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Application to Axial Magnetic Couplings
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The authors propose a simple but efficient method for design problems. Instead of using directly a heavy numerical code in
an optimization process, we successively define some approximated subproblems thanks to an appropriate analytical model. These
subproblems can then be solved exactly by a deterministic global optimization solver and the procedure is updated until the
approximation matches a 3D FEM computation. The method is applied to an axial magnetic coupling. Comparative results show
the effectiveness of this approach, and real design cases are studied thanks to this method.

Index Terms—Design, Axial magnetic coupling, Global optimization, Successive analytical subproblems.

I. INTRODUCTION

S
INCE around thirty years, it becomes usual to formalize

design problems as optimization ones, generally defined

as MINLP problems (mixed integer non-linear programs) [1].

When the behavior of the considered device is defined by a

purely explicit analytical model, such design problems can be

solved exactly by a global deterministic algorithm (based on

interval arithmetic) as in [1] or [2].

However some criteria or constraints are often defined

thanks to a numerical model and the resulting problem can

become hard to solve. The authors present in this paper a

simple but efficient technique to solve this kind of design

problems when an analytical approximation exists.

II. AXIAL MAGNETIC COUPLINGS

A basic structure of an axial magnetic coupling is consid-

ered as shown in Fig.1. It consists in two rings of permanent

magnets, with alternatively north and south poles glued on

two flat iron cylinders. The whole geometry is defined with

six parameters (five real numbers and one integer) listed in

Table. I. One real physical parameter is also added: Br the

remanence of the magnets.
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Fig. 1. Geometry of the studied structure (only 2 poles)

In this work, we focus on the steady-state behavior of the

coupling. The two parts, the driving and the driven ones rotate

at a synchronous constant speed. Thus, it is assumed that there

is no Foucault’s current in the magnets or in the yokes.

TABLE I
PARAMETERS USED TO DESCRIBE COUPLINGS

Name Description Unit

R1 Outer radius of magnets mm

R2 Inner radius of magnets mm

h Magnets thickness mm

e Air-gap length mm

α PMs pole-arc to pole-pitch ratio ∈ [0, 1]
p Pole-pairs number ∈ IN

Br Remanence of magnets T

A. Analytical Modeling

In [3], the authors develop, test and use a complete analyt-

ical explicit model for such a structure. So it is possible to

compute the electromagnetic torque very quickly. This model

is based on an analytical resolution of the magnetic vector

potential by separating the variables. If only the first harmonic

is considered, and after simplifications, the electromagnetic

torque is provided by:

Γana =
16 B2

r

3πµ0

(R3
2 − R3

1) sin2

(

α
π

2

) sinh2(a) sin(pδ)

sinh(2(1 + ν)a)
(1)

with

a = p
2h

R1 + R2

and ν =
e

2h
.

µ0 is the permeability of vacuum and δ is the relative angular

position between the magnets of the lower side with those of

the upper side. Then the maximum torque value is obtained

when δ = π
2p .

Such a model can be really useful in order to determine the

influence of given quantities with parametric variations as in

[3] or [4]. Nevertheless the obtained torque value is generally

overestimated as shown in section II-C.

B. Numerical Computation of the Electromagnetic Torque

A 3D FEM model is much suitable in order to reach a better

accuracy on the torque computation. The strong formulation
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of the problem corresponding to the scalar magnetic potential

Um is given by:

div(µ grad Um − Br) = 0, (2)

where µ is the permeability in the considered region (air,

magnet or iron), Br = (0, 0,±Br) in the magnets and (0, 0, 0)
in the rest of the domain.

The thickness of iron yokes (hy) is computed from param-

eters values thanks to a simple analytical formula (3) based

on Ampère’s law and flux conservation considerations.

hy =
Br

Bc

α π h

(2 h + e)

R1 + R2

2 p
(3)

where Bc is the average wished value of the induction in the

yoke, the value used in the present work is: Bc = 1.5 T.

The problem is solved using the general commercial finite

element solver FlexPDE [5]. After the resolution, the induction

vector b = (bx, by, bz) in the whole domain is deduced from

Um. The electromagnetic torque can be computed by applying

the Maxwell stress tensor on Sz , a circular area in the air gap

between the magnets with a radius equal to the domain one.

A smart method to avoid numerical noise is to average this

surface integral along the air gap. Then, a good approximation

of the torque Γ3D can be given directly by a volume integral

on the whole air cylinder between the magnets Va:

Γ3D =
1

e
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C. Models vs. Measurements

In order to determine the validity of the two previous models

a comparison with experimental values is performed. The used

coupling is the same prototype described in [3] (with p = 6
and µ = 500µ0 H·m−1), see Fig. 2.

Fig. 2. Axial magnetic coupling prototype placed on the test bench

The torque values measured on the bench and those com-

puted by the two models are plotted on Fig. 3. The abscissa

corresponds to the angular displacement in mechanical de-

grees, and is then equal to 180

π δ. The maximum torque value

is reached when this angle is equal to 15 degrees which

corresponds to δ = π
2 p as seen in II-A. This maximum value

is the chosen dimensioning torque value.

