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Abstract

Let (Xk)k≥1 and (Yk)k≥1 be two independent sequences of inde-
pendent identically distributed random variables having the same law
and taking their values in a finite alphabet. Let LCn be the length
of longest common subsequences in the two random words X1 · · ·Xn

and Y1 · · ·Yn. Under assumptions on the distribution of X1, LCn is
shown to satisfy a central limit theorem. This is in contrast to the
limiting distribution of the length of longest common subsequences in
two independent uniform random permutations of {1, . . . , n}, which is
shown to be the Tracy-Widom distribution.
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1 Introduction
We study below the asymptotic behavior, in law, of the length of the longest
common subsequence of two random words. Although it has been exten-
sively studied from an algorithmic point of view in various disciplines such
as, computer science, bio-informatics, or statistical physics, to name but a few
of them, theoretical results on the longest common subsequence are rather
sparse. To present our framework, letX = (Xi)i≥1 and Y = (Yi)i≥1 be two in-
finite sequences whose coordinates take their values inAm={α1,α2, . . . ,αm},
a finite alphabet of size m.

Next, LCn, the length of the Longest Common Subsequences (LCS) of the
random words X1 · · ·Xn and Y1 · · ·Yn, is the maximal integer k ∈ {1, . . . , n},
such that there exist 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n, such
that:

Xis = Yjs , for all s = 1, 2, . . . , k.

LCn is a measure of the similarity/dissimilarity of the words which is of-
ten used in pattern matching and the asymptotic behavior of its law is the
purpose of our study. In computer science, 2(n−LCn) is the edit (or Leven-
shtein) distance which is the minimal number of indels (insertions/deletions)
to transform one word into the other.

The study of LCn has a long history starting with the well known result
of Chvátal and Sankoff [7] asserting that

lim
n→∞

ELCn
n

= γ∗m. (1.1)

However, to this day, the exact value of γ∗m (which depends on the distribution
of X1 and on the size of the alphabet) is unknown, even in "simple cases",
such as for uniform Bernoulli random variables. Nevertheless, its asymptotic
behavior as the alphabet size grows is given, for X1 uniformly distributed,
by:

lim
m→∞

√
mγ∗m = 2, (1.2)

as shown by Kiwi, Loebl and Matous̆ek ([14]).
Chvátal and Sankoff’s first asymptotic result was sharpened by Alexander

([1]) who proved that

γ∗mn− CA
√
n log n ≤ ELCn ≤ γ∗mn, (1.3)
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where CA > 0 is a universal constant (depending neither on n nor on the
distribution of X1). Next, Steele [20] was the first to obtain the upper-
order of the variance proving, in particular, that VarLCn ≤ n, but finding
a lower-order bound is more illusive. For Bernoulli random variables and/or
in various instances where there is a strong "bias" such as high asymmetry
or mixed common and increasing subsequence problems, the lower bound is
also shown to be of order n ([10], [12], [15]). In all these cases, the central
r-th, r ≥ 1, moment of LCn can also be shown to be of order nr/2 (see the
concluding remarks in [11]). This strongly hints at the asymptotic normality
of LCn, in these contexts, although similar moments estimates can lead to a
non-Gaussian limiting law in a related model ([3]). Here is our main result:

Theorem 1.1 Let (Xi)i≥1 and (Yi)i≥1 be two independent sequences of iid
random variables with values in Am = {α1, α2, ..., αm}, and let

P(X1 = αk) = P(Y1 = αk) = pk, k = 1, 2, ...,m.

Let pj0 > 1/2, for some j0 ∈ {1, ...,m}, let K = min(2−410−2e−67, 1/800m),
and let maxj 6=j0 pj ≤ min{2−2e−5K/m,K/2m2}. Then for all n ≥ 1,

dW

(
LCn − ELCn√

VarLCn
,G
)
≤ C

1

n1/8
, (1.4)

where dW is the Monge-Kantorovich-Wasserstein distance, G a standard nor-
mal random variable and where C > 0 is a constant independent of n.

The above result is the first of its kind. It contrasts, in particular, with
the related Bernoulli matching problem where the limiting law is the Tracy-
Widom distribution ([16]). Both the LCS and Bernoulli matching models are
last passage percolation models with respectively dependent and independent
weights, possibly explaining the different limiting laws. In both cases, the
expectation is linear in n, but the variance in Bernoulli matching is sublin-
ear (of order n2/3), while in our LCS case it is linear. Theorem 1.1 further
contrasts with the corresponding limiting law for the length of the longest
common subsequences in a pair of independent uniform random permuta-
tions of {1, . . . , n}. In that problem, the emergence of the Tracy–Widom
distribution has sometimes been speculated, and we show in the last section
of the paper that this hypothesis is indeed true (the expectation there is of
order

√
n and the variance of order n1/3).
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As far as the content of the paper is concerned, the next section contains
the proof of Theorem 1.1, and a remark discussing some elements of this
proof. Then, in the last section, various extensions and generalizations as well
as some related open questions are discussed. In particular, the proof, that
the length of longest common subsequences in uniform random permutations
converges to the Tracy-Widom distribution, is included there.

2 Proof of Theorem 1.1
The aim of this section is to provide a proof of our main theorem by a
three step method. First making use of a recent result of Chatterjee ([4]) on
Stein’s method (see [6] for an overview of the method, including Chatterjee’s
normal approximation result), second using moment estimates for LCn ([11])
and third developing correlation estimates based, in part, on short string-
lengths genericity results obtained in [13]. We start by fixing notation and
recalling some preliminaries.

Throughout the paper, X = (Xi)i≥1 and Y = (Yi)i≥1 denote two inde-
pendent infinite sequences whose coordinates are iid and take their values in
Am = {α1,α2, . . . ,αm}, a finite alphabet of size m. Recall next that the
Kolmogorov and Monge-Kantorovich-Wasserstein distances, dK and dW , be-
tween two probability distributions ν1 and ν2 on R, are respectively defined
as

dK(ν1, ν2) = sup
h∈H1

∣∣∣∣∫ hdν1 −
∫
hdν2

∣∣∣∣ ,
where H1 = {1(−∞,x] : x ∈ R}, and

dW (ν1, ν2) = sup
h∈H2

∣∣∣∣∫ hdν1 −
∫
hdν2

∣∣∣∣ ,
where H2 = {h : R → R : |h(x) − h(y)| ≤ |x − y|}. If ν2 is absolutely
continuous with its density bounded by C, then

dK(ν1, ν2) ≤
√

2CdW (ν1, ν2), (2.1)

as seen, for example, in [18] where a proof of (2.1) is also given. Thus,
Theorem 1.1 implies via (2.1), that

dK

(
LCn − ELCn√

VarLCn
,G
)
≤ C

(
2

π

)1/4
1

n1/16
. (2.2)
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Both (1.4) and (2.2) imply that, properly centered and normalized, LCn
converges in distribution to a standard normal random variable.

