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OPEN BOOK STRUCTURES ON SEMI-ALGEBRAIC

MANIFOLDS

N. DUTERTRE, R. ARAÚJO DOS SANTOS, Y. CHEN AND A. ANDRADE

Abstract. Given a C2 semi-algebraic mapping F : RN → Rp, we con-
sider its restriction to W →֒ RN an embedded closed semi-algebraic
manifold of dimension n− 1 ≥ p ≥ 2 and introduce sufficient conditions
for the existence of a fibration structure (generalized open book struc-
ture) induced by the projection F

‖F‖
: W \F−1(0) → Sp−1. Moreover, we

show that the well known local and global Milnor fibrations, in the real
and complex settings, follow as a byproduct by considering W as spheres
of small and big radii, respectively. Furthermore, we consider the com-
position mapping of F with the canonical projection π : Rp → Rp−1 and
prove that the fibers of F

‖F‖
and π◦F

‖π◦F‖
are homotopy equivalent. We

also show several formulae relating the Euler characteristics of the fiber
of the projection F

‖F‖
and W ∩ F−1(0). Similar formulae are proved for

mappings obtained after composition of F with canonical projections.

1. Introduction

For a real analytic mapping germ with isolated critical point at origin
ϕ : (Rn, 0) → (Rp, 0), Milnor proved in [9] that for all ǫ > 0 small enough

there exists a smooth locally trivial fibration Sn−1
ǫ \ Kǫ → S

p−1
1 , where

Kǫ := ϕ−1(0) ∩ Sn−1
ǫ , and pointed out that the map ϕ

‖ϕ‖ may fail to be the

projection of such fibration since the singular locus Σ( ϕ
‖ϕ‖) may have a curve

inside Bǫ \ ϕ
−1(0) which accumulates at the origin. See [9], page 100, for

details.

For germs with non isolated singularity, the existence of a fibration where
the canonical projection ϕ

‖ϕ‖ extends to spheres was studied in [1, 2, 5] and

called (Singular) Higher open book structures on spheres.

In the global setting, Némethi and Zaharia in [10] used Milnor’s method
to show that if a polynomial function f : Cn → C satisfies the semitame

condition, then the projection
f

‖f‖
: S2n−1

R \KR → S1 is a locally trivial

fibration for all R big enough. In [3] the authors generalized the results of
Némethi and Zaharia introducing a kind of Milnor’s conditions at infinity for
a class of mappings which contains complex semitame functions, several kind
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of real polynomials maps and meromorphic functions. In fact, under such
conditions they proved the existence of a “Singular open book structure at
infinity”. It means that, given a polynomial map F : Rn → Rp, n > p ≥ 2,
satisfying Conditions (a) and (b) (see Section 1 for details), there exists
R0 ≫ 1 such that, for all R ≥ R0, the projection map

F

‖F‖
: Sn−1

R \KR → S
p−1
1

is a smooth locally trivial fibration, where KR = F−1(0)∩Sn−1
R is called the

link at infinity.

In this paper we prove a general fibration theorem (Theorem 2.1) for
a more general class of maps and sets. For this we consider a C2 semi-
algebraic map F = (f1, . . . , fp) : RN → Rp and W →֒ RN an embedded
compact semi-algebraic manifold without boundary of dimension n− 1 ≥ p.
We introduce sufficient conditions that ensure the existence of an open book
structure on W induced by the projection F

‖F‖ . As a consequence we extend

both fibration structures: the local and global ones in the real and complex
settings.

In another direction, we investigate the composition mapping of F with
the canonical projection π : Rp → Rp−1. In the local setting this prob-
lem was approached in [7] for the so-called Milnor’s tube fibration and it
was shown that the canonical projection π does not change the homotopy
type of the fiber. In the present paper we prove that an analogous result

holds true for the general fibration
F

‖F‖
:W \ F−1(0) → Sp−1. Moreover, it

is shown that the Euler characteristics of the fiber of the projection F
‖F‖ and

W ∩ F−1(0) are closely related, as a consequence, it follows that the Euler
characteristic of the fiber is a natural obstruction for the sets W ∩ F−1(0)
and W ∩ (π ◦ F )−1(0) to be homotopy equivalent. See Proposition 4.1.

The structure of the paper is as follows. Section 2 is devoted to establish
a general fibration theorem for C2 semi-algebraic mappings. In Section 3,
we consider the composition of the mapping F with the canonical projection
and show that the respective fibers are homotopy equivalent. In Section 4,
we relate the Euler characteristics of the fibers and the relative links. In
the last section, we explain how to relate our results to the higher open
book structure for polynomial mappings in the local and global settings and
calculate some examples.

2. Fibration structure

2.1. Fibration theorem. Let W →֒ RN be a smooth, compact semi-
algebraic (n − 1)−dimensional submanifold embedded in RN . Let F =
(f1, . . . , fp) : RN → Rp, 2 ≤ p ≤ n − 1, be a C2 semi-algebraic map,
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V (F ) = F−1(0) and VW (F ) = V (F ) ∩W . We denote by F̄ : RN \ V (F ) →

Sp−1 the projection F
‖F‖ where ‖F‖ =

√

f21 + · · · + f2p . We also denote by:

• ΣF the set of critical points of F,

• ΣF̄ the set of critical points of F̄ ,

• ΣWF the set of critical points of F|W ,

• ΣW
F̄

the set of critical points of F̄|W .

