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A series of high quality FexGa1�xBO3 single crystals with
0� x� 1 was prepared and studied by electron magnetic
resonance in the temperature range from 4 to 290K. At low x,
only the electron paramagnetic resonance (EPR) of diluted
Fe3þ ions is present. The EPR spectra for different orientations
of the magnetizing field have been computer simulated. With a
conventional spin Hamiltonian including the Zeeman and fine
structure terms, two different sets of best fit parameters have

been found. This ambiguity has been resolved on the basis of
the general spin Hamiltonian with parameters determined from
the crystallographic data using the Newman superposition
model. A detailed fitting to the experimental EPR spectra
assuming statistical distributions of Fe3þ ligand coordinates has
revealed the existence of a certain degree of local disorder in
FexGa1�xBO3 single crystals.

1 Introduction Iron borate FeBO3 is an extraordinary
material one of the few that combine room temperature
magnetic ordering and high transparency up to the near
ultraviolet spectral range. The synthesis of FeBO3 single
crystals and the determination of their crystal structure were
first reported by Bernal et al. [1]. FeBO3 has a rhombohedral
calcite structure with D6

3d space group. The structural
parameters were later refined by Diehl et al. [2, 3]. From the
magnetic point of view, FeBO3 is a two sublattice easy-plane
antiferromagnetic with the Néel temperature TN¼ 348K [4].
Besides, a canting of the sublattice magnetizations produces
an in-plane weak ferromagnetism. The crystalline and
magnetic structure as well as a strong magnetoelastic
coupling in FeBO3 give rise to a number of interesting
characteristics: magnetic [5-9], optical and magneto-opti-
cal [10 14], acoustic and acoustooptical [15], magneto-
acoustical [16, 17], Mössbauer effect [5, 18], and magnetic
resonance [19, 20].

The physical characteristics of the iron borate system can
be radically modified through diamagnetic dilution, i.e.,
isomorphous substitution of a part of iron with different

diamagnetic ions. This is due to difference in dependence on
iron concentration of mechanisms behind these character-
istics. Besides, diamagnetic dilution is a powerful technique
allowing comprehensive studies of transformation from
paramagnetic to magnetically ordered state. On the other
hand, varying the concentration of diamagnetic ions in the
course of crystal synthesis offers the possibility to fine-tune
their properties and thus create new materials suitable for
various technical applications.

Because of similarity of its ionic radius with that of iron,
gallium seems to be the best candidate for achieving the
diamagnetic dilution. Recently, some of the present authors
have developed a synthesis technique and have prepared
FexGa1 xBO3 single crystals of high quality in the whole
range of x values, 0� x� 1 [21] and have analysed them by
X-ray fluorescence technique [22], energy-dispersive X-ray
spectroscopy, optical absorption, and magnetic circular
dichroism [23, 24].

From the viewpoint of magnetic properties, mixed
gallium-iron borates represent a model system allowing one
to monitor a gradual passage from isolated paramagnetic
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ions through magnetic clusters towards an antiferromagneti-
cally coupled lattice. One of the most powerful techniques
allowing to study this transformation is without doubt
the electron magnetic resonance (EMR). We are using the
EMR term as a generic one to refer to any type of magnetic
resonance involving the electronic system, i.e., electron
paramagnetic resonance (EPR), ferromagnetic resonance,
antiferromagnetic resonance (AFMR), etc. In this paper,
we mainly focus on the EPR, i.e., the EMR of diluted
paramagnetic ions. We present a detailed account of
experimental EPR studies of FexGa1 xBO3 single crystals
with low Fe contents and provide a quantitative description
of the EPR spectra through accurate computer simulations.

2 Experimental details A series of iron-gallium
borate single crystals has been synthesized in Ga2O3

Fe2O3 B2O3 PbO PbF2 system with B2O3, PbO, and PbF2
as solvents. Optimal component ratios in the charge and
temperature modes were determined by differential thermal
analysis [25].

The synthesized FexGa1 xBO3 crystals for various x are
shown in Fig. 1. The crystals have the shape of thin
hexagonal plates making 0.1 0.3mm along the trigonal C3

axis and up to 5mm in the basal plane perpendicular to the
C3 axis (see Ref. [3] for the axes definition).