Let us continue by introducing some more notation following those of [4].
Let W = (W1,W2, . . . ,Wn) and W ′ = (W ′

1,W
′
2, ...,W

′
n) be two independent

identically distributed Rn-valued random vectors whose components are also
independent. For A ⊂ [n] := {1, 2, . . . , n}, define the random vector WA by
setting

WA
i =

{
W ′
i if i ∈ A

Wi if i /∈ A,

with for A = {j}, and further ease of notation, we write W j for W {j}.
For a given Borel measurable function f : Rn → R and A ⊂ [n], let

TA :=
∑
j /∈A

∆jf(W )∆jf(WA),

where
∆jf(W ) := f(W )− f(W j).

Finally, let

T =
1

2

∑
A$[n]

TA(
n
|A|

)
(n− |A|)

,

where |A| denotes the cardinality of A. Here is Chatterjee’s normal approx-
imation result.

Theorem 2.1 [4] Let all the terms be defined as above, and let 0 < σ2 :=
Var f(W ) <∞. Then,

dW

(
f(W )− Ef(W )√

Var f(W )
,G

)
≤
√

VarT

σ2
+

1

2σ3

n∑
j=1

E|∆jf(W )|3, (2.3)

where G is a standard normal random variable.

Remark 2.1 In [4], the variance term obtained in Theorem 2.1 is actually
VarE(T |f(W )) but the above bound, with the larger VarT , already present
in [4], is enough for our purpose.

Two notes before we begin the proof of Theorem 1.1.
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(1) We do not keep track of constants in the proof since doing so would
make the argument a lot lengthier. Therefore, a constant C may vary
from an expression to another. Note, however, that C will always be
independent of n.

(2) We do not worry about having quantities (e.g. length of longest com-
mon subsequences of two random words) like log n, nα, etc. which should
actually be [nα], [log n], etc. This does not cause any problems as we
are interested in asymptotic bounds. The proof can be revised with
minor changes (and some notational burden) to make the statements
more precise.

Let us start the proof of Theorem 1.1 and to do so, let

W = (X1, . . . , Xn, Y1, . . . , Yn), (2.4)

and let
f(W ) = LCn(X1 · · ·Xn;Y1 · · ·Yn).

We begin by estimating the second term on the right-hand side of (2.3), and
to do so, recall Theorem 1.1 of [11].

Theorem 2.2 [11] Let the hypotheses of Theorem 1.1 hold, and let 1 ≤
r < ∞. Then, there exists a constant C > 0 depending on r,m, pj0 and
maxj 6=j0 pj, such that, for all n ≥ 1,

E|LC − ELCn|r ≥ Cnr/2. (2.5)

Using the estimate in (2.5) with r = 2, we have

σ2 = VarLCn ≥ Cn, n ≥ 1,

where C is a constant independent of n. Therefore,

σ3 ≥ Cn3/2, n ≥ 1, (2.6)

yielding
1

2σ3

2n∑
j=1

E|∆jf(W )|3 ≤ C
1√
n
, (2.7)

since |∆jf(W )| ≤ 1.
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Next we move to the estimation of the variance term in (2.3). Setting

S1 := {(A,B, j, k) : A $ [2n], B $ [2n], j /∈ A, k /∈ B}, (2.8)

VarT can be expressed as

VarT =
1

4
Var

 ∑
A$[2n]

∑
j /∈A

∆jf(W )∆jf(WA)(
2n
|A|

)
(2n− |A|)


=

1

4

∑
A$[2n],j /∈A

∑
B$[2n],k /∈B

Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

=
1

4

∑
(A,B,j,k)∈S1

Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

. (2.9)

Our strategy is now to divide S1 into several pieces and then to estimate
the contributions of each piece separately. The following proposition, and a
conditional version of it which easily follows from similar arguments, will be
used repeatedly throughout the proof.

Proposition 2.1 Let R be a subset of [2n]2, and let

S∗ = {(A,B, j, k) : A $ [2n], B $ [2n], j /∈ A, k /∈ B, (j, k) ∈ R}.

Let g : S∗ → R be such that ‖g‖∞ ≤ C, then∑
(A,B,j,k)∈S∗

∣∣∣∣∣ g(A,B, j, k)(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

∣∣∣∣∣ ≤ C|R|.

Proof. First, observe that since ‖g‖∞ ≤ C,∑
(A,B,j,k)∈S∗

∣∣∣∣∣ g(A,B, j, k)(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

∣∣∣∣∣
≤ C

∑
(A,B,j,k)∈S∗

(
1(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

)
.

Expressing
∑

(A,B,j,k)∈S∗ in terms of R, using basic results about binomial
coefficients and performing some elementary manipulations lead to∑

(A,B,j,k)∈S∗

1(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)
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=
∑

(j,k)∈R

∑
A$[2n]:A 63j
B$[2n]:B 63k

1(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

=
∑

(j,k)∈R

2n−1∑
s,r=0

∑
A 63j,|A|=s
B 63k,|B|=r

1(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)



=
∑

(j,k)∈R

2n−1∑
s,r=0

∑
A 63j,|A|=s
B 63k,|B|=r

1(
2n
s

)
(2n− s)

(
2n
r

)
(2n− r)


=

∑
(j,k)∈R

(
2n−1∑
s,r=0

(
2n−1
s

)(
2n−1
r

)(
2n
s

)
(2n− s)

(
2n
r

)
(2n− r)

)

=
∑

(j,k)∈R

(
2n−1∑
s,r=0

1

(2n)2

)
= |R|,

from which the result follows. �
Clearly, taking R = [2n]2, Proposition 2.1 yields the estimate

∑
(A,B,j,k)∈S1

(
Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

)
≤ 8n2,

which is not good enough for our purposes, and we therefore begin a detailed
estimation study to improve the order of the upper bound to o(n2).

To do so, we start by giving a slight variation of a result from [13] which
can be viewed as a microscopic short-lengths genericity principle, and which
will turn out to be an important tool in our proof. This principle, valid not
only for common sequences but in much greater generality (see [13]), should
prove useful in other contexts.

Assume that n = vd, and let the integers

r0 = 0 ≤ r1 ≤ r2 ≤ r3 ≤ ... ≤ rd−1 ≤ rd = n, (2.10)

be such that

LCn =
d∑
i=1

|LCS(Xv(i−1)+1Xv(i−1)+2 · · ·Xvi;Yri−1+1Yri−1+2 · · ·Yri)|, (2.11)
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where |LCS(Xv(i−1)+1Xv(i−1)+2 · · ·Xvi;Yri−1+1Yri−1+2 · · ·Yri)| is the length of
the longest common subsequence of the words Xv(i−1)+1Xv(i−1)+2 · · ·Xvi and
Yri−1+1Yri−1+2 · · ·Yri (with the understanding that this length is zero if the
X-part is aligned with gaps). Next, let ε > 0 and let 0 < s1 < 1 < s2, be
two reals such that

γ̃(s1) < γ̃(1) = γ∗m and γ̃(s2) < γ̃(1) = γ∗m

where
γ̃(s) = lim

n→∞

ELCn(X1 · · ·Xn;Y1 · · ·Ysn)

n(1 + s)/2
, s > 1.

