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Distributed Control for Alpha-Heterogeneous
Dynamically Coupled Systems

Paolo Massioni
Laboratoire Ampere, UMR CNRS 5005, INSA de Lyon, UniedstLyon, 69621 Villeurbanne CEDEX, France

Abstract

This paper concerns the problem of distributed controilatisesis for a class of heterogeneous distributed systempased of

(2 or more) dfterent kinds of subsystems, interacting with one anothegsrdang to a certain given graph topology. We will show
that by employing Linear Matrix Inequalities (LMIs) toolsamely the full-block S-procedure, we can derive a contyotlsesis
method based oif, gain performance. This synthesis method guaranteesistabid performance of a whole set of possible
interconnection graphs, and its computational complekitgs not depend on the number of subsystems involved bubontiye
number of dfferent kinds of subsystems. Thiextiveness of the new method is verified on a test case.

Keywords: Distributed Control, Heterogeneous Systems.

1. Introduction

The system and control community is devoting significant
efforts on the development of distributed control methods for
large scale systems, as it can be seen from the large number of
works published in the field in the last 40 years [1, 3,4, 6®, 1
14]. By “distributed control”, opposed to “centralized ¢mi”,
we mean a control action that is computed locally according
to the physical spatial extension of the system, which i see
as an interconnection of simpler subsystems. The goal is re-
placing the high-order centralized controller with manygie
(low-order) elementary controllers which only have actess
limited set of measures, for example only to those of the sub-
systems to which they are physically attached and theiraséar
neighbors.

This paper concerns the control of heterogeneous systems
(see for example [9, 13, 15] and references therein), made tMgure 1: A heterogenous system made of the interconnecfi@ubsystems

the interconnection ol subsystems (or agents), according t0of three diferent kinds. The arrows represent dynamic interactionsngrtiee
an interconnection structure described by a graph. We nieke t subsystems.

additional hypothesis of a certain regularity, namely wstriet
to heterogeneous systems that are only made of a limited num-

bera of different subsystem types, as shown in Fig. 1. Forsucrll\I lon the number of subsvstem t main
systems, which we will call &-heterogeneous”, we will con- > %8S 10Ng as theé number of subsystem typesmains

sider the interconnection as an uncertainty (as done fonpla ![lm;;ced. This work |de<'f[1IIy ext;er:]ds [11] azd {12], V\(’jh'cl?hamh
in [17]), and we will use a robust control tool (the full-bloc 0 homogeneous systems (the casero: 1), and althoug

S-procedure [16]) to deal with it in the form of LMIs (Linear xer‘l’(\"f" frocunsticr)]n dlsc:i(::]e-tlr':e systvt\e/m”s, similar reasonints
Matrix Inequalities). The contribution of this article iset fact 0 ,O C,o .uous- } € ones as well. , .
that we show that such LMIs can be reduced to a set whose size This article is organized as follows. Section 2 introdutes t

does not depend on the number of subsystiimkut only on notation and the basic definitions, while Section 3 sumreariz

a. This means that we obtain an analysis and synthesis methdle full-block S-procedure. Section 4 contains the mainltes

whose computational complexity is not depending on the num2" the L gain analysis of-heterogeneous systems, and Sec-

ber of subsystems, and which can virtually be applied even fotion 5 shows how this result can be extended to distributee co
’ troller synthesis for such systems. Section 6 shows theappl
tion of the synthesis methods to an academic example, and the

Email addresspaolo.massioni@insa-lyon.fr (Paolo Massioni) the conclusions are in Section 7.

Preprint submitted to Systems and Control Letters March 26, 2019



2. Preliminaries

2.1. Notation

Let R be the field of real numberg, the group of integer
numbers, an®R™™ the set of reah x m matrices. We denote
the identity matrix of orden by I, (or justl if n can be inferred
from the context). The notatioA > 0 (A < 0) indicates that
all the eigenvalues of the square mathix AT are strictly pos-
itive (negative). Letr(A) denote the maximum singular value
of A.We will also use the symbal to denote entries that can

to typegif 65_1+1 < i < ;. The block diagonal part of the ma-
trices (M, made of the submatrices with the subscrigs)‘rep-
resents the internal dynamics of the subsystems, whiledhe p
depending on the pattern matiXk) (M, made of the subma-
trices with the subscripth”) accounts for the interactions be-
tween subsystems. A sparse pattern matrix indicates ticht ea
subsystem interacts only with a limited set of the others, ies
neighbors. There is no loss of generality in assuming tHat al
the a different types are of the same ordleor have the same
number of inpybutput channels, as one can add empty rows

be inferred from the symmetry of a matrix expression, and theind columns to upgrade lower order systems to the higher one.