It follows by definition (see also Remark 3.1 and Lemma 3.3 below) that
ΣF̄ is a subset of ΣF and ΣW

F̄
is a subset of ΣWF .

We are interested in studying the existence of the locally trivial fibration

(1) F̄ : W \ VW (F ) → Sp−1.

We call such fibration the fibration structure induced by F̄ .

We should point out that Conditions (a) and (b) and the proof of Theorem
2.1 below follow closely the one stated in [1, 2, 3], which in turn were inspired
by Massey’s conditions introduced in [8]. The idea of our result is to show
how to adapt them in a more general setting. For this, consider the following
conditions:

(a) ΣWF \ VW (F ) ∩ VW (F ) = ∅,
(b) ΣW

F̄
= ∅.

Without lost of generality, we may assume W connected.

Theorem 2.1. Under Condition (a), the following statements are equiva-
lent:

(i) F̄ :W \ VW (F ) → Sp−1 is a C2 locally trivial fibration,

(ii) Condition (b) holds.

Proof. Firstly, see that Condition (b) holds if and only if:

F̄ :W \ VW (F ) → Sp−1

is a submersion.
By the Curve Selection Lemma, Condition (a) means that: there exists

δ > 0 small enough and a closed disc Dδ centered at origin such that

F| : F
−1(Dδ − {0}) ∩W → Dδ − {0}

is a C2 surjective proper submersion.

Let us prove the implication (i) ⇒ (ii). If we suppose that F̄ : W \
VW (F ) → Sp−1 is a locally trivial fibration, then it is a submersion and so
Condition (b) follows.

Let us prove the converse. We can assume that VW (F ) is not empty:
in fact, in the case it is empty, Condition (a) is always satisfied and by
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Condition (b), we have that F̄ : W → Sp−1 is a C2 proper submersion and
so onto, since Sp−1 is connected. Hence (i) follows by Ehresmann’s theorem.

In the case VW (F ) is not empty, the projection F̄ : W \ VW (F ) → Sp−1

is not proper and we can not use Ehresmann’s theorem. Nevertheless, the
mapping F| : F

−1(Dδ−{0})∩W → Dδ−{0} is a surjective proper submer-
sion. So, by Ehresmann’s theorem, the mapping

(2) F| : F
−1(Dδ − {0}) ∩W → Dδ − {0}

is a locally trivial fibration. Now, we can compose it with the radial projec-
tion π1 : Dδ − {0} → Sp−1, π1(y) =

y
‖y‖ , to get that

(3) F̄ : F−1(Dδ − {0}) ∩W → Sp−1

is a locally trivial fibration.
Fibration (2) yields that the map

(4) F̄ : F−1(Sδ) ∩W → Sp−1

is also a locally trivial fibration and therefore surjective.
This implies that

(5) F̄ : W \ F−1(D̊δ) → Sp−1

is surjective and proper, where D̊δ denotes the open disk. So, by using
Condition (b), the mapping F̄ is a C2 submersion. Therefore, we have a
locally trivial fibration by Ehresmann’s theorem.

Now we can glue fibrations (3) and (5) along the common boundary
F−1(Sδ) ∩W, using fibration (4), to get the locally trivial fibration (1). �

Remark 2.2. (1) The main argument in the proof is based on Ehres-
mann’s theorem. Therefore, it is possible to generalize Conditions
(a) and (b) above and Theorem 2.1 for C2 mappings and manifolds
not necessarily in the semi-algebraic category.

(2) It is possible to change the submanifoldW by a compact semi-algebraic
set with non-empty singular locus Σ(W ) if one just asks that Σ(W ) ⊆
VW (F ). Alternatively, one can change the compactness condition on
W by asking F to be proper on W . In both cases, the statement of
Theorem 2.1 and its proof work in the same way.

3. Canonical projections and fibers

In this section we study the behaviour of Conditions (a) and (b) after
considering composition of F with canonical projections. The idea was in-
spired by the studies developed in [7, Theorem 6.2], where it was shown
that for real analytic mapping germs with isolated critical values, under the
so-called Milnor’s conditions (a) and (b) introduced by D. Massey in [8], the
canonical projection preserves the homotopy type of the Milnor fiber.
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For now on, we follow the notations used in section 2. The following
statement is an important remark which provides a way to understand the
generators of the normal space to the fibers of F̄ .

Remark 3.1. Let πi : R
p → Rp−1 be the projection

(y1, . . . , yp) 7→ (y1, . . . , ŷi, . . . , yp).

