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Distributed Control for Alpha-Heterogeneous
Dynamically Coupled Systems

Paolo Massioni

Laboratoire Ampère, UMR CNRS 5005, INSA de Lyon, Université de Lyon, 69621 Villeurbanne CEDEX, France

Abstract

This paper concerns the problem of distributed controller synthesis for a class of heterogeneous distributed systems composed ofα
(2 or more) different kinds of subsystems, interacting with one another according to a certain given graph topology. We will show
that by employing Linear Matrix Inequalities (LMIs) tools,namely the full-block S-procedure, we can derive a control synthesis
method based onL2 gain performance. This synthesis method guarantees stability and performance of a whole set of possible
interconnection graphs, and its computational complexitydoes not depend on the number of subsystems involved but onlyon the
number of different kinds of subsystems. The effectiveness of the new method is verified on a test case.

Keywords: Distributed Control, Heterogeneous Systems.

1. Introduction

The system and control community is devoting significant
efforts on the development of distributed control methods for
large scale systems, as it can be seen from the large number of
works published in the field in the last 40 years [1, 3, 4, 6, 9, 10,
14]. By “distributed control”, opposed to “centralized control”,
we mean a control action that is computed locally according
to the physical spatial extension of the system, which is seen
as an interconnection of simpler subsystems. The goal is re-
placing the high-order centralized controller with many simple
(low-order) elementary controllers which only have accessto a
limited set of measures, for example only to those of the sub-
systems to which they are physically attached and their nearest
neighbors.

This paper concerns the control of heterogeneous systems
(see for example [9, 13, 15] and references therein), made by
the interconnection ofN subsystems (or agents), according to
an interconnection structure described by a graph. We make the
additional hypothesis of a certain regularity, namely we restrict
to heterogeneous systems that are only made of a limited num-
berα of different subsystem types, as shown in Fig. 1. For such
systems, which we will call “α-heterogeneous”, we will con-
sider the interconnection as an uncertainty (as done for example
in [17]), and we will use a robust control tool (the full-block
S-procedure [16]) to deal with it in the form of LMIs (Linear
Matrix Inequalities). The contribution of this article is the fact
that we show that such LMIs can be reduced to a set whose size
does not depend on the number of subsystemsN, but only on
α. This means that we obtain an analysis and synthesis method
whose computational complexity is not depending on the num-
ber of subsystems, and which can virtually be applied even for
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Figure 1: A heterogenous system made of the interconnectionof subsystems
of three different kinds. The arrows represent dynamic interactions among the
subsystems.

N → ∞, as long as the number of subsystem typesα remains
limited. This work ideally extends [11] and [12], which applied
to homogeneous systems (the case ofα = 1), and although
we will focus on discrete-time systems, similar reasoningswill
work for continuous-time ones as well.

This article is organized as follows. Section 2 introduces the
notation and the basic definitions, while Section 3 summarizes
the full-block S-procedure. Section 4 contains the main result
on theL2 gain analysis ofα-heterogeneous systems, and Sec-
tion 5 shows how this result can be extended to distributed con-
troller synthesis for such systems. Section 6 shows the applica-
tion of the synthesis methods to an academic example, and then
the conclusions are in Section 7.
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2. Preliminaries

2.1. Notation

Let R be the field of real numbers,Z the group of integer
numbers, andRn×m the set of realn×m matrices. We denote
the identity matrix of ordern by In (or just I if n can be inferred
from the context). The notationA ≻ 0 (A ≺ 0) indicates that
all the eigenvalues of the square matrixA = A⊤ are strictly pos-
itive (negative). Letσ(A) denote the maximum singular value
of A.We will also use the symbol∗ to denote entries that can
be inferred from the symmetry of a matrix expression, and the
symbol⋆ in expressions of the typeXTQX to replaceXT and
avoid repetitions, i.e.⋆QX = XTQX. In this article we make
extensive use of the Kronecker product [2], which we denote by
the symbol⊗; we remind one of its main properties, according
to which:

(A⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (1)

if the dimensions of the matricesA, B, C, D are compatible.