symbolx in expressions of the typ' QX to replaceX™ and
avoid repetitions, i.exQX = XTQX. In this article we make

Alpha-heterogeneous systems can be written infizemint
equivalent form; such observation is reported in the forna of

extensive use of the Kronecker product [2], which we dengte bjemma.

the symbolg; we remind one of its main properties, according

to which:
(A® B)(C® D) = (AC) ® (BD) Q)

if the dimensions of the matrices B, C, D are compatible.

2.2. a-Heterogeneous systems
We consider a class of systems which we cadll-“

Lemma 2. The system of equations:

X(k+ 1) = AX(K) + Buw(K) + Buu(k) + Bpp(K)
2(K) = Cox(K) + Daut(K) + Daui(K) + D;pp(K)
Y(k) = Cyx(K) + Dyww(K) + Dypp(K)

A(K) = CqX(K) + Dguw(k) + Dguu(k)

(4)

heterogeneous”. Such systems are the result of the intercowhere all the matrices are block diagonal, and withgpe

nection ofN = " ; N; subsystems of ordérthese subsystems
belong toa different classes, anld; elements are present for
each class, according to the following definition.

Definition 1 (a-heterogeneous systemd)et (k) be an Nx N
matrix, which we call the “pattern matrix”, and which can be
arbitrarily time-varying. We defing; = Zi’:l N; (with 6 = 0)
and li,-a,; s an Nx N diagonal matrix which contairkin the
the diagonal entries of indices from & & (included) and0
elsewhere. Let us consider an NI-th order linear discréteet
dynamical system of equations:

Z(k) = sz(k) + Z)zww(k) + z)zuu(k)
Y(K) = Cyx(K) + Dyuw(K)

{ x(k + 1) = AXK) + Baw(K) + Buu(K)
(2)

where ke Z, x € RN is the state, ue RN™ is the control
input, w e RN s the disturbance, ¥ RN" is the measured

RN™ and
By =24 lgaraa) ® | AY BD, B,
Dip= 2 losr10) ® [ C% D(zl\z\Lb D(z?m
Dyp= 2 ligre1ey O c, DO, 0 ]

C (5)
Cq= Z;Y:ll{ﬁi_frl:@il@[ I 0O ]T

ey T
Daw = Xitg lio1+10) ®[ 0 Im, O ]
Y T
Dqu = 2?:]_'{91_1+l:0i}®|: 0 0 Im, ] ,

andA, Bu, Bu, Cz, Dzw Dy, Cy, Dy defined according to (3),
is equivalent to (2) for

p(k) = (P(K) ® Im,)a(K). (6)

Proof. Replace the expression ptk) in (6) into (4), and then

output and ze RN"™ is the performance output. We call such simplify the resulting expression using the properties af t

a system &-heterogeneous” (for a given) iff it has a state
space realization with matrices of the kind:

M=) (100 ®MO)+ D (g sra PRIOME)  (3)

i=1 i=1

M M

where M represents any of the matrices in (2), &A(k) is the
“pattern matrix”; the matrices M are the diagonal blocks of
M, while the matrices l&f constitute the gdiagonal blocks,
according to the structure #?(k).

The matrices with superscripti){ concern the dynamics of

Kronecker product. O

Remark 3. As all the matrices in (4) are block diagonal, the
interconnections among thefiirent subsystems are only in the
relation (6) between (&) and ng). Notice also that from now

on the symbols & By, BY, BY, ¢, 0, ¢, %, DY), DY),

DY), DY) will denote the diagonal blocks of the matrices in (4)
corresponding to the i-th type of subsystem, which means the
blocks between th@,_; + 1)-th and theg;-th (included). So, for
example, R = AD, BY) = [Ag) B\(Ai,?b BS)b] and so on.