The crystals were studied by EMR with an X-band
(9.464GHz) spectrometer (Bruker) in the temperature range
from 4 to 290K and static magnetic fields B up to 1 T. The
EPR spectra were computer simulated using laboratory-
developed codes.

3 Results and discussion Depending on the iron
contents and the temperature, several types of EMR have
been observed in FexGa1 xBO3 crystals. Figure 2 shows the
spectra shapes at different x-values. At x¼ 0.003, curve a,
only EPR of diluted Fe3þ ions is present. For crystals with
x¼ 0.04, curve b, the EPR lines are broadened due to dipole
dipole interaction. At x¼ 0.2, curve c, the EPR of diluted
ions disappears and a single broad line of Lorentzian shape
occurs, with the effective g-value about 2.0. This line has

been tentatively ascribed to iron nanoclusters. At still higher
iron contents, curve d, besides the geff¼ 2.0 line a new
resonance emerges at low magnetic fields. Finally, at x¼ 1
only the low-field resonance is observed, see curve e. The
EMR in pure iron borate has been earlier identified as
AFMR [20].

Below we present more detailed results for crystals with
low Fe contents. Figure 3 (top) shows the EPR spectra of
FexGa1 xBO3 with x¼ 0.003 at 4K and different orienta-
tions of the magnetizing field B, described by a polar angle q
with respect to the C3 axis and an azimuthal angle w with
respect to the C2 axis. Because of small crystal sizes, it was
difficult to exactly determine their initial orientations in the
resonant cavity. Therefore, the orientation angles have been
considered as fitting parameters and refined through careful
computer simulations. The accuracy of this procedure is
confirmed by quality of the fittings obtained, cf. in Fig. 3
(bottom).

The spectra intensities at different temperatures closely
follow the 1/T Curie law. No temperature dependence of the
resonance magnetic fields has been found.

In order to determine the EPR parameters, detailed
computer simulations of the spectra recorded at different
orientations of B have been carried out using a laboratory-
developed code based on the conventional spin Hamiltonian
of trigonal symmetry, containing Zeeman and fine-structure
(fs) terms, e.g., see [26, 27]:

H ¼ gbB � Sþ 1
3
DO0

2 �
1
180

a� Fð ÞO0
4

þ 2
p

9
aðO3

4 cos 3a� O 3
4 sin 3aÞ;

ð1Þ
Figure 1 From left to right: FexGa1�xBO3 crystals with x¼ 0,
0.05, 0.20, and 1.0, respectively.

Figure 2 Normalized derivative of absorption EMR spectra for
FexGa1�xBO3 crystals with different x values: 0.003 (a), 0.04 (b),
0.2 (c), 0.8 (d), and 1.0 (e).
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where g is close to the free electron g-factor, ge¼ 2.0023, b
is the Bohr magneton, B is the magnetizing field, S is the
electron spin for Fe3þ ion (S¼ 5/2), D is second-order
axial fs parameter, a and F are, respectively, fourth-order
cubic and axial fs parameters, and O0

2; O
0
4; O

3
4; andO

3
4

are extended Stevens operators as defined in Ref. [28].
Note that in Refs. [26 28] instead of O 3

4 the notations ~O3
4,

O3�
4 , and V3

4 are used, respectively. The� signs in Eq. (1)
refer to two magnetically non-equivalent Fe3þ sites with
local magnetic axes rotated through the angle �a about the
C3 axis, see [26, 27].

First, we have focused on determining the sign of D,
the leading parameter in Eq. (1). This could be achieved by
following the temperature dependences of relative intensities
of different resonance lines identified with transitions

between distinct spin levels. Figure 4 shows computer-
generated spectra corresponding to different temperatures
with a and F parameters set to zero in order to simplify
the analysis. The various resonance lines in Fig. 4 are
identified by the numbers of the spin levels involved in
the corresponding transitions. (This identification is straight-
forward with our simulation code separating contributions
of transitions between each pair of spin levels.) The most
pronounced temperature dependence of the relative intensity
occurs for the line located at 0.5717 T. One can see that as
the temperature decreases, the relative intensity of this line
increases for D> 0 and decreases for D< 0. Figure 5 (top)
shows a zoom of computer-generated spectra with positive
D at two different temperatures. The comparison with the
corresponding experimental spectra, see Fig. 5 (bottom),
allows concluding that the sign of D is positive. (The
splitting in Fig. 5 (bottom), instead of the single line in Fig. 5
(top), is observed because of the presence of two non-
equivalent iron sites.)