It appears clearly that the analytical model gives the right

tendencies but overestimates significantly the interesting quan-

tity, e.g. the torque. The 3D FEM model is really much closer
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Fig. 3. Models vs. Experimental Values Comparison

to the measurements, and should be the reference estimation

in a rigorous design process as described below.

III. SUCCESSIVE ANALYTICAL SUBPROBLEMS (SAS)

A. Problem Statement

The considered design problems to solve can always be

written under the form (Sg) defined by:

(Sg)











min
x∈D

fobj(x)

s.t. hi(x) = 0, i ∈ [[1, nh]]
gi(x) ≤ 0, i ∈ [[1, ng]]

(5)

where the objective function fobj can be the total mass Ma

for instance, x is the vector of chosen design variables which

can be real ones (as for some dimensions) or integers (as for

the pole pair number) or even categorical ones (as kinds of

materials). D is the search domain defined by the bound values

of these variables. The hi and gi functions define a set of nh

equality and ng inequality constraints.

Such problems are called MINLP. In the case where all the

functions are purely explicit and analytical the so-formulated

global optimization problems can be solved exactly by a

particular algorithm, called IBBA for Interval Branch and

Bound Algorithm. It is based on a Branch and Bound technique

where the bounds are computed using interval analysis, see [1],

[2] and [6] for details.

Nevertheless in the present case, a numerical computation

of the torque (in a black-box form) should be preferred to

the analytical expression as seen in the previous section.

Previous work has shown the possibility to use some black-

box constraints with IBBA. But it works only with numerical

constraints (not the objective) and with relative fast models

(around 1 second), as described in [7]. In the present case,

the CPU time of a torque computation is greatly higher. This

is why a new simple way of using global deterministic opti-

mization with black-box constraint or objective is presented

below.

B. SAS Method

The idea is to use both advantages of the two modeling

tools: swiftness of the analytical and accuracy of the numerical
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one. A corrected analytical model is defined by multiplying the

initial model by a corrective factor βk. This modified model is

used as a surrogate one and it makes it possible to compute the

torque rapidly. The associated optimization subproblem (Sk)
is solved using IBBA. A comparison with 3D FEM for the

found minimum is performed, the corrective factor is updated

and the procedure iterated until the difference between the two

models is less than a fixed tolerance εtol.

The method is called SAS (for Successive Analytical Sub-

problems). In the case where, for instance, the torque defines

the first inequality constraint (Γ3D(x) ≥ Γfixed), the corre-

sponding algorithm is given by Algorithm 1.

Algorithm 1 SAS: Successive Analytical Subproblems

ε = ∞; β1 = 1; k = 0 {Initialisation}
while (ε > εtol) do

k = k + 1
Solve exactly subproblem (Sk) with IBBA:

(Sk)















min
x∈D

fobj(x)

s.t. βk · Γana(x) ≥ Γfixed

gi(x) ≤ 0, i ∈ [[2, ng]]
hi(x) = 0, i ∈ [[1, nh]]

∼
xk = argmin(Sk); Γnum = Γ3D(

∼
xk)

ε =

∣

∣

∣βk · Γana(
∼
xk) − Γnum

∣

∣

∣

Γnum

; βk+1 =
Γnum

Γana(
∼
xk)

end while
∼
x =

∼
xk {Found solution}

The interest of such a technique lies in its simplicity. Of

course, this technique does not permit to ensure with certainty

the global exactness of the found solution. Each
∼
xk is sure

to be exact; for the final
∼
x, it depends on the goodness of

the analytical model. However, it permits to solve the general

problem (5) effectively, as shown thereafter.

IV. NUMERICAL EXPERIMENTS

A. Realistic design cases

Some real problems of magnetic coupling design are solved

in this section. The chosen variables are:

x = (R1, R2, h, α, p, σm) (6)

where σm ∈ {1, ..., 5} is a categorical variable representing

the kind of magnet material, detailed in Table II. The factor

pf , given in this table, is a price factor expressed in unit per

kilogram. It means that, for example, the 38M grade is 1.4

times more expensive than the 30M one. The air-gap length

e is not considered as a design variable, for all the numerical

tests it is set to e = 5 mm.

The considered problems are all under the following form:


























min
x∈D

fobj(x)

s.t. g1 : Γ3D ≥ 100 N·m
g2 : R2 ≤ 0.9 R1,

g3 : R1(1 − α)π
p ≥ e

2
,

h1 : 180 · α
p ∈ IN

(7)

TABLE II
POSSIBLE KINDS OF MAGNETS [8]

σm Material Grade Br (T) ρ (kg·m-3) pf (kg-1)

1

NdFeB

30M 1.08

7500

1.0

2 33M 1.13 1.1

3 38M 1.22 1.4

4 45M 1.32 1.7

5 50M 1.40 2.1

where the objective function fobj can be the volume of

magnets Vm, the global external volume Vg , the total mass

Ma, or even a cost indicator ci given by the product of

the mass of the magnets by the price factor pf . g2 and

g3 are two geometric shape inequality constraints. h1 is an

equality constraint reflecting the fact that the angular width

of the magnet must be an integer: it is a constructability

constraint imposed by the chosen manufacturer [8]. The R1,

R2 and h variables have also been imposed to be rounded to

the nearest tenth of a millimeter directly in the optimization

process. The density of the chosen iron is 7730 kg·m-3. All

the problems have been solved and the obtained results are

given in Table III.