(See [13] for the existence of, and estimates on, s1 and s2.) Finally, let En
ε,s1,s2

be the event that for all integer vectors (r0, r1, ..., rd) satisfying (2.10) and
(2.11), we have

|{i ∈ [d] : vs1 ≤ ri − ri−1 ≤ vs2}| ≥ (1− ε)d. (2.12)

Then, En
ε,s1,s2

enjoys the following concentration property:

Theorem 2.3 [13] Let ε > 0. Let 0 < s1 < 1 < s2 be such that γ̃(s1) <
γ̃(1) = γ∗m and γ̃(s2) < γ̃(1) = γ∗m, and let δ ∈ (0,min(γ∗m − γ̃(s1), γ

∗
m −

γ̃(s2))). Let the integer v be such that

1 + log (v + 1)

v
≤ δ2ε2

16
. (2.13)

Then,

P(En
ε,s1,s2

) ≥ 1− exp

(
−n
(
−1 + log (v + 1)

v
+
δ2ε2

16

))
, (2.14)

for all n = n(v, ε, δ) large enough.

Remark 2.2 Instead of (2.10), the corresponding condition in [13] is:

r0 = 0 < r1 < r2 < r3 < ... < rd−1 < rd = n. (2.15)

However, in general, there is no guarantee that there exists an optimal align-
ment satisfying both (2.11) and (2.15). Indeed, for a simple counterexample,
let n = 4, A = [2], d = v = 2, and let

X = (1, 1, 0, 0), Y = (0, 0, 1, 1).
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Then, any optimal alignment satisfying (2.11) must have a cell with no terms
in the Y -part which is clearly incompatible with (2.15). (This counterex-
ample can easily be extended to n = 6, A = [2], d = 3, v = 2, letting
X = (1, 1, 0, 0, 1, 1), Y = (0, 0, 1, 1, 0, 0), and so on.)

In general, there always exists an optimal alignment (r0, r1, r2, ..., rd) sat-
isfying both (2.10) and (2.11) with, say, v = nα as above. (Consider any one
of the longest common subsequences and choose the ri’s so that these two con-
ditions are satisfied.) Therefore, we slightly changed the framework of [13] as
the argument below requires the existence of an optimal alignment with (2.11)
for any value of X and Y . However, the proof of Theorem 2.3 proceeds as
the proof of the corresponding result in [13], and is therefore omitted. (The
only difference is that counting the cases of equality, an upper estimate on
the number of integer-vectors (0 = r0, r1, . . . , rd−1, rd = n) satisfying (2.10)
is now given by(

n+ d

d

)
≤ (n+ d)d

d!
≤
(
e(n+ d)

d

)d
= (e(v + 1))d, (2.16)

leading to the terms involving log (v + 1) rather than just log v, when using
(2.15) and an estimate on

(
n
d

)
.)

Remark 2.3 In [13], the statement of Theorem 2.3 is given for "sufficiently
large n". However, as indicated at the end of the proof there, it is possible
to find a more quantitative estimate using Alexander’s results (1.3). In fact,
a lower bound valid for all n, in terms of v, ε and δ, holds true. Indeed, at
first, from the end of the proof of the main theorem in [13], one can easily
check that the following condition on n is sufficient for (2.14) to hold:

4C2
A

(δ∗ − δ)2
log n

n
≤ ε2,

where δ∗ − δ is a fixed positive quantity and CA is a positive constant such
that γ∗mn− CA

√
n log n ≤ ELCn. (One can find explicit numerical estimates

on CA using Rhee’s proof [17].)
In our context, here is how to choose ε so that the estimate in (2.14) holds

true for all n ≥ 1 and v = nα, 0 < α < 1. Let c1 > 0 be a constant such that

c21 ≥
32

δ2
,
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and
c21

(
1 + log (nα + 1)

nα

)
≥ 4C2

A

(δ∗ − δ)2
log n

n
, for all n ≥ 1.

Setting,

ε2 = c21
1 + log (nα + 1)

nα
,

(2.13) holds for v = nα and therefore,

P(En
ε,s1,s2

) ≥ 1− e−n1−α(1+log (nα+1)), (2.17)

for all n ≥ 1.

Let us return to the proof of Theorem 1.1, and the estimation of (2.9).
First, for notational convenience, below we write

∑
1 in place of Σ(A,B,j,k)∈S1 .

Also, for random variables U, V and a random variable Z taking its values
in R ⊂ R, and with another abuse of notation, we write CovZ=z(U, V ) for
E((U − EU)(V − EV )|Z = z), z ∈ R.

Let, now, the random variable Z be the indicator function of the event
En
ε,s1,s2

, where ε = c1
√

(1 + log (v + 1))/v, i.e., Z = 1Enε,s1,s2 , with v = nα and
with c1 as in Remark 2.3. Then,∑

1

Cov(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

=
∑
1

CovZ=0(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

P(Z = 0)

+
∑
1

CovZ=1(∆jf(W )∆jf(WA),∆kf(W)∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

P(Z = 1).(2.18)

To estimate the first term on the right-hand side of (2.18), first note that
CovZ=0(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB)) ≤ 4, which when combined
with the estimate in (2.17) and Proposition 2.1, immediately lead to

∑
1

CovZ=0(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

P(Z = 0)

≤ 4n2e−n
1−α(1+log (nα+1)). (2.19)
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For the second term on the right-hand side of (2.18), begin with the trivial
bound on P(Z = 1) to get∑

1

CovZ=1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

P(Z = 1)

≤
∑
1

CovZ=1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

. (2.20)

Finer decompositions are then needed to handle this last summation, and
for this purpose, we specify an optimal alignment with certain properties.

Recall from Remark 2.2 that there always exists an optimal alignment
r = (r0, r1, r2, ..., rd) satisfying both (2.10) and (2.11) with v = nα as above.
In the sequel, r denotes a uniquely defined optimal alignment which also
specifies the pairs, in the sequences X and Y , contributing to the longest
common subsequence. Such an alignment always exists, as just noted, and
so we can define an injective map from (X, Y ) to the set of alignments. This
abstract construction is enough for our purposes, since the argument below
is independent of the choice of the alignment. Note also that conditionally
on the event {Z = 1}, r satisfies (2.12).

To continue, we need another definition and some more notation.

Definition 2.1 For the optimal alignment r, each of the sets

{Xv(i−1)+1Xv(i−1)+2 · · ·Xvi;Yri−1+1Yri−1+2 · · ·Yri}, i = 1, ..., d,

is called a cell of r.