The restriction of πi ◦ F̄ on the open set {fi 6= 0} is given by

πi ◦ F̄ : RN \ V (F ) → Bp−1 ⊂ Rp−1

x 7→ (f̄1(x), . . . ,
̂̄fi(x), . . . , f̄p(x)),

where f̄i denotes the function fi
‖F‖ for i = 1, . . . , p. Moreover we have that

ΣF̄ ∩ {fi 6= 0} is the set of points where

rank



















∇f̄1
...

∇f̄i−1

∇f̄i+1
...

∇f̄p



















< p− 1.

Let us see below a way to make these generators explicit. As in [1, 3], for
each 1 ≤ i, j ≤ p, let us denote by

ωi,j(x) = fi(x)∇fj(x)− fj(x)∇fi(x).

It follows that ωi,i(x) = 0 and ωj,i(x) = −ωi,j(x). Calculations show that
for each 1 ≤ j ≤ p,

(6) ∇(
fj

‖F‖
)(x) =

1

‖F‖3

p
∑

1≤k 6=j

fk(x)ωk,j(x).

It means that, if x is not a singular point of F̄ , then the set of vectors
{ωi,j(x)}1≤i<j≤p span the normal space in Rn \V (F ) to the fiber F̄−1(F̄ (x))
at x. It is also easy to check that the following circular relation holds.

Lemma 3.2. For all 1 ≤ i < j < k ≤ p we have:

fiωj,k + fkωi,j + fjωk,i = 0. (2)

Proof. It follows by definition. �

Since this relation contains the main information concerning the normal
space to the fiber, we call it Milnor’s equality.

Lemma 3.3. Given F as above, for all x in the open set {f1(x) 6= 0}, we
have the following matrix equation:
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‖F (x)‖3p ·



















∇(
f1

‖F‖
)(x)

∇(
f2

‖F‖
)(x)

. . .

∇(
fp

‖F‖
)(x)



















p×n

=

















−f2 −f3 . . . −fp−1 −fp
f21+f

2
3+···+f2p
f1

− f2f3
f1

. . . −
f2fp−1

f1
− f2fp

f1

− f2f3
f1

f21+f
2
2+···+f2p−1+f

2
p

f1
. . . −

f3fp−1

f1
− f3fp

f1

· · · · · · · · · . . . · · ·

− f2fp
f1

− f3fp
f1

. . . −
fp−1fp
f1

f21+f
2
2+···+f2p−1

f1

















p×(p−1)









ω1,2(x)
ω1,3(x)
. . .

ω1,p(x)









(p−1)×n

,

where the p× (p− 1) matrix has maximal rank.

Proof. The matrix equation follows from relation (6) and Lemma 3.2.

Now consider the (p − 1) × (p − 1) submatrix, let us say A(x), built by
removing the first line in the p× (p− 1) matrix above:

A(x) =













f21+f
2
3+···+f2p
f1

− f2f3
f1

− f2f4
f1

. . . − f2fp
f1

− f2f3
f1

f21+f
2
2+···+f2p−1+f

2
p

f1
− f3f4

f1
. . . −

f3fp
f1

· · · · · · · · · . . . · · ·

− f2fp
f1

− f3fp
f1

− f4fp
f1

. . .
f21+f

2
2+···+f2p−1

f1













.

Since it is a symmetric matrix it is diagonalizable, then the geometric and
algebraic multiplicity are the same. Now, by linear algebra calculations one

can prove that
‖F (x)‖2

f1(x)
is an eigenvalue with multiplicity (p− 2) and f1(x)

is an eigenvalue with multiplicity one. So, the determinant of A(x) is equal

to
‖F (x)‖2(p−2)

f
p−3
1 (x)

and never vanishes on the open set {f1(x) 6= 0}. Therefore,

the linear operator A(x) is injective and the ranks of the p × n matrix on
the left side and the (p− 1)× n matrix on the right side are the same. �

Remark 3.4. The above lemma still holds true with the same proof, if one
considers for each i = 2, · · · , p, the point x in the open set fi(x) 6= 0. In this
case, the i-th line of the p× (p− 1) matrix is given by















aik = −fk, if k < i,

aik = −fk+1, if k ≥ i.
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Now, removing this line from the matrix, one obtains a (p− 1)× (p− 1)
symmetric matrix such that the elements in the diagonal are given by







































ajj =

p
∑

1≤k 6=j

f2k
fi
, if j < i,

ajj =

p
∑

1≤k 6=j+1

f2k
fi
, if j ≥ i,

and the elements above the diagonal are given by



















alk = − flfk
fi
, if k < i,

alk = −
flfk+1

fi
, if k ≥ i.

The (p − 1)× n matrix in this case takes the form























ωi,1
ωi,2
...

ωi,i−1

ωi,i+1
...
ωi,p























(p−1)×n

.

3.1. Case p ≥ 3. We assume that p ≥ 3 and consider the canonical projec-
tion π : Rp → Rp−1, π(y1, . . . , yp) = (y1, . . . , yi, . . . , yp−1). We denote the

composition mapping π ◦ F by G = (f1, . . . , fp−1) and as before Ḡ = G
‖G‖ .

Lemma 3.5. If F satisfies Conditions (a) and (b), then G = (f1, . . . , fp−1)
also satisfies Conditions (a) and (b).