2.2. α-Heterogeneous systems

We consider a class of systems which we call “α-
heterogeneous”. Such systems are the result of the intercon-
nection ofN =

∑α
i=1 Ni subsystems of orderl; these subsystems

belong toα different classes, andNi elements are present for
each class, according to the following definition.

Definition 1 (α-heterogeneous systems). LetP(k) be an N×N
matrix, which we call the “pattern matrix”, and which can be
arbitrarily time-varying. We defineθ j =

∑ j
i=1 Ni (with θ0 = 0)

and I{a1:a2} as an N×N diagonal matrix which contains1 in the
the diagonal entries of indices from a1 to a2 (included) and0
elsewhere. Let us consider an Nl-th order linear discrete-time
dynamical system of equations:






x(k+ 1) = Ax(k) + Bww(k) + Buu(k)
z(k) = Czx(k) +Dzww(k) +Dzuu(k)
y(k) = Cyx(k) +Dyww(k)

(2)

where k ∈ Z, x ∈ R
Nl is the state, u∈ R

Nmu is the control
input, w ∈ R

Nmw is the disturbance, y∈ R
Nry is the measured

output and z∈ R
Nrz is the performance output. We call such

a system “α-heterogeneous” (for a givenα) iff it has a state
space realization with matrices of the kind:

M=

α∑

i=1

(I{θi−1+1:θi }⊗M(i)
a )

︸                   ︷︷                   ︸

M

+

α∑

i=1

(I{θi−1+1:θi }P(k)⊗M(i)
b )

︸                         ︷︷                         ︸

M

(3)

whereM represents any of the matrices in (2), andP(k) is the
“pattern matrix”; the matrices M(i)

a are the diagonal blocks of
M, while the matrices M(i)b constitute the off-diagonal blocks,
according to the structure ofP(k).

The matrices with superscript “(i)” concern the dynamics of
each of theα different kinds of systems. The elements of the
state vector in entries from 1+ (i − 1)l to il , with 1 6 i 6 N can
be considered as the state of thei-th subsystem, which belongs

to typeβ if θβ−1+1 6 i 6 θβ. The block diagonal part of the ma-
trices (M, made of the submatrices with the subscript “a”) rep-
resents the internal dynamics of the subsystems, while the part
depending on the pattern matrixP(k) (M, made of the subma-
trices with the subscript “b”) accounts for the interactions be-
tween subsystems. A sparse pattern matrix indicates that each
subsystem interacts only with a limited set of the others, e.g. its
neighbors. There is no loss of generality in assuming that all
theα different types are of the same orderl, or have the same
number of input/output channels, as one can add empty rows
and columns to upgrade lower order systems to the higher one.

Alpha-heterogeneous systems can be written in a different
equivalent form; such observation is reported in the form ofa
lemma.

Lemma 2. The system of equations:






x(k+ 1) = Ax(k) + Bww(k) + Buu(k) + Bpp(k)
z(k) = Czx(k) +Dzww(k) +Dzuu(k) +Dzpp(k)
y(k) = Cyx(k) +Dyww(k) +Dypp(k)
q(k) = Cqx(k) +Dqww(k) +Dquu(k)

(4)

where all the matrices are block diagonal, and with p, q ∈
R

Nmp, and

Bp =
∑α

i=1 I{θi−1+1:θi } ⊗
[

A(i)
b B(i)

w,b B(i)
u,b

]

Dzp =
∑α

i=1 I{θi−1+1:θi } ⊗
[

C(i)
z,b D(i)

zw,b D(i)
zu,b

]

Dyp =
∑α

i=1 I{θi−1+1:θi } ⊗
[

C(i)
y,b D(i)

yw,b 0
]

Cq =
∑α

i=1 I{θi−1+1:θi } ⊗
[

I l 0 0
]⊤

Dqw =
∑α

i=1 I{θi−1+1:θi } ⊗
[

0 Imw 0
]⊤

Dqu =
∑α

i=1 I{θi−1+1:θi } ⊗
[

0 0 Imu

]⊤
,

(5)

andA,Bw, Bu, Cz,Dzw,Dzu, Cy,Dyw defined according to (3),
is equivalent to (2) for

p(k) = (P(k) ⊗ Imp)q(k). (6)

Proof. Replace the expression ofp(k) in (6) into (4), and then
simplify the resulting expression using the properties of the
Kronecker product.