In particular, and clearly, any optimal alignment with v = nα has d =
n1−α cells.

Let us next introduce some more notation used below. For any given
j ∈ [2n], let Pj be the cell containingWj where, again,W = (W1, . . . ,W2n) =
(X1, . . . , Xn, Y1, . . . , Yn). We write Pj = (P 1

j ;P 2
j ) where P 1

j (resp. P 2
j ) is the

subword of X (resp. Y ) corresponding to Pj. Note that, for each j ∈ [2n],
P 1
j contains nα letters but that P 2

j might be empty.
Further, when P 2

j is not empty, we define

aj =

{
min{i : Wi is in P 1

j }, if 1 ≤ j ≤ n

min{i : Wi is in P 2
j }, if n+ 1 ≤ j ≤ 2n,
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bj =

{
max{i : Wi is in P 1

j }, if 1 ≤ j ≤ n

max{i : Wi is in P 2
j }, if n+ 1 ≤ j ≤ 2n,

a′j =

{
min{i : Wi is in P 2

j }, if 1 ≤ j ≤ n

min{i : Wi is in P 1
j }, if n+ 1 ≤ j ≤ 2n,

and

b′j =

{
max{i : Wi is in P 2

j }, if 1 ≤ j ≤ n

max{i : Wi is in P 1
j }, if n+ 1 ≤ j ≤ 2n.

(When P 2
j is empty, the corresponding definitions do not make sense but this

will not be an issue. Indeed, such cases are taken care of by the decomposi-
tions done later, in particular, see the definition of S1,2,1 below.)

Let us illustrate our purpose on an example.

Example 2.1 Take n = 12 and A = [3]. Let

X = (1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1),

Y = (2, 1, 1, 3, 2, 3, 1, 2, 1, 1, 1, 1).

and W = (X, Y ). Then, LC12 = 8, and choosing v = 3, the number of cells
in the optimal alignment is d = 4. One possible choice for these cells is

(X1X2X3;Y1Y2Y3Y4Y5) = (112; 21132),

(X4X5X6; ∅) = (121; ∅),

(X7X8X9;Y6Y7Y8Y9) = (121; 3121),

and
(X10X11X12;Y10Y11Y12) = (131; 111).

For example, focusing on W8 = X8, we have

P8 = (P 1
8 ;P 2

8 ) = (121; 3121),

a8 = 7, b8 = 9, a′8 = 18 and b′8 = 21. If instead, we consider W19 = Y7, then
a19 = 18, b19 = 21, a′19 = 7, and b′19 = 9. Note that, in this example, the
values of a, b and a′, b′ are interchanged since W8 and W19 are in the same
cell. Finally, for W23, then a23 = 22, b23 = 24, a′23 = 10, and b′23 = 12

13



We return to the proof of Theorem 1.1 and define the following subsets
of S1 with respect to the alignment r:

S1,1 = {(A,B, j, k) ∈ S1 : Wj and Wk are in the same cell of r},

and

S1,2 = {(A,B, j, k) ∈ S1 : Wj and Wk are in different cells of r}.

Clearly, S1,1 ∩S1,2 = ∅ and S1 = S1,1 ∪S1,2. Now, for a given subset S of S1,
and for (A,B, j, k) ∈ S1, define CovZ=1,(A,B,j,k),S to be

CovZ=1,(A,B,j,k),S(X, Y ) = E
(
(X − EX)(Y − EY )1(A,B,j,k)∈S |Z = 1

)
.

We write CovZ=1,S(X, Y ) instead of CovZ=1,(A,B,j,k),S(X, Y ) when the value
of (A,B, j, k) is clear from the context.

We continue the decomposition of the right-hand side of (2.20) as∑
1

CovZ=1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

=
∑
1

CovZ=1,S1,1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

+
∑
1

CovZ=1,S1,2(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

.(2.21)

To clarify the notation note that, for example,∑
1

CovZ=1,S1,1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

=
∑
1

E

(
g(A,B, j, k)1(A,B,j,k)∈S1,1(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

∣∣∣Z = 1

)
,

where

g(A,B, j, k) =
(
∆jf(W )∆jf(WA)− E(∆jf(W )∆jf(WA))

)
×
(
∆kf(W )∆kf(WB)− E(∆kf(W )∆kf(WB))

)
.(2.22)

To glimpse into the proof, let us stop for a moment to present some of
its key steps. Our first intention is to show that, thanks to our conditioning
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on the event En
ε,s1,s2

, the number of terms contained in S1,1 is “small". To
achieve this conclusion, a corollary to Theorem 2.3, see Theorem 2.4 below, is
used. The next step will be based on estimations for the indices in S1,2. Here
we will observe that we have enough independence (see the decomposition in
(2.31)) to show that the contributions of the covariance terms from S1,2 are
“small". This will require a lot more steps, as we shall see below.

Let us now focus on the first term on the right-hand side of (2.21). Letting
g be as in (2.22), and using arguments similar to those used in the proof of
Proposition 2.1, we have,∑

1

∣∣CovZ=1,S1,1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))
∣∣(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤ E

(∑
1

|g(A,B, j, k)|1(A,B,j,k)∈S1,1(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

∣∣∣Z = 1

)

≤ 4E

(∑
1

1(A,B,j,k)∈S1,1(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

∣∣∣Z = 1

)
= 4E (|R||Z = 1) , (2.23)

where

R = {(j, k) ∈ [2n]2 : Wj and Wk are in the same cell of r}.

To estimate (2.23), for each i = 1, . . . , d, let |Ri| be the number of pairs
of indices (j, k) ∈ [2n]2 that are in the ith-cell, and let Gi be the event that
s1n

α ≤ ri − ri−1 ≤ s2n
α. Then,

E (|R| |Z = 1) =
n1−α∑
i=1

E(|Ri| |Z = 1)

=
n1−α∑
i=1

E(|Ri|1Gi |Z = 1) +
n1−α∑
i=1

E(|Ri|1Gci |Z = 1).(2.24)

For the first term on the right-hand side of (2.24), note that, when Gi holds
true, the i-th cell can contain at most nα + s2n

α = (1 + s2)n
α letters (nα is

for the letters in X and s2nα is for the letters in Y ), and thus,

|Ri|1Gi ≤ (1 + s2)
2n2α.
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This gives
n1−α∑
i=1

E(|Ri|1Gi
∣∣Z = 1) ≤ (1 + s2)

2n1+α. (2.25)

For the estimation of the second term on the right-hand side of (2.24),
we first recall a corollary to Theorem 2.3 stated in [13]. To do so, we need
to introduce a different understanding of the LCS problem. Following [13],
we consider alignments as subsets of R2, in the following way: If the i-th
letter of X gets aligned with the j-th letter of Y , then the set representing
the alignment is to contain (i, j).

