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Abstract

Being able to accurately estimate rare event probabilities is a challenging

issue in order to improve the reliability of complex systems. Several power-

ful methods such as importance sampling, importance splitting or extreme

value theory have been proposed in order to reduce the computational cost

and to improve the accuracy of extreme probability estimation. However,

the performance of these methods is highly correlated with the choice of tun-

ing parameters, which are very difficult to determine. In order to highlight

recommended tunings for such methods, an empirical campaign of automatic

tuning on a set of representative test cases is conducted for splitting methods.

This allows to provide a reduced set of tuning parameters that may lead to

the reliable estimation of rare event probability for various problems. The

relevance of the obtained result is assessed on a series of real-world aerospace

problems.
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1. Introduction

Reliability of complex systems can depend on several events whose prob-

abilities of occurrence are very low but however may induce serious con-

sequences (e.g. destruction of the system, injuries, etc.). Being able to

accurately estimate the probability of such rare events is challenging but

mandatory in order to improve the reliability of complex systems. Several

powerful methods, such as importance sampling [1, 2, 3, 4, 5], importance

splitting [6, 7, 8, 9] or extreme value theory [10, 11, 12, 13] have been pro-

posed to estimate such probabilities when the classical Crude Monte Carlo

method (CMC) requires too many system simulations and is not accurate

enough to be applied in this context. However, the performances of these

algorithms are very dependent on some parameters (e.g. number of samples,

kernel stepsizes, intermediary quantiles, etc.) which have to be finely tuned

to ensure the consistency of the results. Indeed, different combinations of

tuning parameters for the same method may lead to scattered performance.

Moreover, intuition may not be sufficient for adjusting simultaneously a sig-

nificant number of these simulation parameters and their automatic tuning

should thus be considered. A possible way to reach this goal is to consider this

problem as the global optimization of a criterion reflecting the performance

of the considered method. In this paper, we perform the optimal determi-

nation of tuning parameters on several representative test cases in order to

propose some recommendations for the tuning of rare event estimator based

on the importance splitting algorithm (also called subset simulation [14]).
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The main existing tools for tuning the simulation parameters are cross-

validation and its variants (k-fold cross-validation, leave-one-out cross-validation,

generalized cross-validation; see [15]). Cross-validation may be used to assess

the performance level for a given value of the simulation parameter vector

and then an optimization procedure may be called upon to find the best tun-

ing for these parameters. In [16, 17], such approaches have been exploited

via a discretization of the simulation parameter space. Bayesian networks

have also been advocated in [18], by considering previous simulation runs

as prior knowledge. Various other techniques have been employed for tun-

ing purpose, such as Monte Carlo simulations [19], neural networks [20] or

evolutionary algorithms [21, 22]. In particular, the use of genetic algorithms

should be mentioned with applications in control design [23] or reliability as-

sessment [24]. Nevertheless, these approaches reveal to be computationally

intensive, since they require a large exploration of the simulation parameter

space. This may be prohibitive when the evaluation of the method perfor-

mance is achieved via costly computer simulations, and even more when the

number of those simulations is severely limited.

We propose instead to rely on a Kriging-based global optimization algo-

rithm, coming from the field of Computer Experiments (see [25]) to provide

optimal simulation parameters at a limited computational cost. For exam-

ple, these tools have been successfully applied to the optimal tuning of fault

detection strategies in [26]. The present paper reports the application of this

strategy to the tuning of methods for the estimation of rare event probabil-

ity, which does not seem to have been addressed in the literature so far. We

focus our paper on the tuning of one of the most used rare event estimation
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technique: the Adaptive importance Splitting Technique (AST).

This paper is organized as follows. In Section 2, we present the Adaptive im-

portance Splitting Technique, and describe its tunings and their impact on

the estimator performances. Section 3 is devoted to the presentation of the

automatic tuning methodology. In Section 4, we describe and perform the

tuning campaign, using our proposed methodology on several representative

test cases in order to propose tuning recommendations. Finally, we apply in

Section 5 the recommended tunings on two real-world test cases relative to

the launch vehicle fall-back safety zone estimation and missile safety.