Remark 3. As all the matrices in (4) are block diagonal, the
interconnections among the different subsystems are only in the
relation (6) between p(k) and q(k). Notice also that from now
on the symbols A(i), B(i)

w , B(i)
u , B(i)

p , C(i)
z , C(i)

y , C(i)
p , D(i)

zw, D(i)
zu, D(i)

zp,
D(i)

yw, D(i)
yp will denote the diagonal blocks of the matrices in (4)

corresponding to the i-th type of subsystem, which means the
blocks between the(θi−1+1)-th and theθi-th (included). So, for
example, A(i) = A(i)

a , B(i)
p =
[

A(i)
b B(i)

w,b B(i)
u,b

]

, and so on.

The system realization defined in (4), (5) and (6), withmp =

l + ry + ru, is not necessarily minimal, in the sense that many
of the entries of the signalp(k) might be identical to zero; this
means that the system can be reduced accordingly if any of the
matrices defining the ones in (5) are always null. For example,
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if B(i)
w,b = 0, D(i)

zw,b = 0 andD(i)
yw,b = 0 for all i, thenDqw =

0 andBp, Dzp andDyp, etc. can be redefined accordingly by
skipping the columns which would be identically zero. Notice
that the system of Lemma 2 is in the typical Linear Fractional
Transformation (LFT) form, with the interconnection part (the
pattern matrixP(k)) “pulled out” as an uncertainty.

3. The Full Block S-Procedure

In this paper we make use of a result from the so-called full-
block S-procedure. Before showing how we can exploit it, we
briefly summarize the relevantL2 gain analysis result here.

Theorem 4 (Full Block S-Procedure [16]). Let us consider an
uncertain discrete-time system described by the equations:






x(k+ 1) = Ax(k) + Bp p(k) + Bww(k)
q(k) = Cqx(k) + Dqpp(k) + Dqww(t)
z(k) = Czx(k) + Dzp p(k) + Dzww(t)

(7)

where x(k) is the state, w(k) the disturbance, z(k) the perfor-
mance output, q(k) and p(k) signals for which it holds:

p(k) = ∆q(k) (8)

where∆ is an arbitrarily fast time-varying uncertainty which
assumes values in the convex hull generated by a set{∆ j} for
j = 0, ..., J, with∆0 = 0. The systems has anL2 gain from w to
z smaller thanγ for all the valid uncertainties if the following
LMI set is feasible

Y≻0, R≻0, (9)

⋆

[

Q S
S⊤ R

] [

I
−∆⊤j

]

≺ 0 for j = 0, . . . , J, (10)

⋆





−Y 0 0 0 0 0

0 Y 0 0 0 0

0 0 Q S 0 0

0 0 S⊤ R 0 0

0 0 0 0 −I 0

0 0 0 0 0 γ2I









−A⊤ −Cq
⊤ −Cz

⊤

I 0 0

−Bp
⊤ −Dqp

⊤ −Dzp
⊤

0 I 0

−Bw
⊤ −Dqw

⊤ −Dzw
⊤

0 0 I





≻0 (11)

whereY = Y⊤, R = R⊤, S, Q = Q⊤ are the decision variables.

If we look at this last theorem and compare it to anα-
heterogeneous system in the form of Lemma 2, then it is ap-
parent that the full-block S-procedure can be used directlyfor
theL2 gain analysis and eventually synthesis. Such direct use
of the S-procedure would yield LMIs whose size is depending
on the number of subsystemsN, as one would need to plug in
the matrices of (4) into (10) and (11), with{∆ j} = {P(k) ⊗ Imp},
according to (6). In the next section, we will show how the ad-
dition of a few constraints will allow a significant reduction of
the LMIs’ size.

4. L2 gain analysis forα-heterogeneous systems

4.1. Main result

Our main result concerns theL2 gain performance analysis
of α-heterogeneous systems.