Now, let Hn
ε,s2

be the event that all the points representing any optimal
alignment of X1 · · ·Xn with Y1 · · ·Yn are below the line y = s2x+s2nε+s2n

α.
Then,

Theorem 2.4 [13] With the notation of Theorem 2.3,

P(Hn
ε,s2

) ≥ 1− exp

(
−n
(
−1 + log (v + 1)

v
+
δ2ε2

16

))
,

for all n = n(v, ε, δ), large enough.

Now, choosing ε as in Remark 2.3, the conclusion of Theorem 2.4 holds for
any n ≥ 1. The proof of Theorem 2.4 is based on the observation that

En
ε,s1,s2

⊂ Hn
ε,s2
,

we refer the reader to [13] for details.
Returning to the estimation of the second term on the right-hand side of

(2.24), we first write

n1−α∑
i=1

E(|Ri|1Gci |Z = 1) =
n1−α∑
i=1

E
(
|Ri|1Gci 1Hn

ε,s2

∣∣∣Z = 1
)
, (2.26)

since, indeed, En
ε,s1,s2

= {Z = 1} ⊂ Hn
ε,s2

, so that Z = 1 implies 1Hn
ε,s2

= 1.
Continuing, we start by focusing on estimating the first element of the

sum, i.e., E(|R1|1Gc11Hn
ε,s2
|Z = 1). To do so, let Kn

ε,s2
be the event that

X1 · · ·Xnα is mapped to a subset of Y1 · · ·Y2s2nα+s2nε, for any alignment.
Then, we have

Hn
ε,s2
⊂ Kn

ε,s2
,
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where the inclusion follows from the definition of Hn
ε,s2

. Thus,

|R1|1Hn
ε,s2
≤ ((1 + 2s2)n

α + s2nε)
2 ,

yielding

E(|R1|1Gc11Hn
ε,s2
|Z = 1) ≤ E(|R1|1Hn

ε,s2
|Z = 1)

≤ ((1 + s2)n
α + s2nε)

2 .

In a similar way, we have

|Ri|1Hn
ε,s2
≤ ((1 + 2s2)n

α + s2nε)
2 , i = 2, . . . , nα,

since, again, when Hn
ε,s2

occurs, a cell must contain at most s2nε + 2s2n
α

terms from the Y sequence. (To see that this is indeed the case, assume that
the Y part of a cell contains more than s2nε+2s2n

α terms while Hn
ε,s2

occurs.
Then, just move the first i − 1 cells to the end of the sequences to get an
optimal alignment whose first cell has more than s2nε+ 2s2n

α terms, giving
a contradiction.)

Therefore, for any i = 1, . . . , nα,

E(|Ri|1Gci 1Hn
ε,s2
|Z = 1) ≤ ((1 + 2s2)n

α + s2nε)
2 . (2.27)

But, thanks to the 1Gci terms and to the conditioning on Z = 1, at most
εn1−α of the summands in (2.26) are nonzero and so, from (2.27),

n1−α∑
i=1

E
(
|Ri|1Gci

∣∣∣Z = 1
)
≤ εn1−α ((1 + 2s2)n

α + s2nε)
2 . (2.28)

For ε = (c21(1 + log (nα + 1))/nα)1/2, the estimate (2.28) lead to:

n1−α∑
i=1

E(|Ri|1Gci |Z = 1)

≤ C1n
1+α/2(log nα)1/2 + C2n

2−α log nα + C3n
3−5α/2(log nα)3/2,(2.29)

where C1, C2, and C3 are constants independent of n.
Hence, combining (2.25) and (2.29),

E(|R||Z = 1)
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≤ C(n1+α + n1+α/2(log nα)1/2 + n2−α log nα + n3−5α/2(log nα)3/2),

which, in turn, yields∑
1

∣∣CovZ=1,S1,1(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))
∣∣(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤C(n1+α + n1+α/2(log nα)1/2 + n2−αlog nα + n3−5α/2(log nα)3/2),(2.30)

and, this last estimate takes care of the first sum on the right-hand side of
(2.21).

Next we move to the estimation of the second term on the right-hand side
of (2.21), which is given by,∑

1

CovZ=1,S1,2(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB))(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

.

To estimate the summands in the last expression, we need to decompose
the covariance terms in such a way that independence of certain random
variables occurs, simplifying te estimates. For this purpose, for each i ∈ [2n],
let f(Pi) = LC(Pi) be the length of the longest common subsequence of P 1

i

and P 2
i , the coordinates of the cell Pi = (P 1

i ;P 2
i ), and set

∆̃if(W ) := f(Pi)− f(P ′i ),

where P ′i is the same as Pi except that Wi is now replaced with the inde-
pendent copy W ′

i . In words, ∆̃if(W ) is the difference between the length of
the longest common subsequence restricted to Pi and its modified version at
coordinate i. Now for (A,B, j, k) ∈ S1,

CovZ=1,S1,2(∆jf(W )∆jf(WA),∆kf(W )∆kf(WB)) =

CovZ=1,S1,2((∆jf(W )− ∆̃jf(W ))∆jf(WA),∆kf(W )∆kf(WB))

+CovZ=1,S1,2(∆̃jf(W )(∆jf(WA)− ∆̃jf(WA)),∆kf(W )∆kf(WB))

+CovZ=1,S1,2(∆̃jf(W )∆̃jf(WA), (∆kf(W )− ∆̃kf(W ))∆kf(WB))

+CovZ=1,S1,2(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )(∆kf(WB)− ∆̃kf(WB))

+CovZ=1,S1,2(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB)). (2.31)

Above, we used the bilinearity of CovZ=1,S1,2 to express the left-hand side as
a telescoping sum. (Except for the conditioning, this decomposition is akin
to a decomposition developed in [7].)
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Let us begin by estimating the last term on the right-hand side of (2.31).
To do so, first observe that

Cov(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB)) = 0,

since the random variables ∆̃jf(W )∆̃jf(WA) and ∆̃kf(W )∆̃kf(WB) belong
to different cells and are therefore independent. Now, recalling that S1 =
S1,1 ∪ S1,2, and conditioning on Z gives

0 = Cov(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB))

= CovZ=1,S1,2(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB))P(Z = 1)

+CovZ=1,S1,1(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB))P(Z = 1)

+CovZ=0,S1,2(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB))P(Z = 0)

+CovZ=0,S1,1(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB))P(Z = 0).(2.32)

Thus,

|CovZ=1,S1,2(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB))| ≤
|CovZ=1,S1,1(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB)|

+

∣∣∣∣P(Z = 0)

P(Z = 1)
CovZ=0,S1,1(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB))

∣∣∣∣
+

∣∣∣∣P(Z = 0)

P(Z = 1)
CovZ=0,S1,2(∆̃jf(W )∆̃jf(WA), ∆̃kf(W )∆̃kf(WB))

∣∣∣∣ .(2.33)
By making use of the estimate in (2.17), the last two terms on the right-hand
side of (2.33) are clearly bounded by Ce−n1−α(1+log (nα+1)). Also, as in passing
from (2.23) to (2.30), we have

∑
1

|CovZ=1,S1,1(∆̃jf(W)∆̃jf(WA), ∆̃kf(W)∆̃kf(WB))|(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤

C(n1+α + n1+α/2(log nα)1/2 + n2−αlog nα + n3−5α/2(log nα)3/2).