2. Extreme probability estimation using the Adaptive importance

Splitting Technique

2.1. Rare event probability estimation

Let us consider a d-dimensional random variable X with a probability

density function (PDF) f0 and estimate the probability that P (φ(X) > S)

with φ, a continuous “input-output” scalar function φ : Rd → R and S a

threshold. The function φ simply represents the input-output system in a

considered application domain. We assume in this article that φ(X) is a

random variable. A simple way to estimate this probability is to consider

Monte Carlo methods [27, 28, 29, 30, 31]. For that purpose, one generates

independent and identically distributed samples X1, ..., XN from the PDF f0

and then estimates the probability with

P MC = 1
N

N∑
i=1

1φ(Xi)>S (1)

where 1φ(Xi)>S is equal to 1 if φ(Xi) > S and 0 otherwise. The relative

deviation of the Monte Carlo estimator P MC is given by the ratio σ
P MC

P MC with
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σP MC , the standard deviation of P MC . Knowing the true probability P that

(φ(X) > S), one has
σP MC

P MC
= 1√

N

√
P − P 2

P
(2)

Considering rare event probability estimation, that is when P takes low val-

ues, one has

lim
P→0

σP MC

P MC
= lim

P→0

1√
NP

= +∞ (3)

The relative deviation of Monte Carlo estimation is very high and thus, one

can conclude that Monte Carlo methods are not well suited to rare event

probability estimation. Different alternatives to Monte Carlo failure can be

considered such as importance sampling [1, 2, 3, 4, 5], importance splitting [6,

7, 8, 9] or extreme value theory [10, 11, 12, 13].

2.2. Adaptive importance Splitting Technique

In this article, we focus on Adaptive importance Splitting Technique

(AST). This algorithm, which is also known as Subset Simulation [32, 33],

has been successfully applied into numerous probability estimation problems

(e.g. [6, 7, 34]). The splitting algorithm used in this article is completely

described in [35]. In the present article, we just recall the different notations

and the principle of this algorithm. For more details, one can consult [35].

2.2.1. Principle

Considering the set A = {x ∈ R
d|φ(x) > S}, the objective of this method

is to determine the probability in this set A since one has P (X ∈ A) =

P (φ(X) > S). The principle of AST is to iteratively estimate supersets of A

and then to estimate P (X ∈ A) with conditional probabilities.
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Let us define A0 = R
d ⊃ A1 ⊃ · · · ⊃ An−1 ⊃ An = A, a decreasing

sequence of R
d subsets with smallest element A = An. The probability

P (X ∈ A) can be then rewritten in the following way :

P (X ∈ A) =
n∏

k=1
P (X ∈ Ak|X ∈ Ak−1)

where P (X ∈ Ak|X ∈ Ak−1) is the probability that X ∈ Ak knowing that

X ∈ Ak−1.

2.2.2. Defining the Ak sequence

The subset Ak sequence is easily evaluated. Indeed, it can be defined by

Ak = {x ∈ R
d|(φ(x) > Sk)} for k = 0, ..., n with S = Sn > Sn−1 > ... >

Sk > ... > S0. Determining the sequence Ak is equivalent to choose some

values for Sk, with k = 0, ..., n. Let us define fk, the density of X restricted

to the set Ak and X
(k)
1 , ..., X

(k)
N , N samples generated from the density fk.

The values of Sk for k = 0, ..., n can be determined in an adaptive manner

using β quantiles of φ(X(k)
1 ), ..., φ(X(k)

N ).

The number n of subsets depends on the value of β and the sought proba-

bility is then estimated with P = βn−1 ∗ P (X ∈ A|X ∈ An−1). To efficiently

define the Ak sequence adaptively, the quantile parameter β and the sample

size N have to be adjusted depending on the number of samples that are

available in the simulation.