Theorem 5. Consider anα-heterogeneous system in the form
of Lemma 2. The system has anL2 gain from w to z smaller
thanγ if the following LMI set is feasible

R≻ 0 (12)

⋆

[

Q 0
0 R

] [

Imp

δImp

]

≺ 0, Q ≺ 0 (13)





Y(i) 0 0 −Y(i)A(i)⊤ −Y(i)C(i)⊤
q −Y(i)C(i)⊤

z

∗ −Q 0 −QB(i)⊤
p 0 −QD(i)⊤

zp

∗ ∗ Imw −B(i)⊤
w −D(i)⊤

qw −D(i)⊤
zw

∗ ∗ ∗ Y(i) 0 0

∗ ∗ ∗ ∗ R 0

∗ ∗ ∗ ∗ ∗ γ2Irz





≻0

for i = 1, . . . , α

(14)

where Y(i) = Y(i)⊤ ∈ R
l×l , and R= R⊤,Q = Q⊤ ∈ R

mp×mp

are the decision variables (and the other matrices have been
defined in Remark 3), andδ > σ(P(k)), for all valid k ∈ Z.

Proof. As noted earlier on, it is possible to directly use the full-
block S-procedure (Theorem 4) on the system in the form of
Lemma 2. Let us start analyzing the first of the two sets of
LMIs involved, namely (10). According to (6), we have that
{∆ j} = {P(k) ⊗ Imp} ∪ {0}. We then restrict the multipliers to
be of the formQ = IN ⊗ Q, R = IN ⊗ R (as done in [8]),
with Q = Q⊤,R = R⊤; this step involves conservatism. We
also assumeS = 0, but this step does not necessarily involve
conservatism, as it will be explained later on at the end of the
proof. At this point, the size of the LMI in (10) is proportional
to the number of subsystemsN. We then show that under the
hypothesis of the chosen form of the multiplier, (13)⇒ (10).

The case of∆0 = 0 immediately yieldsQ ≺ 0. For the re-
maining cases of∆ j = P(k)⊗ Imp, from (10) by working out the
matrix product we get

IN ⊗ Q+ P(k)P(k)⊤ ⊗ R≺ 0. (15)

We use a singolar value decomposition (SVD) of the matrix
P(k), for whichP(k) = U(k)Σ(k)V(k)⊤, whereΣ(k) ∈ R

N×N

is a diagonal matrix (the matrix of the singular values), and
U(k)U(k)⊤ = U(k)⊤U(k) = V(k)V(k)⊤ = V(k)⊤V(k) = IN.
Replacing the SVD expression ofP(k) into (15), we get

IN ⊗ Q+U(k)Σ(k)2U(k)⊤ ⊗ R≺ 0 (16)

which becomes

IN ⊗ Q+ Σ(k)2 ⊗ R≺ 0 (17)
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through a congruent transformation of matrixU(k) ⊗ Imp. At
last, by a Schur complement argument, (17) is equivalent to

[

IN ⊗ Q Σ(k) ⊗ R
∗ −IN ⊗ R

]

≺ 0. (18)

This last inequality contains only block-diagonal terms, as
Σ(k) andIN are block-diagonal. This implies that (18) is equiv-
alent to the following set of LMIs

[

Q σν(k)R
∗ −R

]

≺ 0, (19)

where theσν(k), for ν = 1, . . . ,N, are the singular values of
P(k). The expression is affine in σν(k), so if the expression
holds for the extreme values ofσν(k), then it will hold for all
the intermediate values. As we have that 06 σν(k) 6 δ, this
means that [

Q δR
∗ −R

]

≺ 0, Q ≺ 0, (20)

implies (19) for all possible values ofσν(k). The equations in
(20) are equivalent to those in (13) by a Schur argument. So far
we have proven that (13)⇔ (20)⇒ (19)⇔ (18)⇒ (10).

At last, we remark that the matrices in (11) are all block di-
agonal with repeated blocks, so (11) is immediately equivalent
to a set of onlyα different LMIs; these LMIs can be put into
the form of (14) by developing the product and then applying a
Schur complement.