After specifying the sign of D, its absolute value as well
as exact values of a and F can be determined by accurate
computer simulations of the experimental EPR spectra at
different orientations of B, e.g., see Fig. 6. As a result, two
different best-fit parameter sets have been obtained, as
quoted in Table 1. The Set I parameters are in a reasonably
good agreement with those obtained by Lukin et al. [26] for
FexGa1 xBO3 with nominal x value x¼ 0.005, studied by
EPR at Q- and V-bands (ca. 36 and 75GHz, respectively).

Figure 3 Top: Experimental EPR spectra of FexGa1�xBO3 crystal
with x¼ 0.003 at 4K for different orientations of B: q ¼ 118,
w¼ 08 (a); q ¼ 378, w¼ 308 (b); q ¼ 668, w¼ 378 (c); q ¼ 968,
w¼ 418 (d); q ¼ 1358, w¼ 488 (e); q ¼ 1648, w¼ 698 (f), and
q ¼ 1698, w¼ 1208 (g). Bottom: relation between the spherical
angles in the course of rotation of the crystal. Circles: spectra
simulation results; full line: best fit curve calculated as
tanq ¼ 0:12=ð0:57 cos w 0:68 sinwÞ.

Figure 4 Computer generated EPR spectra at 4 K with D> 0 (a,
red online) andD< 0 (b, blue online) and at 300K (c, green online).
The parameters a and F are set to zero and the spectra intensities
are multiplied by the absolute temperature. The numbering from 1
to 6 of the spin levels involved is in ascending order for D> 0
and in descending order for D< 0.
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As one can see from Fig. 6, the positions of different
resonance lines are perfectly fitted to. Meanwhile, the
relative amplitudes of certain lines are not satisfactorily
reproduced in the simulations, in spite of the fact that both
the positions and intensities of all resonance lines have been
calculated from eigenvalues and eigenvectors determined
within the same diagonalization procedure of the spin
Hamiltonian matrix. This discrepancy will be discussed in
the following section.

4 Superposition model analysis of the spin
Hamiltonian parameters As far as both spin Hamiltoni-
an parameter sets, see Table 1, result in one and the same

spin Hamiltonian matrix, they can be considered as
equivalent at least, from the mathematical viewpoint.
Meanwhile, they may not necessarily be so from the
physical viewpoint.

In order to elucidate this issue, we have tested the
compatibility of both sets of parameters with the predictions
of the Newman superposition model [29]. This semi-
empirical model is based on a number of simplifying
assumptions, see Ref. [30], in particular, that contributions
from different metal-to-ligand bonds are axially symmetric
and can be treated independently and that the characteristics
of an individual bond are transferable across different
crystals. These assumptions have been shown not to hold in
the case of covalent bonding where changing metal-to-ligand
distances or introducing a vacancy can modify the electronic
density of the whole complex [31, 32]. Meanwhile, in iron-
doped GaBO3 crystal, all ligands are located at the same
distance from Fe3þ ion; besides, no structure defects are
present in the close vicinity of the paramagnetic ion.
Therefore, we can expect the superposition model to provide
a more-or-less adequate first-approximation description of
the FeO6 complex.

For the purpose of applying the superposition model, we
have put forward a simulation code based on the general spin
Hamiltonian for Fe3þ (see e.g., Ref. [28], p. 89):

H ¼ gbB � Sþ
X2
i¼ 2

Bi
2O

i
2 þ

X4
i¼ 4

Bi
4O

i
4; ð2Þ

Figure 5 Zooms of computer generated (top) and experimental
(bottom) EPR spectra for q ¼ 108 and w¼ 88 at 4 (continuous, red
online) and 30 K (dashed, green online). The spectra intensities
have been multiplied by the absolute temperature.