Proof. We prove first that Condition (b) holds for G. Assume that there
exists x ∈ ΣW

Ḡ
. Then, there exists i ∈ {1, . . . , p − 1} such that fi(x) 6= 0.

Since W ⊂ RN is a smooth semi-algebraic manifold of dimension n − 1,
locally around x we can assume that W = {h1(x) = 0, . . . , hN−n+1(x) = 0}
where h1, . . . , hN−n+1 are smooth semi-algebraic functions and 0 is a regular
value of the mapping (h1, . . . , hN−n+1) : R

N → RN−n+1. By Remark 3.1, at
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the point x we have

rank

































∇h1(x)
...

∇hN−n+1(x)
∇f̄1(x)

...
∇f̄i−1(x)
∇f̄i+1(x)

...
∇f̄p−1(x)

































< N − n+ 1 + p− 2,

and by adding in the last line the vector ∇f̄p(x), we get

rank

































∇h1(x)
...

∇hN−n+1(x)
∇f̄1(x)

...
∇f̄i−1(x)
∇f̄i+1(x)

...
∇f̄p(x)

































< N − n+ 1 + p− 1.

Hence, x ∈ ΣW
F̄

which is in contradiction since ΣW
F̄

= ∅. So, G satisfies
Condition (b).

Next let us prove that Condition (a) also holds for G, i.e., we have to
show that

ΣWG \ VW (G) ∩ VW (G) = ∅.

Observe that

ΣWG ⊂ ΣWF and VW (F ) ⊂ VW (G),

then from the inclusions

ΣWG \ VW (G) ⊂ ΣWF \ VW (F ),

and

ΣWG \ VW (G) ⊂ ΣWF \ VW (F ),

the inclusion

(7) ΣWG \ VW (G) ∩ VW (F ) ⊂ ΣWF \ VW (F ) ∩ VW (F ),

follows.
Since F satisfies Condition (a), we get that ΣWG \ VW (G) ∩ VW (F ) = ∅.
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On VW (G) \ VW (fp), we have fp 6= 0. By Remark 3.1, x ∈ ΣW
F̄

\ VW (fp)
if and only if

rank



















∇h1(x)
...

∇hN−n+1(x)
∇f̄1(x)

...
∇f̄p−1(x)



















< N − n+ 1 + p− 1.

On the other hand, on VW (G), for i = 1, . . . , p− 1, we have

∇f̄i =
1

‖F‖2
(‖F‖∇fi − fi∇‖F‖) =

1

‖F‖
∇fi.

Hence x ∈ ΣW
F̄

∩ {fp 6= 0} if and only if x ∈ ΣWG ∩ {fp 6= 0}.
Therefore we get

(8) ΣW
F̄

∩ [VW (G) \ VW (fp)] = ΣWG ∩ [VW (G) \ VW (fp)] .

We have

ΣWG \ VW (G) ∩ VW (G) = ΣWG \ VW (G) ∩ [(VW (G) \ VW (fp)) ∪ VW (F )] =

ΣWG \ VW (G) ∩ VW (F )
⋃

ΣWG \ VW (G) ∩ [VW (G) \ VW (fp)] .

Since ΣWG is closed and ΣWG \ VW (G) ∩ VW (F ) = ∅, we conclude that

ΣWG \ VW (G) ∩ VW (G) ⊂ ΣWG ∩ [VW (G) \ VW (fp)] .

It follows from Equality (8) that:

ΣWG \ VW (G) ∩ VW (G) ⊂ ΣW
F̄

∩ [VW (G) \ VW (fp)] .

By Condition (b), the right-hand side of the above inclusion is empty, so

ΣWG \ VW (G) ∩ VW (G) = ∅.

Therefore Condition (a) holds for G. �

According to Lemma 3.5 and Theorem 2.1 the projection Ḡ : W\VW (G) →
Sp−2 is also a locally trivial fibration.

Denote by MF and MG the fibers of F̄ : W \ VW (F ) → Sp−1 and Ḡ :
W \ VW (G) → Sp−2, respectively. Now we can relate them as follows.

Theorem 3.6. The fiber MG is homotopy equivalent to the fiber MF .

Before starting the proof we need to state some important remarks and
results. Without lost of generality, we can consider the fiber

MF = F̄−1(1, 0, . . . , 0) ∩ (W \ VW (F )).

So,

MF = {f1 > 0, f2 = . . . = fp = 0} ∩ (W \ {f1 = f2 = . . . = fp = 0}) =
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{f1 > 0, f2 = . . . = fp = 0} ∩ (W \ {f1 = 0}).

Hence,

MF = {f1 > 0, f2 = . . . = fp = 0} ∩W.

Similarly,

MG = {f1 > 0, f2 = . . . = fp−1 = 0} ∩W.

Note that MF =MF ∪ VW (F ) and that VW (F ) =MF ∩ {f1 = 0}.

Lemma 3.7. The functions f1|MF
and f1|MG

are carpeting functions (see

[11]) for MF and MG.