The system realization defined in (4), (5) and (6), with=
I +ry + ry, is not necessarily minimal, in the sense that many

each of thew different kinds of systems. The elements of theof the entries of the signad(k) might be identical to zero; this

state vector in entries from-(i — 1)l toil, with 1 < i < N can
be considered as the state of thi subsystem, which belongs

2

means that the system can be reduced accordingly if any of the
matrices defining the ones in (5) are always null. For example



if By, = 0, D%, = 0andD{),) = 0 foralli, thenDgy = 4. L, gain analysis fora-heterogeneous systems

0 andB,, D, and Dyp, etc. can be redefined accordingly by _
skipping the columns which would be identically zero. Netic 4-1. Main result
that the systgm of Lemma 2 is in thg typical Lmegr Fractional Our main result concerns thé, gain performance analysis
Transformat!on (LFT) form, with the interconnection pate ¢ a-heterogeneous systems.
pattern matrixP(k)) “pulled out” as an uncertainty.
Theorem 5. Consider ane-heterogeneous system in the form
of Lemma 2. The system has #&p gain from w to z smaller
3. The Full Block S-Procedure thanvy if the following LMI set is feasible

In this paper we make use of a result from the so-called full- R>0 12)

block S-procedure. Before showing how we can exploit it, we

briefly summarize the relevadi, gain analysis result here. * (g g} [(_Sllmp } <0, Q<0 (13)
mp
Theorem 4 (Full Block S-Procedure [16])Let us consider an - o o )T o )
uncertain discrete-time system described by the equations YO 0 0 -YOAOT _yOCgT —vOC;
+ -Q 0 —QBY)" 0  -QDY
X(k + 1) = AX(K) + Bpp(K) + Byw(k) % lm, -BYT DR -DO 0
a9 = Cxtl) + Degpl) + D) ) f o YO 0 o |7 a4
Z(K) = C,X(k) + Dzpp(K) + Dzwwi(t) v % x " R 0
where XK) is the state, \(k) the disturbance, (k) the perfor- e * * 7,
mance output, @) and gk) signals for which it holds: fori=1,...,a

where Y) = YOT ¢ R¥ and R= R",Q = Q" € R™™
are the decision variables (and the other matrices have been
defined in Remark 3), antd> a(P(K)), for all valid k € Z.

p(k) = Aq(k) (8)

whereA is an arbitrarily fast time-varying uncertainty which
assumes values in the convex hull generated by #Asétfor
j=0,...,J,withAg = 0. The systems has afp gain from w to
z smaller thany for all the valid uncertainties if the following
LMI set is feasible

Proof. As noted earlier on, it is possible to directly use the full-
block S-procedure (Theorem 4) on the system in the form of
Lemma 2. Let us start analyzing the first of the two sets of
LMIs involved, namely (10). According to (6), we have that

Y>0, R>0, ©) {Aj} = {P(K) ® Im,} U {0}. We then restrict the multipliers to
s | be of the formQ = Iy ® Q, R = Iy ® R (as done in [8]),
* SQT R H AT |<Oforj=0,....3 (10) with Q = Q",R = RT; this step involves conservatism. We
. i also assum& = 0, but this step does not necessarily involve
conservatism, as it will be explained later on at the end ef th
-y 0/ 0 0|0 O[]-A"T -C4' -C,7] proof. At this point, the size of the LMI in (10) is proportiah
oYlo olo o | 0 0 to the number of subsystens We then show that under the
T T T hypothesis of the chosen form of the multiplier, (£3)(10).
* g 8 SQT 2 8 8 E:)p qup [())Zp >0 (11) The case of\, = 0 immediately yieldXQ < 0. For the re-
maining cases ok = P(K) ® Im,, from (10) by working out the
0 00 O|-1 O |-By —Dgw' —Da’ matrix product we get
|0 0|0 0[O0 +2] O 0 I