Figure 6 Normalized experimental EPR spectrum of Fex-
Ga1�xBO3 with x¼ 0.003 at 4K (a, red online), the best fit
computer generated spectra for q ¼ 808 and w¼ 398 without
(b, blue online) and with parameter distributions (c, green online).
The simulation parameters for curve c are: b2 ¼ 0:4 cm�1, t2¼ 8,
b4 ¼ 3:1� 10�5 cm�1, t4¼5, b5 ¼ 4:0� 10�6 cm�1, t5¼7, see
Eq. (6) and s ¼ 0:0005Å.
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where Oi
2 andO

i
4 are the extended Stevens operators of

appropriate superscripts. The second-order and fourth-order
fs parameters of the spin Hamiltonians (2) and (1) are related
to each other, respectively, as:

B0
2 ¼

1
3
D ; B2

2 ¼ E ð3Þ

and

B0
4 ¼

1
180

ðF � aÞ; B3
4 ¼

2
p

9
a cos 3a;

B 3
4 ¼ � 2

p

9
a sin 3a:

ð4Þ

In the framework of the Newman model, the Bi
l

parameters are evaluated on the basis of a structural model
of the paramagnetic site, as follows [29, 33]:

Bm
l ¼

Xn
j¼1

blðrjÞKm
l ðqj;wjÞ: ð5Þ

In Eq. (5), j enumerates the nearest neighbours of the
paramagnetic ion (ligands) with spherical coordinates
rj; qj; andwj, blðrjÞ are radial functions and Km

l ðqj; wjÞ are
coordination factors proportional to spherical harmonics
with the corresponding l and m indices. The radial functions
are expressed as power functions of the metal-to-ligand
distances:

blðrjÞ ¼ bl � r0
rj

� �tl

ð6Þ

where the intrinsic parameters bl and power exponents tl are
considered as fitting parameters. In applying Eqs. (5) and (6),
the iron ligand coordinates have been calculated with
structural parameters for both FeBO3 and GaBO3, respec-
tively. Meanwhile, as far as results of determination of bl and
tl in both cases have been very close to each other, we have
chosen to give all these results for ligand coordinates
averaged between the FeBO3 and GaBO3 structures.

For Fe3þ in sixfold coordination, several second-order
intrinsic parameter values are quoted in the literature. For
the reference distance r0¼ 2.101Å (corresponding to the
average Fe O distance in MgO [34]), most often b2 ¼
�0:412 cm 1 is taken, e.g., see Refs. [34, 35]. Meanwhile, a
positive b2 ¼ 0:412 cm 1 value has been assumed by

Acıkgöz et al. [36, 37]. The latter value has been adopted
in the present case, as far as taking b2 < 0 would result in a
negative D value, in disagreement with the experimental
results. Figure 7 shows that for this choice, the agreement
between the experimental and theoreticalD values is attained
with the second-order power exponent t2¼ 8.7, in a good
agreement with the value t2¼ 8 usually quoted for Fe3þ

in oxygen environment, e.g., see [34, 35]. The calculated E
values are close to zero, in accordance with the experimental
results.

As only few references to the fourth-order intrinsic
parameter values could be found in the literature, see
Refs. [35, 38, 39], a large range of values has been
tested for both b4 and t4 parameters. No consistent results
could be obtained with negative b4 values. Figure 8
shows the dependence of a and F on t4 calculated for
b4 ¼ 3:1� 10 5 cm 1. (This value of b4 is in a reasonable
agreement with the value b4 ¼ 2:45� 10 5 cm 1 for Fe3þ

in calcite reported in Ref. [35].) One can see that in the
framework of the Newman model the Set I parameters
cannot be fitted to in the whole range of t4 values tested
(Fig. 8, top). In contrast, for the Set II parameters, consistent
results can be obtained with t4� 5 for a and t4� 8 for F
(Fig. 8, bottom).