Combining these two observations, we arrive at

∑
1

|CovZ=1,S1,2(∆̃jf(W)∆̃jf(WA), ∆̃kf(W)∆̃kf(WB))|(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤
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C(n1+α + n1+α/2(log nα)1/2 + n2−αlog nα + n3−5α/2(log nα)3/2

+n2e−n
1−α(1+log (nα+1))), (2.34)

finishing the estimation of the last term in (2.31).
Next we obtain an upper bound for the first of the remaining four sum-

mands in (2.31), the other three terms can be estimated similarly and so, the
details for these are omitted. To do so, let

U := (∆jf(W )− ∆̃jf(W ))∆jf(WA),

and
V := ∆kf(W )∆kf(WB),

so that we wish to estimate CovZ=1,S1,2(U, V ). But,∣∣CovZ=1,S1,2(U, V )
∣∣

=
∣∣E((U − EU)(V − EV )1(A,B,j,k)∈S1,2|Z = 1)

∣∣
≤ E(|UV |1(A,B,j,k)∈S1,2 |Z = 1) + E|V |E(|U |1(A,B,j,k)∈S1,2|Z = 1)

+E|U |E(|V |1(A,B,j,k)∈S1,2 |Z = 1) + E|U |E|V |E(1(A,B,j,k)∈S1,2|Z = 1)

:= T1 + T2 + T3 + T4.

Note here that Ti, i = 1, 2, 3, 4 are functions of (A,B, j, k). Let us begin by
estimating

T1 = EZ=1|((∆jf(W )− ∆̃jf(W ))∆jf(WA))(∆kf(W )∆kf(WB))1(A,B,j,k)∈S1,2|.

Since |∆jf(WA)(∆kf(W )∆kf(WB))| ≤ 1,

T1 ≤ EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
. (2.35)

A similar estimate also reveals that

T2 ≤ EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
. (2.36)

Next, for T3 and T4, since |V | ≤ 1,

T3 + T4 ≤ 2E|U | ≤ 2E|∆jf(W )− ∆̃jf(W )|

= 2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
P(Z = 1)
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+2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
P(Z = 1)

+2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
P(Z = 0)

+2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
P(Z = 0)

≤ 2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
+2EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
+Ce−n

1−α(1+log (nα+1)), (2.37)

where we used the trivial bound on P(Z = 1), and also (2.17), for the last
inequality.

Now, denote by h(A,B, j, k) the sum of the first four terms on the right-
hand side of (2.31). Then, performing estimations as in getting (2.35), (2.36)
and (2.37), for the second to fourth term of this sum, and observing that
|∆jf(W )−∆̃jf(W )| is equal in distribution to |∆jf(WA)−∆̃jf(WA)|, while
|∆kf(W )− ∆̃kf(W )| is equal in distribution to |∆kf(WB)− ∆̃kf(WB)|, we
obtain

∑
1

∣∣∣∣∣ h(A,B, j, k)(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

∣∣∣∣∣
≤ C

∑
1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

+C
∑
1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

+C
∑
1

EZ=1

(
|∆kf(W )− ∆̃kf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

+C
∑
1

EZ=1

(
|∆kf(W )− ∆̃kf(W )|1(A,B,j,k)∈S1,1

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

+C
∑
1

e−n
1−α(1+log (nα+1))(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

.
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By making use of a symmetry argument, this gives∑
1

∣∣∣∣∣ h(A,B, j, k)(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

∣∣∣∣∣
≤ C

∑
1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

+C
∑
1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,1

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

+C
∑
1

e−n
1−α(1+log (nα+1))(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

.

As with previous computations, using (2.17), the third sum on the above
right-hand side is bounded by

Cn2e−n
1−α(1+log (nα+1)), (2.38)

while the middle sum is bounded by

C(n1+α + n1+α/2(log nα)1/2 + n2−αlog nα + n3−5α/2(log nα)3/2), (2.39)

using (2.23). Hence, we are left with estimating∑
1

EZ=1

(
|∆jf(W )− ∆̃jf(W )|1(A,B,j,k)∈S1,2

)
. (2.40)

To handle (2.40), we divide S1,2 into two more pieces; S1,2,1 and S1,2,2. This
decomposition will turn out to be crucial in (2.47) where we take care of
the covariance terms from S1,2,2. Recall that, for the optimal alignment r,
we have d = n1−α cells. Also, for any given j ∈ [n], we set aj = min{i :
Xi is in P 1

j } and bj = max{i : Xi is in P 1
j } (with similar definitions, for

j ∈ {n+ 1, . . . , 2n}).
Let now,

S1,2,1 = {(A,B, j, k) ∈ S1,2 : 1 ≤ j ≤ n}
∩{(A,B, j, k) ∈ S1,2 : |j − aj| ≤ nα/2 or |j − bj| ≤ nα/2 or P 2

j = ∅},

S̃1,2,1 = {(A,B, j, k) ∈ S1,2 : n+ 1 ≤ j ≤ 2n}
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∩{(A,B, j, k) ∈ S1,2 : |j − aj| ≤ nα/2 or |j − bj| ≤ nα/2},

and
S1,2,2 = S1,2 − (S1,2,1 ∪ S̃1,2,1).

(Recall that P 1
j 6= ∅, for any j ∈ [2n], explaining the difference between the

definitions of S1,2,1 and S̃1,2,1.) To estimate

∑
1

EZ=1

(
|(∆jf(W )− ∆̃jf(W ))|1(A,B,j,k)∈S1,2,1

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

,

set

T1 =
{

(j, k) ∈ [2n]2 : (A,B, j, k) ∈ S1, 1 ≤ j ≤ n,

|j − aj| ≤ nα/2 or |j − bj| ≤ nα/2
}
,

and
T2 = {(j, k) ∈ [2n]2 : (A,B, j, k) ∈ S1, 1 ≤ j ≤ n, P 2

j = ∅},

so that, mimicking computations previously performed,

∑
1

EZ=1|(∆jf(W )− ∆̃jf(W ))|1(A,B,j,k)∈S1,2,1(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤ E(|T1|+ |T2| | Z = 1).

(2.41)
Next, observe that

|T1| ≤ Cn1−αnα/2n = Cn2−α/2. (2.42)

(n1−α is for the number of cells, 2nα/2 is for the number of coordinates in a
given cell which are at most at distance nα/2 from their endpoints and n is
for the number of possible values of k so that (A,B, j, k) ∈ S1,2,1.)