This analysis result allows finding an upper bound of theL2

gain of the global system, whose order is proportional toN, by
solving a set of LMIs whose size does not depend onN but
only on the number of different types of subsystemsα and the
maximum order and number of input/output channel of each of
them. Moreover, notice thatP(k) is not present in the LMIs:
the geometry of the interconnection boils down to the sole pa-
rameterδ. Then the upper bound on theL2 gain will be valid
for all system interconnection topologies whose pattern matrix
P(k) has the singular values bounded byδ.

Remark 6. In the proof of Theorem 5, we have assumed that
the termS is equal to0. This assumption might look like a
source of additional conservatism, but actually it is not, for the
case of our result. In fact, Theorem 5 focuses only on the size
of the uncertainty∆ j , in our caseP(k) ⊗ Imp, as it is described
by the maximum singular value. So it means that if we account
for a given uncertainty∆, we will account also for its negative
value−∆ (i.e., if we allow a certainP(k), we allow−P(k) as
well). This means that (10) will yield both:

Q − S∆
⊤
− ∆S⊤ + ∆R∆

⊤
(21)

and
Q + S∆

⊤
+ ∆S⊤ + ∆R∆

⊤
. (22)

These two inequalities turn into each other if we replaceS with
−S. The same holds for (11), we get the same inequality if we
replaceS with −S, if we consider that, due to the symmetry

of the problem, we can replace p(k) with −p(k), i.e. Bp with
−Bp, Dqp with −Dqp, andDzp with −Dzp. Considering that the
optimal solution to the LMI problem is unique, this means that
any result for whichS , −S would lead to a contradiction. So
the optimal solution hasS = −S = 0.

5. L2 gain synthesis forα-heterogeneous systems

From Theorem 5 the step to synthesis results is rather imme-
diate. We then report the case of state feedback as well as the
more involved output feedback.

5.1. State feedback

We consider a first feedback law of the kind

u(k) =
α∑

i=1

(I{θi−1+1:θi }⊗K(i))x(k), (23)

which coincides with local feedback loops of gainK(i) for each
system of typei. The local closed-loop system matrices become

A(i)
cl = A(i) + B(i)

u K(i), B(i)
w,cl = B(i)

w ,

C(i)
z,cl = C(i)

z + D(i)
zuK(i), D(i)

zw,cl = D(i)
zw,

(24)

(the others are unchanged); replacing them into the expressions
(12), (13) and (14) yields immediately the state-feedback syn-
thesis method, which we summarize in the following theorem.

Theorem 7. Consider anα-heterogeneous system in the form
of Lemma 2. There exists a control law as in (23) for which the
system has a closed-loopL2 gain from w to z smaller thanγ
if the LMI set in (25) and (26) (at the top of the next page) is
feasible, where Y(i) = Y(i)⊤ ∈ R

l×l , R = R⊤,Q = Q⊤ ∈ R
mp×mp

and L(i) ∈ R
mu×l are the decision variables, andδ > σ(P(k)),

for all valid k ∈ Z. The controller gains can be obtained from
the relation K(i) = L(i)Y(i)−1.

Proof. Replace the matrices of (24) into (14), then setL(i) =

K(i)Y(i).

5.2. Output feedback

In the output-feedback case, the controller is of equations






xc(k) =
∑α

i=1(I{θi−1+1:θi }⊗A(i)
c )xc(k)+

+
∑α

i=1(I{θi−1+1:θi }⊗B(i)
c )y(k)

u(k) =
∑α

i=1(I{θi−1+1:θi }⊗C(i)
c )xc(k)+

+
∑α

i=1(I{θi−1+1:θi }⊗D(i)
c )y(k).