Table 1 Spin Hamiltonian parameters for Fe3þ ions in GaBO3. g� 2.0023.

parameter this work Lukin et al. [26]

set I set II

D (cm�1) 0.1032� 0.0005 0.1032� 0.0005 0.0989� 0.0049
a (cm�1) 0.0158� 0.002 0.0158� 0.002 0.0146� 0.002
F (cm�1) 0.0052� 0.002 0.0368� 0.002 0.0052� 0.003
a (8) 24 36 24

Figure 7 D values versus the power exponent t2. The dashed line is
the D value determined from the experimental data, see Table 1.
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Figure 9 shows the dependences of a and F on the
intrinsic parameter b4 for different t4. Once again, the Set II a
and F parameters can be satisfactorily accounted for with
close Newman model parameters; on the other hand, no
agreement can be found for the Set I parameters. One
can conclude that the Set I fourth-order fs parameters
are totally incompatible with the predictions of the
superposition model. In contrast, the Set II parameters can
be quite consistently accounted for by this model. Thus, the
spin Hamiltonian (1) is seen to be ambiguous; therefore,
its use should be avoided. On the other hand, the spin
Hamiltonian (2) has no such drawback.

Finally, we return to the discrepancy in relative line
intensities in experimental and computer-generated spectra,
see Fig. 6. This effect is a manifestation of a certain local
disorder present in the crystals and resulting in statistical
site-to-site distributions of the spin Hamiltonian parameters.
As a consequence, a more or less pronounced broadening

and concomitant amplitude decrease are observed for the
lines with stronger or weaker dependences of their resonance
fields on these parameters.

In order to provide a more quantitative estimate of this
effect, we have assumed that all the ligand coordinates
undergo random site-to-site distributions. As a result, the
spin Hamiltonian parameters will also be distributed.
However, the latter distribution cannot be analysed in the
framework of Eq. (1) because of the fact that in this case the
local symmetry is lowered from the trigonal one. Moreover,
strictly speaking, neither can it be analysed in the framework
of Eq. (2) because the spin Hamiltonian expressed by means
of the extended Stevens operators do not possess sufficient
symmetry [40]. In order to overcome this difficulty, we have
used a generalized spin Hamiltonian expressed by means of
tesseral spherical tensor operators T lBlS

lm ðn;SÞ where n is the
unit vector of the direction of B and lB and lS are powers of B
and of the spin operators, respectively, e.g., see Ref. [40].

Figure 8 Dependences of a (continuous, blue online) and F
(continuous, red online) on the power exponent t4 for Set I (top)
and Set II parameters (bottom). The experimental a and F values,
see Table 1, are shown by the dash dotted (light blue online) and
dashed lines (orange online), respectively.

Figure 9 Dependences of a (top) and F (bottom) on the intrinsic
parameter b4 for different t4 values (4, 8, 12, and 16 from right
to left, respectively) calculated with Set II spin Hamiltonian
parameters. The horizontal lines show the Set II values of a (dash
dotted, light blue online) and F (dashed, orange online).
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The spin Hamiltonian form needed can be adapted from
Eq. (4) in Ref. [41], as follows, cf. [33]:

H ¼ P
l¼2;4

Xl

m¼ l

B0l
lmT lm Sð Þ

þgebB
P

lS¼1;3;5

P
l¼
n

lS 1

lSþ1

Xl

m¼ l

B1lS
lm T 1lS

lm n;Sð Þ:
ð7Þ

Here the first and second terms in the right-hand side are,
respectively, zero-field (lB¼ 0) and linear Zeeman (lB¼ 1)
spin Hamiltonians; lmust be even to preserve time-inversion
invariance. The B0l

lm parameters in (7) are proportional to
the corresponding Stevens parameters Bm

l [40], and the
procedure of calculating the B1lS

lm parameters is described in
detail in the same work.

As far as BlBlS
lm are components of rank l irreducible

tensors [40, 41], they can be consistently expressed within
the superposition model, as follows [33]:

BlBlS
lm ¼

Xn
j¼1

blBlSlm ðrjÞCm
l ðqj;wjÞ: ð8Þ

For simplicity, we assume that the radial functions in the
latter equation depend only on lB and lS and have the radial
dependence described in Eq. (6). The tesseral coordination
factors Cm

l qj;wj

� �
are given in Table A1, see Appendix.