Also, by the very definition of Z,

E(|T2|
∣∣Z = 1) ≤ εn1−αnαn

≤ Cn2−α/2(log nα)1/2. (2.43)

(At most εn1−α many cells may have empty Y -part, each of which containing
nα different j values. The n term is again for the number of possible values
of k )
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Combining (2.41), (2.42) and (2.43), lead to

∑
1

EZ=1

(
|(∆jf(W )− ∆̃jf(W ))|1(A,B,j,k)∈S1,2,1

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤ C(n2−α/2 + Cn2−α/2(log nα)1/2). (2.44)

Similar estimates also give

∑
1

EZ=1

(
|(∆jf(W )− ∆̃jf(W ))|1(A,B,j,k)∈S̃1,2,1

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤ Cn2−α/2. (2.45)

Let us now deal with the sum over S1,2,2. To do so, in the rest of the
proof, LCS(W ) denotes the vector (Xi1 · · ·Xi` ;Yj1 · · ·Yj`) obtained via the
unique optimal alignment r we specified, so that |LCS(W )| = `. Further,
we say that the pair (Xi, Yj) ∈ {X1, . . . , Xn}×{Y1, . . . , Yn} is in LCS(W ), if
(Xi, Yj) contributes to the length of the longest common subsequence (with
respect to r).

Now, write S1,2,2 = S1,2,2,1 ∪ S1,2,2,2 where,

S1,2,2,1 = {(A,B, j, k) ∈ S1,2,2 : Wj and Wa′j
are in LCS(W )}

∪{(A,B, j, k) ∈ S1,2,2 : Wj and Wb′j
are in LCS(W )},

and where S1,2,2,2 = S1,2,2 − S1,2,2,1. The estimates for the covariance terms
corresponding to S1,2,2,1 and S1,2,2,2 are, in a sense, similar to our previous
computations. We will show that there are few terms (on average) in the
index set S1,2,2,1, and that the covariance terms are themselves small when
dealing with the indices in S1,2,2,2.

As in obtaining (2.44), we set

T3 = {(j, k) ∈ [2n]2 : (A,B, j, k) ∈ S1, Wj and Wa′j
are in LCS(W )}

∪{(j, k) ∈ [2n]2 : (A,B, j, k) ∈ S1, Wj and Wa′j
are in LCS(W )}.

We have n1−α cells and each cell may contain at most four j values that
contribute to the longest common subsequence by being matched with a′j or
b′j. Hence the number of (j, k) pairs in [2n]2 that are in S1,2,2,1 for some A,B
is bounded by 4n1−αn = 4n2−α, where the n term is for the possible choices
of k values. That is,

|T3| ≤ 4n2−α,
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and using Proposition 2.1,

∑
1

EZ=1

(
|(∆jf(W )− ∆̃jf(W ))|1(A,B,j,k)∈S1,2,2,1

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤ Cn2−α. (2.46)

Next, let

Fj :=

 j−1⋃
r=j−nα/2

{Wr is in LCS(W )}

⋂j+nα/2⋃
r=j+1

{Wr is in LCS(W )}

 ,

which is the event that the longest common subsequence of X1 · · ·Xn and
Y1 · · ·Yn, with respect to r, contains terms which are close to Wj on both of
its sides. Using the events Fj,

∑
1

EZ=1

(
|(∆jf(W )− ∆̃jf(W ))|1(A,B,j,k)∈S1,2,2,2

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

=
∑
1

EZ=1

(
|(∆jf(W )− ∆̃jf(W ))|1Fj1(A,B,j,k)∈S1,2,2,2

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

+
EZ=1

(
|(∆jf(W )− ∆̃jf(W ))|1F cj 1(A,B,j,k)∈S1,2,2,2

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)


=

∑
1

EZ=1

(
|(∆jf(W )− ∆̃jf(W ))|1F cj 1(A,B,j,k)∈S1,2,2,2

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤ C
∑
1

EZ=1

(
1F cj 1(A,B,j,k)∈S1,2,2,2

)
(
2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤ C
∑
1

P(F c
j , (A,B, j, k) ∈ S1,2,2,2)(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

,

where the second equality follows, observing that (∆jf(W )− ∆̃jf(W ))1Fj =
0, and the last one via (2.17).

Then,

F c
j ∩ {(A,B, j, k) ∈ S1,2,2,2)}
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=

 j−1⋂
r=j−nα/2

{Wr is not in LCS(W )}

⋂{(A,B, j, k) ∈ S1,2,2,2)}


⋃j+nα/2⋂

r=j+1

{Wr is not in LCS(W )}

⋂{(A,B, j, k) ∈ S1,2,2,2}

,
and so

P(F c
j ∩ {(A,B, j, k) ∈ S1,2,2,2)})

≤ P

 j−1⋂
r=j−nα/2

{Wr is not in LCS(W )} ∩ {(A,B, j, k) ∈ S1,2,2,2}


+P

j+nα/2⋂
r=j+1

{Wr is not in LCS(W )} ∩ {(A,B, j, k) ∈ S1,2,2,2}

 .

Since for (A,B, j, k) ∈ S1,2,2,2, the pair (Wj,Wa′j
) is not included in the

longest common subsequence, it follows that

P

 j−1⋂
r=j−nα/2

{Wr is not in LCS(W )} ∩ {(A,B, j, k) ∈ S1,2,2,2}


≤ P

(
none of the terms in {Wj−nα/2 , . . . ,Wj−1} is equal toWa′j

)
= P

 j−1⋂
r=j−nα/2

{Wr 6= Wa′j
}


=

(
1−

m∑
i=1

p2i

)nα/2

.

Similarly, for (A,B, j, k) ∈ S1,2,2,2, the pair (Wj,Wb′j
) is not included in the

longest common subsequence and so

P

j+nα/2⋂
r=j+1

{Wr is not in LCS(W )} ∩ {(A,B, j, k) ∈ S1,2,2,2}


≤ P

(
none of the terms in {Wj+1, . . . ,Wj+nα/2} is equal to Wb′j

)
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=

(
1−

m∑
i=1

p2i

)nα/2

.

Hence, from the above,

P(F c
j ∩ {(A,B, j, k) ∈ S1,2,2,2)}) ≤ 2

(
1−

m∑
i=1

p2i

)nα/2

. (2.47)

Thus, (2.47) and Proposition 2.1 lead to:

∑
1

P(F c
j , (A,B, j, k) ∈ S1,2,2,2)(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤
∑
1

2en
α/2 log(1−

∑m
i=1 p

2
i )(

2n
|A|

)
(2n− |A|)

(
2n
|B|

)
(2n− |B|)

≤ Cn2en
α/2 log(1−

∑m
i=1 p

2
i ). (2.48)

Combining (2.19), (2.30), (2.34), (2.38), (2.39), (2.44), (2.45), (2.46) and
(2.48), gives

VarT ≤ C
(
n2e−n

1−α(1+log (nα+1)) + n1+α + n1+α/2(log nα)1/2

+n2−α log nα + n3−5α/2(log nα)3/2 + n2−α/2

+n2−α/2(log nα)1/2 + n2−α + n2en
α/2 log(1−

∑m
i=1 p

2
i )
)
.