(27)

In this case, to our knowledge, the synthesis cannot be solved
by LMIs. It will be necessary to solve Bilinear Matrix Inequal-
ities (BMIs) instead, as summarized in the following last theo-
rem.
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R≻ 0, ⋆

[

Q 0
0 R

] [

Imp

δImp

]

≺ 0, Q ≺ 0, (25)





Y(i) 0 0 −Y(i)A(i)⊤ − L(i)⊤B(i)⊤
u −Y(i)C(i)⊤

q − L(i)⊤D(i)⊤
qu −Y(i)C(i)⊤

z − L(i)⊤D(i)⊤
zu

∗ −Q 0 −QB(i)⊤
p 0 −QD(i)⊤

zp

∗ ∗ Imw −B(i)⊤
w −D(i)⊤

qw −D(i)⊤
zw

∗ ∗ ∗ Y(i) 0 0

∗ ∗ ∗ ∗ R 0

∗ ∗ ∗ ∗ ∗ γ2Irz





≻0

for i = 1, . . . , α

(26)

Theorem 8. Consider anα-heterogeneous system in the form
of Lemma 2. There exists a controller as in (27) for which the
system has a closed-loopL2 gain from w to z smaller thanγ
if the set of BMIs in (29) and (30) (at the top of the next page)
is feasible, where X(i) = X(i)⊤,Z(i) = Z(i)⊤,H(i) ∈ R

l×l , L(i) ∈

R
mu×l , J(i) ∈ R

mu×ry, F(i) ∈ R
l×ry, and R = R⊤,Q = Q⊤ ∈

R
mp×mp are the decision variables,δ > σ(Pk), for all valid

k ∈ Z. The controller state-space matrices as in (27) can be
obtained from the following relations:

D(i)
c = J(i)

C(i)
c =
(

L(i) − J(i)C(i)
y X(i)

)

U (i)−1

B(i)
c = V(i)−1

(

F(i) − Z(i)B(i)
u J(i)
)

A(i)
c = V(i)−1

(

H(i) − Z(i)(A(i) + B(i)
u J(i)C(i)

y )X(i)−

−V(i)B(i)
c C(i)

y X(i)
)

U (i)−1 − V(i)−1Z(i)B(i)
u C(i)

c ,

(28)

where V(i), U(i) are nonsingular matrices for which V(i)U (i) =

I l − Z(i)X(i).

Proof. The BMI in (30) derives from (14) through the ap-
plication of the standard controller-linearizing transformation,
which can be found in [7] or [5].

This last theorem is less readily applicable than Theorem 7
as it involves BMIs, for which the convex optimizations solvers
are not applicable. One possibility for solving such BMIs isto
iteratively solve a set of LMIs deriving from them where alter-
natively a part of the decision variables is kept constant [16].
The following algorithm is an example of such a strategy.

Algorithm 9. Choose an integer g> 0. Setρ := 1/g.

1. Find the nominal controller by minimizingγ under the
constraints in (30) to which the third and the seventh block

rows and columns have been removed; storeX
(i)

:= X(i),
Z

(i)
:= Z(i), H

(i)
:= H(i), L

(i)
:= L(i), J

(i)
:= J(i), F

(i)
:= F(i).

2. Minimizeγ under (30) and

⋆

[

Q 0
0 R

] [

Imp

ρδImp

]

≺ 0, Q ≺ 0, R≻ 0 (31)

with the additional constraint of X(i) = X
(i)

, Z(i) = Z
(i)

,

H(i) = H
(i)

, L(i) = L
(i)

, J(i) = J
(i)

, F(i) = F
(i)

; storeQ := Q,
R := R.

3. Minimizeγ under (30), under the additional constraint of

Q = Q, R= R; storeX
(i)

:= X(i), Z
(i)

:= Z(i), H
(i)

:= H(i),

L
(i)

:= L(i), J
(i)

:= J(i), F
(i)

:= F(i).
4. If ρ = 1 terminate, otherwiseρ := ρ + 1/g (incrementρ of

1/g) and go to 2.

If at any time during the algorithm an LMI problem is found to
be unfeasible, terminate (the desired controller does not exist
or it cannot be found).

The working principle of the algorithm is basically to start
by finding the nominal controller (no uncertainty, orδ = 0),
and then expand gradually the size of the uncertainty until it
reaches the desired one. The procedure is not guaranteed to
arrive at a solution but it has been verified to work in practice,
at least in our test case as shown in the following section.