Proof. Under our hypothesis, the function f1 is strictly positive on MF . Let
us prove that there exists δ > 0 such that f1 is a submersion on MF ∩ {0 <
f1 ≤ δ}. If it is not the case, we can find a sequence (δn)n∈N such that
δn > 0, δn → 0 and {f1 = δn} does not intersect VW (η) transversally,
where η denotes the mapping (f2, . . . , fp). This implies that there exists yn
in {f1 = δn} such that yn ∈ ΣWF \ VW (F ). Since W is compact, we have

ΣWF \ VW (F )∩ VW (F ) 6= ∅ which contradicts Condition (a) for F . Hence f1
is a carpeting function for MF . The same proof still works for MG, and the
lemma follows. �

Corollary 3.8. The fiber MF (resp. MG) is homotopy equivalent to {f1 ≥
δ, f2 = . . . = fp = 0} ∩W (resp. {f1 ≥ δ, f2 = . . . = fp−1 = 0} ∩W ).

Proof. Let us consider MF . This fiber is diffeomorphic to {f1 > δ, f2 =
. . . = fp = 0} ∩W and since f1 is a carpeting function for MF the result
follows. �

Let us denote by M δ
F and M δ

G the manifolds with boundary {f1 ≥ δ, f2 =
. . . = fp = 0} ∩W and {f1 ≥ δ, f2 = . . . = fp−1 = 0} ∩W, respectively.

Observe that M δ
F =M δ

G∩{f̄p = 0} and remind that f̄p denotes the function
fp
‖F‖ . We will apply Morse theory to the function f̄p restricted to M δ

G.

For this, let ψ = (f2, . . . , fp−1) and assume that x is a critical point of
f̄p|W∩V (ψ), where f1(x) 6= 0. Then we have

rank























∇h1(x)
...

∇hN−n+1(x)
∇f2(x)

...
∇fp−1(x)
∇f̄p(x)























< N − n+ 1 + p− 1.
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On V (ψ), we have ∇f̄i(x) =
1

‖F (x)‖∇fi(x), for i ∈ {2, . . . , p − 1}. Hence

rank























∇h1(x)
...

∇hN−n+1(x)
∇f̄2(x)

...
∇f̄p−1(x)
∇f̄p(x)























< N − n+ 1 + p− 1.

Since f1(x) 6= 0, the above inequality shows that x belongs to ΣW
F̄

by Remark

3.1. But by Condition (b), ΣW
F̄

is empty. It follows that f̄p|W∩V (ψ) has no

critical point on {f1 6= 0}.
Our next step is to investigate the critical points of f̄p restricted to

∂M δ
G = {f1 = δ, f2 = . . . = fp−1 = 0} ∩W.

Lemma 3.9. For δ sufficiently small, the critical points of f̄p|∂Mδ
G
are cor-

rect and lie in {fp 6= 0}.

Proof. The critical points of f̄p|∂Mδ
G

are correct because f̄p|W∩V (ψ) has no

critical points in {f1 6= 0}. As f1 is a carpeting function for MF , we can
choose δ sufficiently small in such a way that

rank























∇h1(x)
...

∇hN−n+1(x)
∇f1(x)

...
∇fp−1(x)
∇fp(x)























= N − n+ 1 + p,

on MF ∩ {f1 = δ}. Note that on MF ∩ {f1 = δ}, the following equality
holds:

∇f̄p = δ−1∇fp,

since ∇f̄p = 1
‖F‖∇fp. Replacing ∇fp(x) by ∇f̄p in the matrix above, we

conclude that the critical points of f̄p|∂Mδ
G
lie in {fp 6= 0}. �

Lemma 3.10. If δ is small enough then the critical points of f̄p|∂Mδ
G

in

{fp 6= 0} are outwards-pointing (resp. inwards-pointing) for M δ
G if and only

if they lie in {fp > 0} (resp. {fp < 0}).

Proof. Suppose the lemma is false. Then, for δ > 0 small enough we can
find a critical point xδ of f̄p|∂Mδ

G
which is inwards-pointing and belongs to
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{fp > 0}. Therefore, there exists λ(xδ) > 0 such that

∇f̄p|V (ψ)∩W (xδ) = λ(xδ)∇f1|V (ψ)∩W (xδ).

By the Curve Selection Lemma, we can find an analytic curve γ(t) ⊂
V (ψ) ∩W defined on a small enough interval [0, ν[ such that f1(γ(0)) = 0,
and for t ∈]0, ν[:

• fp(γ(t)) > 0,
• f1(γ(t)) > 0,
• ∇f̄p|V (ψ)∩W (γ(t)) = λ(γ(t))∇f1|V (ψ)∩W (γ(t)) with λ(γ(t)) > 0.

Thus we get

(f̄p ◦ γ)
′(t) = 〈∇f̄p|V (ψ)∩W (γ(t)), γ′(t)〉 =

λ(γ(t))〈∇f1|V (ψ)∩W (γ(t)), γ′(t)〉 = λ(γ(t))(f1 ◦ γ)
′(t).