Therefore, Theorem 2.3 and (2.7), as well as the choice α = 3/4, above,
ensure that:

dW

(
LCn − ELCn√

VarLCn
,G
)
≤ C

(
1

n1/4

)1/2

+ C
1

n1/2
≤ C

1

n1/8
,

holds for every n ≥ 1, with C > 0 a constant independent of n. �

Remark 2.4 (i) The arguments presented here will also prove a central limit
theorem for the length of the longest common subsequence in the uniform
setting, or for any distribution of X1, as soon as the variance estimate

VarLCn ≥ Cn,

holds true for some constant C independent of n. In fact, even a sublinear
lower bound for the variance, so as to compensate for our estimate on VarT ,
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would do it, e.g., n7/8 will do (although most likely, the variance of LCn is
linear in n).

(ii) The constant C in Theorem 1.1 is independent of n but depends on
m, on s1 and s2 of Theorem 2.3, as well as on maxj=1,...,m pj and maxj 6=j0 pj
of Theorem 2.5.

(iii) Some arguments of the proof could, somehow, be simplified by making
the events S1,2,1, S̃1,2,1 and S1,2,2,1 part of S1,1. However, it is our belief that
the current approach makes the arguments clearer.

(iv) Of course, there is no reason for our rate n1/8 to be sharp. Already,
instead of the choice v = nα, a choice such as v = h(n), for some optimal
function h would improve the rate.

(v) From a known duality between the length of longest common subse-
quence of two random words and the length of the shortest common super-
sequence (see Danc̆ík [8]), our result also implies a central limit theorem for
this latter case.

3 Concluding Remarks
We conclude the paper with a discussion on longest common subsequences
in random permutations and in a final remark, present some potential exten-
sions, perspectives and questions we believe are of interest.

Theorem 1.1 shows that the Gaussian distribution appears as the lim-
iting law for the length in longest common subsequences of random words.
However, the Tracy-Widom distribution has also been hypothesized as the
limiting law in such contexts. It turns out, as shown next, that it is indeed
the case for certain distributions on permutations.

First, it is folklore that, if π = (π1, . . . , πn) is any element of the symmetric
group Sn, then

LIn(π) = LCn((1, 2, . . . , n), (π1, π2, . . . , πn)), (3.1)

where LIn(π) is the length of the longest increasing subsequence in π =
(π1, . . . , πn), while LCn((1, 2, . . . , n), (π1, π2, . . . , πn)), is the length of the
longest common subsequence of the identity permutation id and of the per-
mutation π. In the equality (3.1), replacing id by an arbitrary permutation
ρ and taking for π a uniform random permutation in Sn lead to:
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Proposition 3.1 (i) Let ρ = (ρ1, ρ2, . . . , ρn) be a fixed permutation in Sn
and let π be a uniform random permutation in Sn. Then,

LIn(π) =d LCn((ρ1, ρ2, . . . , ρn), (π1, π2, . . . , πn)), (3.2)

where =d denotes equality in distribution.
(ii) Let ρ and π be two independent uniform random permutations in Sn,

and let x ∈ R. Then,

P(LCn(ρ, π) ≤ x) = P(LIn(π) ≤ x). (3.3)

Proof. To begin the proof of (i), let π′ ∈ Sn be such that π′i = ρi. Then,
π′′ := ππ′ is still a uniformly random permutation, and so

LCn((ρ1, ρ2, . . . , ρn), (π1, π2, . . . , πn)) =d LCn((ρ1, ρ2, . . . , ρn), (π′′1 , π
′′
2 , . . . , π

′′
n))

= LCn((ρ1, ρ2, . . . , ρn), (πρ1 , πρ2 , . . . , πρn)),

where for the second equality we used π′′i = ππ′i = πρi . Clearly,

LCn((ρ1, ρ2, . . . , ρn), (πρ1 , πρ2 , . . . , πρn)) =d LCn((1, 2, . . . , n), (π1, π2, . . . , πn)),

and so (3.1) finishes the proof of (i).
Let us now prove (ii).

P(LCn(ρ, π) ≤ x) =
∑
γ∈Sn

P(LCn(γ, π) ≤ x|ρ = γ)P(ρ = γ)

=
1

n!

∑
γ∈Sn

P(LCn((γ1, . . . , γn), (π1, . . . , πn)) ≤ x)

=
1

n!

∑
γ∈Sn

P(LIn(π) ≤ x)

= P(LIn(π) ≤ x),

where the third equality follows from (3.2). This proves (ii). �

Clearly, the identity (3.3), which in fact is easily seen to remain true
if ρ is a random permutation in Sn with an arbitrary distribution, shows
that the probabilistic behavior of LCn(ρ, π) is identical to the probabilistic
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behavior of LIn(π). Among the many results presented in Romik [19], the
mean asymptotic result of Logan-Shepp and Vershik-Kerov implies that:

lim
n→+∞

ELCn(ρ, π)

2
√
n

= 1.

Moreover, the distributional asymptotic result of Baik-Deift and Johansson
implies that, as n→ +∞,

LCn(ρ, π)− 2
√
n

n1/6
−→ F2, in distribution,

where F2 is the Tracy-Widom distribution whose cdf is given by

F2(t) = exp

(
−
∫ ∞
t

(x− t)u2(x)dx

)
,

where u is the solution to the Painlevé II equation:

uxx = 2u3 + xu with u(x) ∼ −Ai(x) as x→∞.

To finish, let us list a few venues for future research that we find of
potential interest.

Remark 3.1 (i) First, the methods of the present paper can also be used to
study sequence comparison with a general scoring functions S. Namely, S :
Am ×Am → R+ assigns a score to each pair of letters (the LCS corresponds
to the special case where S(a, b) = 1 for a = b and S(a, b) = 0 for a 6= b).
This requires more work, but is possible, and will be presented in a separate
publication (see [9]).

(ii) Another important step would be to extend the central limit theorem
result to three or more sequences. Such an attempt would require, at first,
to use the variance estimates as stated in the concluding remarks of [11] and
then generalize to higher dimensions the closeness to the diagonal results of
[13].

(iii) As challenging is the the loss of independence, both between and
inside the sequences, and the loss of identical distributions, both within and
between the sequences. Results for this type of frameworks will be presented
elsewhere.

(iv) It would also be of interest to study the random permutation versions
of (i)–(iii) above.
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