2.2.3. Generating samples from the density fk

Unfortunately, generating directly independent samples from the fk con-

ditional densities is in most cases impossible as they are usually unknown [8,

36]. Nevertheless, AST provides an iterative way to do it, yet in a dependent
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fashion using a f0-reversible Markovian kernel K(X, ·). With such a kernel

and Xk ∼ fk, one can distribute random variable Ξk according to fk with

the following proposal/refusal method:

Ξk = Ξk(Xk) =

⎧⎪⎨⎪⎩
K(Xk, ·) if K(Xk, ·) ∈ Ak

Xk otherwise

The generated set does unfortunately not contain independent variables iden-

tically distributed according to fk. However, under mild conditions, it can be

shown [36] that applying the proposal/refusal method several times may de-

crease the variance. Let us consequently define the variable Napp, the number

of kernel applications to generate independent samples following the density

fk. The most general and arduous way to determine such kernel is to solve

a reversibility equation or using a Metropolis-Hastings algorithm to simulate

it [36]. Nevertheless, there are some results for multivariate Gaussian PDF.

Actually, if X is a centered multivariate Gaussian

X ∼ N (0d, Id) and K(X, ·) ∼ X + αN (0d, Id)√
1 + α2

(4)

is a valuable reversible Markovian kernel [8, 36]. For that purpose, in the

following of this article, one will assume that the input random variable X

has a Gaussian PDF. In this case, one just has to choose an appropriate value

for α, which is still rather difficult.

2.2.4. Implementation

Let us summarize from the previous sections the different steps of AST

to estimate P (φ(X) > S) = P (X ∈ A) for a given simulation budget Nmax.

1) Set k = 0, j = 0, the used simulation bugdet Nused = 0 and define the

value of N , β, α and Napp.
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2) Generate N samples X
(0)
1 , ..., X

(0)
N from f0(X) and then the correspond-

ing samples φ(X(0)
1 ), ..., φ(X(0)

N ). The parameter Nused is updated with

Nused = Nused + N .

3) Estimate the β-quantile q(0) of φ(X(0)
1 ), ..., φ(X(0)

N ).

4) While q(k) < S and Nused < Nmax, do:

a) Replace {X
(k)
i | φ(X(k)

i ) < q(k)} simulations with points uniformly

selected with replacement within {X
(k)
i | φ(X(k)

i ) > q(k)} and call

the sample set Z0
1 , ..., Z0

N

b) for j = 1 to Napp, estimate the set Zj
1 , ..., Zj

N with

Zj =

⎧⎪⎨⎪⎩
Zj−1+αN (0d,Id)√

1+α2 if φ(Zj−1+αN (0d,Id)√
1+α2 ) > q(k)

Zj−1 otherwise

c) set X
(k+1)
l = Z

Napp

l ∀l = 1, ..., N and estimate the β-quantile q(k+1)

of φ(X(k+1)
1 ), ..., φ(X(k+1)

N )

d) Set k = k + 1 and update Nused = Nused + N × Napp

5) Estimate the probability with

P AST = (1 − β)k × 1
Nmax − Nused

Nmax−Nused∑
i=1

1
φ(X(k)

i )>S

If the simulation budget is reached before q(k) < S, we consider that the AST

fails to estimate the probability.

2.3. Impact of the choice of simulation parameters on the estimator efficiency

The previous section has described the principle of AST. One can remark

that several simulation parameters have to be tuned by the user in order to

get a valuable estimation:
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• the number of samples N . The quantile q is indeed better estimated

when the number of samples N at each iteration is high, but a too high

value of N reduces the number of intermediary steps and consequently

cancels the adaptability advantage of AST.

• the quantile β. If the value of β is low, the convergence of AST may

not be reached with the given simulation budget. On the contrary, if

β is too high, the quantiles q(k) can be tough to estimate for a given

sample size N .

• the kernel stepsize α. If too much kernel transitions are accepted, the

simulation parameter α is probably too high and vice versa.

• the number of kernel applications Napp. If Napp is too low, the sam-

ples are dependent and the splitting estimation can be biased. On

the contrary, a large value of Napp is not very efficient. New samples

are generated and consume the overall simulation budget even if the

samples are already independent and thus do not really improve the

probability estimation.

The trade-off between these different simulation parameters is very difficult

to find. This choice is not obvious even in some very simple cases, as shown

in the following subsection.