Assume that (f1 ◦ γ)
′ ≤ 0 and therefore the function f1 ◦ γ decreases. Since

f1(γ(t)) tends to 0 as t tends to 0, it follows that f1 ◦ γ(t) ≤ 0, which is
impossible. Hence (f1 ◦ γ)

′ > 0. We deduce that (f̄p ◦ γ)
′ > 0 and f̄p ◦ γ is

strictly increasing.
Let us evaluate fp(γ(0)). If fp(γ(0)) = 0 then γ(0) ∈ VW (F ). Further-

more, we know that

∇f̄p(γ(t)) =
1

‖F (γ(t))‖3
f21 (γ(t))∇fp(γ(t))− fp(γ(t))f1(γ(t))∇f1(γ(t)).

This implies that γ(t) belongs ΣWF \ VW (F ) for t > 0, since γ(t) is a crit-
ical point of f̄p|∂Mδ(t)

G

, where δ(t) = f1(γ(t)). Therefore, γ(0) belongs to

ΣWF \ VW (F ) ∩ VW (F ) which is empty. Consequently, fp(γ(0)) > 0 and
f̄p(γ(0)) = 1 because f1(γ(0)) = . . . = fp−1(γ(0)) = 0.

Since f̄p ◦ γ(t) tends to 1 when t tends to 0, then the monotonicity of
f̄p ◦ γ gives that f̄p(γ(t)) > 1, which contradicts the fact that |f̄p| ≤ 1. �

Now we have the main ingredients to prove Theorem 3.6.

Proof. (Theorem 3.6) Applying the previous lemmas and Morse theory for
manifolds with boundary, we get that M δ

G ∩ {fp ≥ 0} is homeomorphic to

M δ
F × [0, 1] and M δ

G ∩{fp ≤ 0} is homeomorphic to M δ
F × [−1, 0]. Therefore

M δ
G is homeomorphic to M δ

F × [−1, 1] which is a consequence of the gluing

M δ
G ∩ {fp ≥ 0} and M δ

G ∩ {fp ≤ 0} along M δ
G ∩ {fp = 0} = M δ

F . Now, we
can use Corollary 3.8 to finish the proof. �

3.2. Case p = 2. Let F = (f1, f2) : R
N → R2 be a C2 semi-algebraic map

satisfying Conditions (a) and (b). Let us denote byM+
f1

the set {f1 > 0}∩W

and by M−
f1

the set {f1 < 0} ∩W

Theorem 3.11. The fiber MF is homotopy equivalent to M+
f1

and M−
f1
.
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Proof. The proof is the same as Theorem 3.6. We just have to check that
f1 is a carpeting function for M+

f1
and −f1 is a carpeting function for M−

f1
.

Since f1|W :W → R has a finite number of critical values, then there exists

δ > 0 such that ]0, δ] and [−δ, 0[ do not contain any critical value of f1|W . �

3.3. Consequences. Let F = (f1, . . . , fp) : R
N → Rp, 2 ≤ p ≤ n − 1, be

a C2 semi-algebraic map satisfying Conditions (a) and (b). Let us consider
l ∈ {1, . . . , p} and I = {i1, . . . , il} an l-tuple of pairwise distinct elements of
{1, . . . , p} and let fI be the semi-algebraic map (fi1 , . . . , fil) : R

N → Rl. We
know that if l ≥ 2, then the map fI satisfies Conditions (a) and (b). Let us
also denote by MfI the fiber of f̄I |W\VW (fI ).

Corollary 3.12. Let l ∈ {2, . . . , p} and let I = {i1, . . . , il} be an l-tuple of
pairwise distinct elements of {1, . . . , p}. Then, the fibers MfI and MF are
homotopy equivalent.

Proof. Apply Theorem 3.6. �

Let us consider the case l = 1. From the facts explained above we can
state the following.

Theorem 3.13. For every j ∈ {1, . . . , p}, the fibers M+
fj

and M−
fj

are ho-

motopy equivalent to the fiber MF .

Proof. Apply Theorem 3.11. �

4. Euler characteristics of fibers and relative links

In this section, we give several formulae connecting the Euler charac-
teristics of the sets VW (fI), which we call the relative links (or links, for
short), and the Euler characteristic of the fiber MF . Let us follow the same
notations and assumptions for F as in the previous sections.

We prove first a general result which relates the Euler characteristics of
the fiber and the link and, as a consequence, we get an obstruction for the
links to be homotopy equivalent after projections.

Proposition 4.1. We have:

χ
(

VW (G)
)

− χ
(

VW (F )
)

= (−1)n−p2.χ(MF ).

Proof. Let us denote by

M+
F = {f1 = f2 = . . . = fp−1 = 0, fp > 0} ∩W = VW (G) ∩ {fp > 0},

and

M−
F = {f1 = f2 = . . . = fp−1 = 0, fp < 0} ∩W = VW (G) ∩ {fp < 0}.

Observe that these two sets are diffeomorphic to the fiberMF . We know that
fp is a carpeting function for M+

F and −fp is a carpeting function for M−
F .

