision surface from
curves. An instance of this framework has been
prototyped and experimented with various models.

For long term future works, the generation of
subdivision surface from network containing open
curves could be interesting. Open curve is the curve
whose starting position is different with that of the
ending position (fig. 14). This is much more difficult
because open curves don’t form face cycles. The
possible solution would be that during curve
treatment new curves should be created or the curves
should be prolonged so that all the curves form close
cycles.

Figure 14 Curves network with open curves

REFERENCES
[1] Catmull, E., Clark, J., (1978), “Recursively generated

B-spline surfaces on arbitrary topological meshes”;
Computer-aided Design 10, pp. 350–355.

[2] Halstead, M., Kass, M., Derose, T., (1993),
“Efficient, fair interpolation using Catmull-Clark
surfaces”; In Proceedings of SIGGRAPH 93,
Computer Graphics Proceedings, Annual Conference
Series, pp. 35–44. 9

[3] SCHAEFER S., WARREN J., ZORIN D., (2004),
“Lofting Curves Network using Subdivision
Surfaces”; Proceedings of the 2004 Eurographics ,
pp.103-114.

[4] Nasri, A., (1997), “Curve interpolation in recursively
generated b-spline surfaces over arbitrary topology”;
Computer Aided Geometric Design, 14: No 1.

[5] Koel, D., Pablo, D-G., M.Gopi., (2005), “Sketching
Free-form surfaces using network of curves”;
Eurographics Workshop on Sketch-Basisd Interfaces
and Modeling (2005)

[6] Gonen,O., Akleman, E., (2012), “Sketch basisd 3D
modeling with curvature classification”; Shape
Modeling International (SMI) Conference 2012, 36(
5), pp.521–525

[7] Doo, D., Sabin, M., (1978), “Behavior of recursive
division surfaces near extraordinary points”;
Computer-Aided Design, Vol. 10, No. 6, pp. 356-
360.

[8] Levin, A., (1999), “Interpolating nets of curves by
smooth subdivision surfaces”; Proceedings of the
26th annual conference on Computer graphics and
interactive techniques, pp. 57-64.

[9] Ruding, L., Mikchevitch, A., Pernot, J-P. and Veron,
P. (2010), “Merging enriched Finite Element triangle
meshes for fast prototyping of alternate solutions in
the context of industrial maintenance”; Computer-
Aided Design, 42(8), pp.670-681.

[10] Les A, P., Wayne, T., (1996), “The NURBS Book”,
Chapter Five, Springer 2nd edition

[11] Kavitha, T., Mehlhorn, K., (2009), “Cycle basis
graphs: Characterization, Algorithms, Complexity,
and Applications”. Computer Science Review, 3(4):
199-243.

[12] Shpitalni, M., Lipson H., (1996), “Identification of
faces in a 2D line drawing projection of a wireframe
object”; Pattern Analysis and Machine Intelligence,
IEEE Transactions on 18, 10 ,1000 –1012. 3, 8

[13] FATEMEH A., NINA A., (2011). “Surface Patches
from Unorganized Space Curves”; The Eurographics
Association and Blackwell Publishing Ltd. 30,5

[14] Tarjan, R. E., (1976), “Edge-disjoint spanning trees
and depth-first search”; Acta Informatica, Vol
6, Issue 2, pp. 171-185

[15] Yongjie, Z., Chandrajit, L., Guoliang, X., (2005),
“Surface Smoothing and Quality Improvement of
Quadrilateral / Hexahedral Meshes with Geometric
Flow”; Proceedings of 14th International Meshing
Roundtable, pp. 449-468.

[16] Hoppe, H., DeRose, T., Duchamp, T., MacDonald J.,
Stuetzle, W., (1993), “Mesh Optimization”;
Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pp.
19-26

http://www.sciencedirect.com.rp1.ensam.eu/science/journal/00978493/36/5
http://www.sciencedirect.com.rp1.ensam.eu/science/journal/00978493/36/5
http://link.springer.com/search?facet-author=%22Robert+Endre+Tarjan%22
http://link.springer.com/journal/236
http://link.springer.com/journal/236/6/2/page/1