In® Q+PKPK™ ® R<O0. (15)
whereY = YT,R =RT, S, Q = QT are the decision variables.
We use a singolar value decomposition (SVD) of the matrix
If we look at this last theorem and compare it to @ p(k), for whichP(k) = UK)Z(K)V(K)T, whereX(k) € RNN
heterogeneous system in the form of Lemma 2, then it is aps a diagonal matrix (the matrix of the singular values), and
parent that the full-block S-procedure can be used dirdotly  /(l)2/(K)™ = UK TUK) = VE)VK)T = VK)TVEK) = In.
the £, gain analysis and eventually synthesis. Such direct Usgeplacing the SVD expression #{K) into (15), we get
of the S-procedure would yield LMIs whose size is depending
on the number of subsysterihs as one would need to plug in In® Q+ UKZKPUKT @R <0 (16)
the matrices of (4) into (10) and (11), withj} = {P(K) ® Im,},
according to (6). In the next section, we will show how the ad-which becomes
dition of a few constraints will allow a significant reduatiof
the LMIs’ size. INn® Q+2(k’®R<0 (7)



through a congruent transformation of maté@kk) ® I,,. At of the problem, we can replacgk) with —p(k), i.e. B, with
last, by a Schur complement argument, (17) is equivalentto —By, Dy, With —Dgp, and D, with —D,,. Considering that the
optimal solution to the LMI problem is unique, this meang tha
[ INn®Q Z(K®R } <0 (18)  any result for whicts # —S would lead to a contradiction. So
* -IN®R ' the optimal solution haS = -S = 0.

This last inequality contains only block-diagonal terms, a

2(k) andly are block-diagonal. This implies that (18) is equiv- g L gain synthesis fore-heterogeneous systems
alent to the following set of LMIs

Q & MR From Theorem 5 the step to synthesis results is rather imme-
[ . V_R } <0, (19) diate. We then report the case of state feedback as well as the
more involved output feedback.
where theo, (k), for v = 1,..., N, are the singular values of

P(K). The expression isfine in o, (k), so if the expression 5 1. State feedback
holds for the extreme values of,(k), then it will hold for all

the intermediate values. As we have thatQr,(k) < ¢, this We consider a first feedback law of the kind
means that _ o
oR )
[ (3 s [<0 Q<o (20) u(k) = ;(l(é’i,ﬁl:&i]®K(I))X(k)’ (23)

implies (19) for all possible values of, (k). The equations in

(20) are equivalent to those in (13) by a Schur argument. So favhich coincides with local feedback loops of gaﬁﬁ)_for each
we have proven that (13 (20)= (19) & (18) = (10). system of type. The local closed-loop system matrices become

At last, we remark that the matrices in (11) are all block di- 0 ‘ o _ _
AD = A0 + BYKO, B =B,

agonal with repeat_ed blocks, so (11) is immediately eqai_wal 0 0 Ot ol i (24)
to a set of onlyx different LMIs; these LMIs can be put into Cra =Cz' + DziKY, Dy = Dzw

the form of (14) by developing the product and then applying a

Schur complement. 0 (the others are unchanged); replacing them into the express

(12), (13) and (14) yields immediately the state-feedbgtk s

: . . thesi thod, which ize in the following th .
This analysis result allows finding an upper bound of fae esis methad, which we summarize In the foflowing theorem

gain of the global system, whose order is proportion®®y  Theorem 7. Consider an-heterogeneous system in the form
solving a set of LMIs whose size does not depend\obut 4t | emma 2. There exists a control law as in (23) for which the
only on the number of dierent types of subsystemsand the  gystem has a closed-loof, gain from w to z smaller thay

maximum order and r_1umber of ir_lpuutput chann_el of each of ifthe LMI set in (25) and (26) (at the top of the next page) is
them. Moreover, notice tha®(k) is not present in the LMIs: feasible, where ¥ = YOT ¢ R¥ R=R",Q = QT € R™*M

the geometry of the interconnection boils down to the sole pagnq 1) ¢ R are the decision variables, ant> F(PK),

rameters. Then the upper bound on th& gain will be valid  for g valid k € Z. The controller gains can be obtained from
for all system interconnection topologies whose pattertrima  he relation K = L0yH-1.