Therefore, there exists 0 < δ ≪ 1 such that M+
F is homotopy equivalent to

VW (G) ∩ {fp ≥ δ} and M−
F is homotopy equivalent to VW (G) ∩ {fp ≤ −δ}.
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By the Mayer-Vietoris sequence we can write

χ(VW (G)) = χ(VW (G) ∩ {fp ≥ δ}) + χ(VW (G) ∩ {fp ≤ −δ})+

χ(VW (G) ∩ {−δ ≤ fp ≤ δ}) − χ(VW (G) ∩ {fp = δ})−

χ(VW (G) ∩ {fp = −δ}).

By the above arguments, the first two terms on the right-hand side are equal
to χ(MF ). The third term is equal to χ(VW (F )), since by Durfee’s result
[6] we can choose δ > 0 small enough in such a way that VW (F ) is a retract
by deformation of VW (G) ∩ {−δ ≤ fp ≤ δ}.

Furthermore, if n − p is even then the two last Euler characteristics are
equal to 0 because VW (G) ∩ {fp = δ} and VW (G) ∩ {fp = −δ} are odd-
dimensional closed manifolds. If n − p is odd, they are equal to 2χ(MF )
because they are the boundaries of the odd-dimensional manifolds M δ

F =
VW (G) ∩ {fp ≥ δ}, Therefore, the result is proved. �

Let us choose l ∈ {2, . . . , p} and an l-tuple I = {i1, . . . , il} of pairwise
distinct elements of {1, . . . , p}. Let J = {i1, . . . , il−1}. If l = 1 then we put
J = ∅ and fJ = 0. We can now formulate the previous proposition in a
more general way as follows.

Proposition 4.2. We have:

χ(VW (fJ))− χ(VW (fI)) = (−1)n−l2χ(MF ).

Proof. Same proof as Proposition 4.1. �

In particular, we obtain the following two corollaries

Corollary 4.3. Let j ∈ {1, . . . , p}, then we have

χ(VW (fj)) = χ(W )− (−1)n−12χ(MF ).

Proof. We apply Proposition 4.2 to the case l = 1. �

Corollary 4.4. Let l ∈ {3, . . . , p} and let I = {i1, . . . , il} ⊂ {1, . . . , p}. Let
K be an (l − 2)-tuple of pairwise distinct elements of I. Then we have:

χ(VW (fK)) = χ(VW (fI)).

Proof. Let J be an (l−1)-tuple built from adding to K one element of I \K.
By Proposition 4.2, the corollary follows from equality

χ(VW (fJ))− χ(VW (fI)) = χ(VW (fJ))− χ(VW (fK)).

�

In order to express the Euler characteristics of all the sets VW (fI), it is
sufficient to compute the Euler characteristic of a set VW (fI) when #I = 2.
But, for I = {1, 2} it follows by Proposition 4.2 that

χ(VW (fI)) = χ(VW (f1))− (−1)n2χ(MF ).

Therefore, we can summarize all these results in the following theorem.
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Theorem 4.5. Let l ∈ {1, . . . , p} and let I = {i1, . . . , il} be an l-tuple of
pairwise distinct elements of {1, . . . , p}.

(1) For n even, we have

χ(VW (fI)) = 2χ(MF ) if l is odd,

and

χ(VW (fI)) = 0 if l is even.

(2) For n odd, we have

χ(VW (fI)) = χ(W )− 2χ(MF ) if l is odd,

and

χ(VW (fI)) = χ(W ) if l is even.

5. Open book structure of polynomial maps and examples

In this section, we consider our Conditions (a) and (b) for polynomial
maps in the local and global settings. Our purpose is to explain the so-
called “Higher open book structure with singular binding” induced by F̄ .
For further details we refer the reader to [1, 2, 3].

Local setting. Let f = (f1, . . . , fp) : (R
N , 0) → (Rp, 0) be a real analytic

map germ. In [9, Theorem 11.2] Milnor proved that if f has isolated singu-

larity at origin, then there exists a locally trivial fibration SN−1
ǫ \Kǫ → S

p−1
1 .

Although f̄ may fail to provide the fibration structure outside a small neigh-
borhood of the link, in [1, 2] the authors consider two similar conditions like
(a) and (b) above, in order to prove a generalization of Milnor’s fibration on
small spheres SN−1

ǫ with bundle projection given by f̄ .

Applying our results in this case, we consider ρ(x) =
∑N

i=1 x
2
i the square

of distance function to the origin and for ǫ > 0 small enough consider W =
ρ−1(ǫ2). So, VW (f) = Kǫ is the link of the germ V (f). The singular locus ΣWf
(resp. ΣW

f̄
) is then the intersection between the Milnor sets M(f) = {x ∈

U | f 6⋔x ρ} (resp. M(f̄) = {x ∈ U \ V (f) | f̄ 6⋔x ρ}) and S
N−1
ǫ . Therefore,

Conditions (a) and (b) above coincide with those conditions studied in [2]
and so the Theorem 1.3 in [2] is a special version of our Theorem 2.1. See
[2, 3, 10] for further details.