2.3.1. Illustration on a toy case

The toy case deals with the estimation of the probability P (φ(X) > S)

where φ is the identity function and the threshold S is equal to 4 (Figure 1).

The initial distribution is the unidimensional normal distribution with zero
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mean and unit standard deviation N (0, 1). In order to point out the impact

of the tuning choice on the estimator behavior, we have tested 100 tuning

combinations determined using Latin Hypercube Sampling (LHS) [37]. The

variation domains of the tunings are given in Table 1.

Parameter Variation domain

N [500,50000]

Napp [1,20]

β [0.1,0.95]

α [0.1,1]

Table 1: Variation domains of the tuning parameters

5 4 3 2 1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f 0(x
)

Normal distribution pdf and threshold

3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1
x 10 3

x

f 0(x
)

Normal distribution pdf and threshold
S=4 S=4

Figure 1: Normal distribution pdf and selected threshold

For each combination of tunings, we perform 100 estimations of P (φ(X) >

S) using AST and we compute the relative standard deviation with respect to

the theoretical value of the desired probability using Equation 5 (performance
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index). The available simulation budget Nmax is equal to 500 000.

s(P AST ) =

√√√√ 1
m−1

(
m∑

i=1

(
P AST

i (φ(X) > S) − Ptheory(φ(X) > S)
)2

)
Ptheory(φ(X) > S)

(5)

where m stands for the number of estimations (m = 100 in the proposed

case), P AST
i is the ith estimation of the rare event probability using the AST

estimator and Ptheory is the theoretical value of the probability (Ptheory(φ(X) >

4) = 3.17.10−5). The obtained results for this toy case are given in Table 2.

Success rate 11%

Average probability (success) 3.18.10−5

Average s (success) 31%

Table 2: Result synthesis of the toy case without adapted tunings

The success rate, standing for the percentage of cases for which AST

estimator succeeds to estimate the probability, is only 11%. One considers

that the estimator succeeds to estimate a probability when the condition

q(k) ≥ S is verified until the total simulation budget is reached. This rate

is very weak given the fact that the toy case is very simple compared to real

industrial cases (i.e. unimodal transfer function, not too rare probability to

estimate, sizeable simulation budget), that confirms the need for a precise

tuning policy in order to ensure the consistency of the results found by the

AST estimator. When the AST achieves the estimation, the results show

that the estimator allows to find a relatively good value of the considered

rare event probability but with a high relative performance index s. The
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performance index of 31% for this example is prior to the optimization of the

simulation parameters.

3. Optimal determination of the probability estimator simulation

parameters

3.1. Problem formulation

Consider the numerical simulation of a representative test case on which a

method (e.g. a rare event probability estimator) to be tuned is applied. This

so-called “black-box” function, corresponding to the rare event estimator

applied to the input-output function φ, should return a scalar performance

index s, as a function of a given choice of vector of simulation parameters h.

These parameters are only assumed to belong to a known bounded set H.

The tuning problem could then be formalized as the search for the optimal

simulation parameters such that

ĥ = argmin
h∈H

s(h). (6)

This is a difficult problem, since the only available information is the perfor-

mance value at sampled locations of h. The proposed tuning methodology

uses a Kriging model to approximate the unknown mapping from the sim-

ulation parameter space H to the performance criterion s(·). The so-called

Efficient Global Optimization (EGO) algorithm (see [38]) is then employed

to explore areas of the simulation parameter space that might lead to better

performance and finally find an optimal tuning.

In the case of rare-event probability estimation, the input-output function

φ is composed of the complex industrial code, and the parameters to be tuned
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are those of the probability estimation strategy (see Table 1). The index s

that measures the performance of the estimation is defined in Equation (5).