P(k) has the singular values boundeddby

Remark 6. In the proof of Theorem 5, we have assumed thaProof. Replace the matrices of (24) into (14), then ket =
the termsS is equal to0. This assumption might look like a K®Y®. 0
source of additional conservatism, but actually it is not,the

case of our result. In fact, Theorem 5 focuses only on the size

of the uncertainty;, in our caseP(k) ® Im,, as itis described 52 output feedback

by the maximum singular value. So it means that if we account

for a given uncertainty\, we will account also for its negative  In the output-feedback case, the controller is of equations
value-A (i.e., if we allow a certainP(k), we allow-P(k) as

well). This means that (10) will yield both: Xe(K) = 201 (o1 OAD) X(K) +
o + 210l 1 ®BO)Y0) @
Q—-SA —-AS +ARA (22) u(k) = 2?:1('{91_1+l:91l®ct(:|))xc(k)+
and o . + 2?:1('iei_1+l:91}®Dg))Y(k)~
Q+SA +AST +ARA . (22)

In this case, to our knowledge, the synthesis cannot bedolve
These two inequalities turn into each other if we repl&ogith by LMIs. It will be necessary to solve Bilinear Matrix Inedua
—S. The same holds for (11), we get the same inequality if wéties (BMIs) instead, as summarized in the following lagdh
replaceS with —S, if we consider that, due to the symmetry rem.
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R>0,

8 g”(_s'lmrs ]<o, Q<0 (25)

Yy o 0 -YOA®OT _ L OT BS)T —Y(i)Cg)T _LOT Dg&T —Y(i)Cg)T _ LT D%T 1
« -Q 0 -QBY" 0 ~QDY)T
* x  m, —B\(,i,)-r —DERVT —D%T <0
s s * YO 0 0 (26)
* * * * R 0
| * * * * * ’yz|rz

fori=1,...,a

Theorem 8. Consider ana-heterogeneous system in the form 3. Minimizey under (30) under the additional constraint of
of Lemma 2. There exists a controller as in (27) for which the Q - Q R=R: storeX = x0 79 .= z0 §Y .= O
system has a closed-loofy gain from w to z smaller than 0 — L0, 30 . RON= EV ._ FO

if the set of BMIs in (29) and (30) (at the top of the next page)
is feasible, where 8 = XOT z0 = zOT HO ¢ RX 10 ¢
R™ 90 ¢ RMxy FO ¢ R*Y and R= R",Q = Q" €
R™*M are the decision variablesy > o (Py), for all valid  If at any time during the algorithm an LMI problem is found to
k € Z. The controller state-space matrices as in (27) can bebe unfeasible, terminate (the desired controller does natte

4, pr = 1 terminate, otherwisp := p + 1/g (incremenp of
1/g) and go to 2.

obtained from the following relations: or it cannot be found).
DY = 0 The working principle of the algorithm is basically to start
¢ gp p g lly
C(i) (L(i) (i)C(i)X(i)) yi-1 by finding the nominal controller (no uncertainty, &r= 0),
B(') V-1 (g6 _ Z(')B(')J(') (28) and then expand gradually the size of the uncertainty until i

0 _ -1 (10 70 (A0 o RO 10OV reqches the de;ired one. The proceq_ure is not g.uarante.ed to
A=V 0 (l.-)| i i) (A(i) Jlr By j) f:y(i))x(i) 0 arrive at a solution but it has been verified to work in pragtic
-VVB'Cy'X )U - VETZUBYC at least in our test case as shown in the following section.

where V), U® are nonsingular matrices for which®U® =
I —ZOX0, 6. Simulation Results

Proof. The BMI in (30) derives from (14) through the ap- In order to show the féectiveness of the method, we test

plication of the standard controller-linearizing transf@tion,  in simulation both the state-feedback and the output-faekib

which can be found in [7] or [5]. 0 synthesis methods. We consider a 2-heterogeneous system

made of two very dterent kinds of subsystems, for which the

This last theorem is less readily applicable than Theorem nternal dynamics is described by the matrices

as itinvolves BMls, for which the convex optimizations sais

are not applicable. One possibility for solving such BMIsds AD = [ 10 ] AD - [ 06 08 ] (32)

iteratively solve a set of LMIs deriving from them where &alte 108 -08 06

natively a part of the decision variables is kept consta6f.[1

The following algorithm is an example of such a strategy. Notice that type 1 contains an integrator, whereas type R is a

undamped oscillator. We do not report the other matricekef t
Algorithm 9. Choose an integer g 0. Setp := 1/g. system due to space constraints. We chddse N, = 5 and
we consider a random time-invariant sparse pattern matrix
kWlth o(P) < 6 = 3, for which the global, uncontrolled systems
is unstable.