6. Simulation Results

In order to show the effectiveness of the method, we test
in simulation both the state-feedback and the output-feedback
synthesis methods. We consider a 2-heterogeneous system
made of two very different kinds of subsystems, for which the
internal dynamics is described by the matrices

A(1)
a =

[

1 0
1 0.95

]

, A(2)
a =

[

0.6 0.8
−0.8 0.6

]

. (32)

Notice that type 1 contains an integrator, whereas type 2 is an
undamped oscillator. We do not report the other matrices of the
system due to space constraints. We chooseN1 = N2 = 5 and
we consider a random time-invariant sparse pattern matrixP

with σ(P) 6 δ = 3, for which the global, uncontrolled systems
is unstable.

We have computed the distributed controller of this article
and we have compared its performance with a standard central-
izedL2-gain optimal controller. The results are in Table 1.

We can see that the state-feedback case is very conservative,
leading to a performance that is roughly three times worse than
the centralized controller. This can be explained also by the fact
that the distributed state-feedback controller is actually a decen-
tralized controller (it does not use information on the neighbors
in order to control an element), as it is apparent by looking at
(23). The output-feedback controller, which is truly distributed,
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R≻ 0, ⋆

[

Q 0
0 R

] [

Imp

−δImp

]

≺ 0, Q ≺ 0, (29)





X(i) I l 0 0 −X(i)A(i)⊤−L(i)⊤B(i)⊤
u −H⊤ −X(i)C(i)⊤

q −L(i)⊤D(i)⊤
qu −X(i)C(i)⊤

z −L(i)⊤D(i)⊤
zu

∗ Z(i) 0 0 −A(i)⊤−C(i)⊤
y J(i)⊤B(i)⊤

u −A(i)⊤Z(i)−C(i)⊤
y F(i)⊤ −C(i)⊤

q −C(i)⊤
y J(i)⊤D(i)⊤

qu −C(i)⊤
z −C(i)⊤

y J(i)⊤D(i)⊤
zu

∗ ∗ −Q 0 −QB(i)⊤
p −QD(i)⊤

yp J(i)⊤B(i)⊤
u −QB(i)⊤

p Z(i)−QD(i)⊤
yp F(i)⊤ 0 −QD(i)⊤

zp −QD(i)⊤
yp J(i)⊤D(i)⊤

zu

∗ ∗ ∗ Imw −B(i)⊤
w −D(i)⊤

yw J(i)⊤B(i)⊤
u −B(i)⊤

w Z(i)−D(i)⊤
yw F(i)⊤ −D(i)⊤

qw −D(i)⊤
yw J(i)⊤D(i)⊤

qu −D(i)⊤
zw −D(i)⊤

yw J(i)⊤D(i)⊤
zu

∗ ∗ ∗ ∗ X(i) I l 0 0

∗ ∗ ∗ ∗ ∗ Z(i) 0 0

∗ ∗ ∗ ∗ ∗ ∗ R −0

∗ ∗ ∗ ∗ ∗ ∗ ∗ γ2Irz





≻0
(30)

for i = 1 . . . α

state output
feedback feedback

L2 gain of distributed controller
L2 gain of centralized controller

2.92 1.06

Table 1: Simulation results: performance of the distributed controller compared
to the centralized one.

has instead a performance which is only 6% worse than the
centralized counterpart, reassuring us that the conservatism is
rather limited.

We have considered a time-invariantP in order to be able to
compute and compare the norms; nevertheless, we have veri-
fied that the distributed controller works under arbitrarily time-
varying pattern matrices satisfyingσ(P(k)) 6 3, with the same
disturbance attenuation properties.

7. Conclusion

We have introduced a new method for controlling a class of
distributed (or multi-agent) systems made of the interconnec-
tion of different kinds of subsystems. The method is based on
the full-block S-procedure and its interesting aspect is the fact
that its computational complexity does not depend on the size
of the global system, but only on the number of types of subsys-
tems involved. This light computational cost comes at the cost
of some conservatism, which is apparent in the proof of The-
orem 5, as the multipliers for the S-procedure are constrained
to a special form. Nevertheless, it has been verified on a sim-
ulation that the performance loss with respect to a centralized
controller is small, thus not compromising the usability ofthe
result.
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