3.2. Kriging-based optimization

Consider that a small number, n, of possible simulation parameter tunings

have already been experimented, resulting in the set Hn = {h1, ..., hn}. The
corresponding performance indices are gathered in the n-dimensional vector

sn = [s(h1), ..., s(hn)]T. Basing on this initial knowledge, Kriging [39] makes

it possible to build a surrogate approximation of the black-box function,

by modeling it as a Gaussian process S(·) with mean function m (·) and

covariance function cov (·, ·) [40]. For any input h,

S(h) = m(h) + ζ(h), (7)

where the mean function m(·) is a classical known regression model (e.g.,

polynomial in h) and ζ(·) is a zero-mean Gaussian process with covariance

function cov(·, ·). The idea behind the Kriging surrogate model is to consider

that the interpolation with the mean model m(·) suffers errors at each point of

the input space H, and that these errors in two distinct points are correlated

according to cov(·, ·). Since the actual covariance function is unknown in

practice, it is usually modeled as

cov (ζ (hi) , ζ (hj)) = σ2
ζR (hi, hj) , (8)

where σ2
ζ is the process variance and R (·, ·) is a parametric correlation func-

tion. The widely-used correlation function adopted in this work is the power

exponential correlation function,

R (hi, hj) = exp
(

−
dim h∑
k=1

∣∣∣∣∣hi(k) − hj(k)
θk

∣∣∣∣∣
pk

)
(9)
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where the parameters 0 < pk ≤ 2 reflect the regularity of the underlying

Gaussian process, while the θk are scale factors. Other correlation functions

may also be appropriate [41].

The Kriging predictor [42] is given at any h ∈ H, by

Ŝ(h) = m (h) + r (h)T R−1 (sn − mn) , (10)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R|ij = R (hi, hj)

r (h) = [R (h, h1) , . . . , R (h, hn)]T

mn = [m (h1) , . . . , m (hn)]T

. (11)

The complexity of this surrogate model is very small, since it is linear in the

available data sn. Another very interesting property is the ability to compute

the variance of the prediction error, which could be seen as a confidence level

of the prediction (10), as

σ̂2 = σ2
ζ

(
1 − r(h)TR−1r(h)

)
. (12)

This statistical property provides an additional information, since the

variance will be small near already sampled input values and much higher

when the black-box function is not well known. This has contributed to the

development of Kriging-based optimization algorithms that achieve a trade-

off between local search (near the best known optimum) and global search

(locations where the uncertainty on the surrogate is strong) [43]. One of

these strategies is the Efficient Global Optimization (EGO) procedure [38],

which proceeds as follows.

1. Sample n input vectors h to compute Hn and sn.
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2. Fit a Kriging model on Hn and sn via (10) and (11).

3. Find sn
min = min

i=1,...,n
{s(hi)}.

4. Find ĥn+1 = argmax
h∈H

EI(h, sn
min, Ŝ, σ̂).

5. Append ĥn+1 to Hn and s
(
ĥn+1

)
to sn.

6. If n > nmax, return sn
min as an optimal solution.

Else, go to Step 2 with n ← n + 1.

The working principle of this iterative algorithm is to replace the initial in-

tractable optimization problem (6) by the repeated optimization of a much

lighter function called the Expected Improvement (EI at Step 4), whose

closed-form expression is

EI(h, sn
min, Ŝ, σ̂) =

(
sn

min − Ŝ(h)
)
Ψ

(
sn

min − Ŝ(h)
σ̂(h)

)

+ σ̂(h)ψ
(

sn
min − Ŝ(h)

σ̂(h)

)
, (13)

in which ψ and Ψ are respectively the probability density and cumulative

distribution functions of the normal distribution. This function is compu-

tationally light, since it only involves the Kriging linear prediction (10) and

variance (12). It could thus be optimized at each step via an auxiliary al-

gorithm to be chosen. When the criterion to be optimized depends on both

continuous and discrete variables, the search for the maximum expected im-

provement should be performed in a mixed-integer programming context.

For problems involving only continuous variables, the DIRECT optimization

algorithm [44] is used to find the point of maximum improvement. For mixed-

integer problems, a combination between DIRECT and a classical recursive

branch-and-bound strategy is used to deal with the combinatorial optimiza-

tion problem (each branch consists then in solving a continuous optimization
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problem with DIRECT). This approach can be used for problems involving

few discrete variables, as is the case here. For problems with more discrete

variables, a similar strategy can still be adopted by replacing the simple

branch-and-bound approach by a more elaborate integer programming tech-

nique.