1. Find the nominal controller by minimizing under the
constraints in (30) to which the third and the seventh bloc

rows and columns have been removed; sﬁ_ope = X0,

=0) . 0 —0) 0 0 Lo 30 0 =0 ._ o We have computed the distributed con_troller of this article
Z7=20H" =HY, L =10, 07 =0V F = FU and we have compared its performance with a standard central
2. M|n|m|zey under (30) and ized £,-gain optimal controller. The results are in Table 1.
Q 0 I, W_e can see that the state-fe_edback case is very conservative
*l 0 R } [ pSIp } <0, Q<0, R>0 (31) leading to a performance that is roughly three times worae th
Mp the centralized controller. This can be explained also byabt
0 - =) that the distributed state-feedback controller is acpumtiecen-
with the addmonal constraint of (}l X ., Z0 = Z7, tralized controller (it does not use information on the héigrs
HO =HY Lo =T, 30 =39 Fo = storeQ Q, in order to control an element), as it is apparent by looking a
R:=R. (23). The output-feedback controller, which is truly distited,



Q 0 Im,
R>0, % 0 R —(_Slmp <0, Q<0 (29)
XO 1 0 0 XOAOT_LOTRYT HT XOCPT-LOTDYT  XOCHTLOTDYT
£ 20 0 0 AD-CPIVEY"T  AVZO-CPEOT  _COT_GPTI0TD 0" cPmaoD
* + Q0 —QBYT-QDIOTEYT QBYZO-QDFUT - 0 QD -QDjI0TDR
£ %k I, _B\(I:’)T_ D%_TJ(')TBS)T —B\(,:,)TZ(I) _ D%TF(')T —DS%vT— D%‘FJ(I)TDg&T —D§'3VT— DgavTJ(l)TDgl)JT 0
* ok & ok X0 I 0 0 (30)
* k% x * z0 0 0
* % % % * * R -0
L% % *x % * * * ’yzhz
fori=1...a
state output [3] R. D'Andrea and G.E. Dullerud. Distributed control dgsifor spatially
feedback feedback interconnected systemslEEE Trans. Aut. Control 48(9):1478-1495,
ain of distributed controlle September 2003.
£29 - - 2.92 1.06 [4] E.J.Davison and W. Gesing. Sequential stability anéhaigation of large
Lo gain of centralized controller scale decentralized systenfsutomatica 15(3):307-324, 1979.
) ) o [5] M.C.de Oliveira, J.C. Geromel, and J. Bernoussou. An lojgimization
Table 1: Slmglatlon results: performance of the distridutentroller compared approach to multiobjective controller design for discritee systems. In
to the centralized one. Proc. of the 38th Conference on DecisiénControl, Phoenix, Arizona,
USA, December 1999.
[6] J.A. Fax and R.M. Murray. Information flow and cooperatigontrol of

has instead a performance which is only 6% worse than the
centralized counterpart, reassuring us that the consemvas (7]
rather limited.

We have considered a time-invarigin order to be able to
compute and compare the norms; nevertheless, we have veri-

8] C. Hoffmann, A. Eichler, and H. Werner.

fied that the distributed controller works under arbitratiie- (9]

varying pattern matrices satisfyig#(k)) < 3, with the same

disturbance attenuation properties. [10]
(11]

7. Conclusion

We have introduced a new method for controlling a class of12]
distributed (or multi-agent) systems made of the interemAn
tion of different kinds of subsystems. The method is based o 3]
the full-block S-procedure and its interesting aspect ésféct
that its computational complexity does not depend on the siz[14]
of the global system, but only on the number of types of subsys
tems involved. This light computational cost comes at the co (15
of some conservatism, which is apparent in the proof of The-
orem 5, as the multipliers for the S-procedure are congdhin
to a special form. Nevertheless, it has been verified on a sinf2®l
ulation that the performance loss with respect to a ceaedli |17
controller is small, thus not compromising the usabilityttod
result.
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