Example 5.1. Let f : (R3, 0) → (R2, 0), f(x, y, z) = (x, x2+y(x2+y2)+z2).
Then f has only an isolated singularity (0, 0, 0) and therefore Condition (a)

holds. But, for ǫ > 0 small enough the projection f
‖f‖ : S2

ǫ \ Kǫ → S1
1

cannot be a locally trivial fibration. Calculations shows that {(x, y, 0) ∈
R3 \ V (f)|x4 + y4 + 2x2y2 − xy2 = 0} ⊂M(f̄) is a bounded curve such that
the origin is contained in its closure, therefore locally Condition (b) fails.



16 N. DUTERTRE, R. ARAÚJO DOS SANTOS, Y. CHEN AND A. ANDRADE

5.0.1. Homotopy equivalence between local Milnor’s fibers. Here we present
an application of Theorem 3.13, that gives a relation between the Milnor
fiber in the tube and the Milnor fiber in the sphere. Let f = (f1, . . . , fp) :
(Rn, 0) → (Rp, 0) be a real analytic map germ satisfying Massey’s Conditions
(a) and (b). Then, it was proved by Massey in [8] that there exists a Milnor
fibration in the tube

f| : Bǫ ∩ f
−1(Sp−1

η ) → Sp−1
η

for all small enough ǫ > 0 and 0 < η ≪ ǫ. Assume also that the Milnor set
M( f

‖f‖ ) is empty. So, by [2] as we explained above, the projection

f

‖f‖
: Sn−1

ǫ \Kǫ → Sp−1

is a locally trivial fibration.

Proposition 5.2. The two fibers above Mf and M f
‖f‖

are homotopy equiv-

alent.

Proof. By [7] we know that Mf is homotopy equivalent to Mf+1
, i.e., the

positive Milnor fiber of f1. Then, by Theorem 3.13 the fiber M f
‖f‖

is ho-

motopy equivalent to Sn−1
ǫ ∩ {f1 > 0}. But by C.T.C. Wall [12], M

f+1
and

Sn−1
ǫ ∩ {f1 > 0} are homotopy equivalent. �

Global setting. Now consider F = (f1, . . . , fp) : R
N → Rp a real polyno-

mial mapping. In [3] the authors studied the singular open book structure
at infinity by using the ρ-regularity. In fact, if we choose W = ρ−1(R) with
R big enough, our Conditions (a) and (b) means the boundedness of the sets

M(F ) \ V ∩ V and M(F̄ ), where V = F−1(0). Therefore, by our Theorem
2.1 we recover Theorem 3.2 of [3].

Now we can consider the example 5.1 above in the global setting. We will
show that for R sufficiently large, f

‖f‖ : S2
R \ KR → S1

1 is a locally trivial

fibration.
In fact, since it has only one singular point, then Condition (a) is satisfied.
Now, the set M(f̄) ∩ {z = 0} is equal to {(x, y, 0) ∈ R3 \ V (f)|x4 + y4 +

2x2y2 − xy2 = 0} which is a bounded set. The set M(f̄) ∩ {z 6= 0} is equal
to {(x, y, z) ∈ R3 \V (f)|2y = x2 +3y2, x2 + y3+ z2 −x2y = 0} which is also
a bounded set because 0 < y < 2

3 , x
2 ≤ 1

3 and z2 < 2
9 . So, in both cases our

Condition (b) holds for f . Therefore, by Theorem 2.1 we obtain the desired
fibration.

We end this section with two applications of Theorem 4.5 in the global
setting. Note that in this case VW (fI) is the link at infinity of {fI = 0},
because we consider W as a sphere of radius big enough. It is known that
it is well defined up to homeomorphism. For this reason we denote it by
Lk∞(VI) instead of VW (fI).
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Example 5.3. Let f : C2 → C, f(x, y) = x(x + y)x̄. From [3], this ex-
ample is polar weighted homogenous mixed polynomial which verifies Con-
ditions (a) and (b) at infinity. Therefore the fibration f̄ exists. The fiber
is homotopy equivalent to R2 and the Euler characteristic of the fiber is
1. On the other hand, we can write f as a polynomial map f : R4 → R2,
f(a, b, c, d) = ((a2 + b2)(a+ c), (a2 + b2)(b+ d)). Hence the Euler character-
istic of the link χ(Lk∞((a2 + b2)(a + c) = 0)) = 2, by using our Theorem
4.5, we get the Euler characteristic of the fiber is 1.

Example 5.4. Let f : R3 → R2, f(x, y, z) = (x2 + y, x + z). Then f does
not have any singularity. Moreover by computation, the Milnor set M(f̄)
is empty. Therefore f verifies Conditions (a) and (b) at infinity and the
fibration f̄ exists. The fiber is homeomorphic to an arc of a circle which has
Euler characteristic equal to 1. On the other hand χ(Lk∞(x+ z = 0)) = 0,
by using our Theorem 4.5, we get that the Euler characteristic of the fiber
is 1.
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R. N. Araújo dos Santos, Antonio Andrade and Ying Chen: Departamento
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