The approach described above has the advantage of
automatically taking into account the symmetry lowering
brought by fluctuations of the ligand coordinates.

We have carried out some simulations of the EPR
spectra using a laboratory-developed computer code, taking
into account distributions of the ligand coordinates supposed
to be Gaussian with standard deviation s¼ 0.0005Å and
calculating the parameters of the spin Hamiltonian (7) by
means of the superposition model. An example of such
simulation is shown in Fig. 6 (curve c). One can see that in
this model the relative intensities of various resonance lines
are much better accounted for. More sophisticated models of
the local disorder are expected to further improve the quality
of fitting to the experimental EPR spectra. In any case,
detailed computer fitting to the experimental EPR spectra
reveals the presence of a certain degree of disorder in the
environment of Fe3þ in gallium borate crystals.

5 Conclusions and prospective Mixed iron-galli-
um borates are exciting materials with unusual properties;
indeed, depending on the composition, they can exhibit
three magnetic phases, viz., paramagnetic, nanoclustered
and long-range ordered (antiferromagnetic). In this work,
we have focused only on the EPR of diluted Fe3þ ions in
GaBO3. Detailed computer simulations carried out with
the conventional spin Hamiltonian have resulted in two
different sets of the fourth-order spin Hamiltonian param-
eters, both yielding the same spin Hamiltonian matrix. This
dichotomy has been resolved through testing the consistency

of both sets against the predictions of the Newman
superposition model; indeed, only one set has proven to
be compatible with the latter. Therefore, the use of the
general spin Hamiltonian instead of the conventional one is
highly recommended. Besides, the use of the general spin
Hamiltonian in detailed simulations of the EPR spectra
has allowed to conclude that some local disorder occurs in
FexGa1 xBO3 single crystals.

At higher x values, the characteristics of the EMR
spectra of FexGa1 xBO3 crystals become very complex,
showing a gradual passage, first, from the EPR of diluted
ions to the EMR of iron clusters and next, to the AFMR. The
EMR studies of the corresponding phase transitions are in
progress and will be published elsewhere.

Acknowledgements The authors are grateful to W.C.
Tennant and D.G. McGavin for communicating some unpublished
results on the relationship between the Stevens and tesseral spin
Hamiltonian parameters and for valuable discussions.
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Appendix

Table A1 Tesseral coordination factors used in Eq. (8); x, y, and z are the corresponding components of n, the unit vector of the direction
of B, see Eq. (7).

l m Clm l m Clm

2 0 6
p

2
ð3z2 1Þ 6 0 231

p

4
ð231z6 315z4 þ 105z2 5Þ

1 3 2
p

zx 1 6 11
p ð33z4 30z2 þ 5Þzx

1 3 2
p

zy 1 6 11
p ð33z4 30z2 þ 5Þzy

2 3

2
p ðx2 y2Þ 2 21 110

p

8
ð33z4 18z2 þ 1Þðx2 y2Þ

2 3 2
p

xy 2 21 110
p

4
ð33z4 18z2 þ 1Þxy

4 0 70
p

4
ð35z4 30z2 þ 3Þ 3 21 110

p

4
ðx2 3y2Þð11z2 3Þzx

1 5 7
p ð7z2 3Þzx 3 21 110

p

4
ð3x2 y2Þð11z2 3Þzy

1 5 7
p ð7z2 3Þzy 4 21 33

p

4
ðx4 6x2y2 þ y4Þð11z2 1Þ

2
5

7
2

r
ð7z2 1Þðx2 y2Þ

4 21 33
p ðx2 y2Þð11z2 1Þxy

2 5 14
p ð7z2 1Þxy 5 231 6

p

4
ðx4 10x2y2 þ 5y4Þzx

3 35ðx2 3y2Þzx 5 231 6
p

4
ð5x4 10x2y2 þ y4Þzy

3 35ð3x2 y2Þzy 6 231 2
p

8
ðx4 14x2y2 þ 5y4Þðx2 y2Þ

4 35 2
p

4
ðx4 6x2y2 þ y4Þ 6 21 110

p

4
ðx2 3y2Þð11z2 3Þzx

4 35 2
p ðx2 y2Þxy
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