TABLE III
RESULTS OBTAINED BY SAS

Bounds (D) min Vm min Vg min Ma min ci

R1 [10, 100] 100.0 79.4 94.1 100.0

R2 [10, 90] 79.9 32.9 28.6 71.9

h [3, 20] 4.3 4.0 3.0 4.7

α [0.3, 0.95] 0.75 (9o) 0.73 (12o) 0.58 (7o) 0.77 (10o)

p [[2, 15]] 15 11 15 14

σm {1, ..., 5} 5 5 5 2

Γ3D (N·m) 101.7 100.6 100.9 101.2

Γana (N·m) 141.0 121.6 118.2 131.4

β = Γ3D/Γana 0.721 0.827 0.854 0.770

Vm (cm3) 73.3 96.2 88.4 110.9

Vg (cm3) 689 391 412 684

Ma (kg) 2.57 1.76 1.48 2.62

ci 1.15 1.52 1.39 0.91

no of 3D Comp. 4 3 2 4

CPU Time (min) 22’20” 7’14” 10’15” 62’15”

All the optima satisfy the constraint imposed to the torque

(Γ3D ≥ 100 N·m). Depending on the chosen criterion, several

topologies can appear with different pole pair numbers and

magnet grades. As expected, the three first solutions use the

strongest magnets (σm = 5). The CPU time are relatively

small, and less than four 3D FEM computations are required

to reach each solution. An interesting fact: the less expensive

device is not obtained with the cheapest magnet grade.

B. Comparison with other methodologies

In order to benchmark the efficiency of the developed

methodology, a comparison with more classical techniques

were performed. Two methodologies are tested:

1) Ga&Num: The 3D FE model is directly associated to

a genetic algorithm (GA), with 30 individuals evolving

during 50 generations.
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2) GA&ANA+SQP&Num: The problem is first solved us-

ing only the analytical model with a GA (the torque

is computed by 0.8 Γana). The obtained solution is then

used as the starting point of a sequential quadratic

programming (SQP) dealing only with the real variables.

Both methodologies are based on GA because their use is still

widespread [9], [10]. The MATLAB R© Global Optimization

Toolbox implementations have been chosen. The h1 constraint

has been removed to ensure the convergence of these al-

gorithms. The obtained results are given in Table IV. The

second methodology provides really good results, but it clearly

appears that the SAS method is much faster for the same

accuracy.

TABLE IV
SAS VS. SOME OTHER TECHNIQUES: min Ma with Γ3D ≥ 100 N·m

GA&Num∗
GA&ANA +

SAS
SQP&Num∗

R1 99.173 93.086 94.1

R2 20.253 34.838 28.6

h 4.429 3.798 3.0

α 0.417 0.524 0.58

p 14 15 15

σm 5 5 5

Ma (kg) 1.574 1.483 1.483

Γ3D (N·m) 100.2 100.0 100.9

no of 3D Comp. 1533 123 4

CPU Time 25 h 30’ 1 h 18’ 10’ 15”
∗ best run over 10, and without h1 constraint

C. Black-box objective case

The SAS method can also be applied to solve problems

with a black-box objective function, e.g. in the present case

maximize the torque. The algorithm is nearly the same as

Algorithm 1, except that fobj is replaced by -βk · Γana and,

in this example, we chose a price limit for the first inequality

constraint: ci(x) ≤ 1. Results are given in Table V and are

compared to the exact solution of the same problem using

only Γana as the objective function.

TABLE V
MAXIMIZATION OF THE TORQUE WITH ci ≤ 1

SAS IBBA

(maxΓ3D) (maxΓana)

R1, R2, h 100.0, 71.0, 4.9

α, p, σm 0.794 (11o), 13, 2

Γ3D (N·m) 108.2 -

Γana (N·m) 141.3

ci 1.00

no of 3D Comp. 2 0

CPU Time 4h 20’ 2h 13’

The same optimum is found which means two things.

Firstly, the analytical model is quite good and really gives

the right tendencies. Secondly, the SAS method can find the

global optimum which, here, is the solution given by IBBA.

D. Multi-objective case

It is also possible to apply the SAS technique sequentially

in order to solve multiobjective problems. For instance, Fig. 4

deals with the minimization of the cost ci versus the maxi-

mization of the torque Γ3D. Topological groups appear clearly

on the obtained Pareto front (57 3D FEM computations, about

10 h).
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Fig. 4. Pareto front: Cost indicator vs. Electromagnetic torque

V. CONCLUSION

In this paper an original and simple method, based on suc-

cessive analytical subproblems, for solving design problems

is presented and applied to an axial magnetic coupling. Many

concrete problems are solved using different techniques and

numerical results show the efficiency and the interest of this

new method SAS.
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