Thanks to the guidance of this sampling criterion, several candidate op-

tima points are explored iteratively, which provides in the end a set of ap-

propriate simulation parameter vectors for the application considered. The

stopping condition of EGO is nmax, which is the budget alloted for the black-

box evaluations (it could also be expressed in terms of computation time).

Note that other stopping criteria could also be considered, such as a thresh-

old on the successive maximum values of EI obtained at Step 4 [45].

An illustration of the potential of EGO for the minimization of complex

black-box functions is displayed in Figure 2 for a one-dimensional test case

with multiple local optima. The initial sampling is composed of 8 points

that have been randomly chosen, leading to an adverse situation where many

local optima of the actual function have not been sampled. Although, after

a few iterations of EGO, the global optimum is spotted and most of the local

optima have also been explored. The Kriging interpolation also improves the

sequential acquisition of these new samples.

4. Application of the proposed strategy

In this section, we apply the proposed tuning optimization strategy on a

benchmark of representative test cases in order to propose recommendations
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(a) Iteration 1 (b) Iteration 3

(c) Iteration 8 (d) Iteration 10

Figure 2: Optimization of a multimodal function by EGO

for the tuning of AST.

4.1. Selection of a transfer function benchmark

In order to be representative of industrial complex system simulations, we

have built a benchmark of transfer functions with several test cases, involving

different problem dimensions and complexity levels. The transfer functions

φ taken into account in the proposed benchmark are the following:

• Case 1 : Identity function in dimension 1 (toy case)
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• Case 2 : Ackley-like function in dimension 2

• Case 3 : Massively multimodal Ackley-like function in dimension 4

• Case 4 : Rayleigh function in dimension 15

We have chosen the identity function as the toy case in order to test the

optimization strategy in the same case as the one presented in the second

section. The test cases #2 and #3 involve modified Ackley functions in order

to progressively increase the dimension of the input space and the complexity

(number of modes and non linearities) of the transfer function. Finally, in

the test case #4, we have chosen the Rayleigh function in order to be repre-

sentative of high-dimensional systems. The considered initial distribution is

a normal distribution with zero mean and unit standard deviation for all the

test cases. Moreover, the simulation budget has been set to 500000 points.

4.1.1. Toy case : unidimensional identity function

This case is the same as the one presented in Section 2 (Figure 1). It con-

sists in determining the probability that the normal law exceeds a threshold

which has been taken at 4. This case is very simple and has been adressed

using AST in [35].

S1 = 4 (14)

X ∼ N (01, I1) (15)

φ1 :

∣∣∣∣∣∣∣
R → R

x → x
(16)
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4.1.2. Case 2 : Ackley transfer function in dimension 2

The transfer function used in this test case is a modified Ackley-like func-

tion. The expression of the transfer function is given in Equation (19). In

this equation, xi stands for the ith component of x. φ2 is represented in Figure

3. This function presents numerous modes but only one is above the selected

threshold (S2 = 10). The estimated theoretical probability, obtained by 108

CMC simulations is equal to 7.2.10−6.

S2 = 10 (17)

X ∼ N (02, I2) (18)

φ2 :

∣∣∣∣∣∣∣∣∣∣
R
2 → R

x → Γ − 1
χ

⎛⎝−δ exp

⎛⎝−γ
√√√√1
ε

2∑
i=1

(xi − κ)2
⎞⎠ − η exp

(
1
ε

2∑
i=1

cos (2π(xi − κ))

)
+ ω

⎞⎠(19)

Figure 3: Ackley transfer function #2
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4.1.3. Case 3 : massively multimodal Ackley transfer function in dimension

4
The transfer function used in this test case is a modified Ackley-like func-

tion. The expression of the transfer function used in the previous test case
has been modified to be massively multimodal (Equation 22). The com-
plexity of the transfer function is increased by the presence of several zones
which are above the selected threshold (Figure 4). Moreover, the dimension
of the input data has been doubled with respect to the test case #2. The
estimated theoretical probability, obtained by 108 CMC simulations is equal
to 3.2.10−5.

S3 = 9 (20)

X ∼ N (04, I4) (21)

φ3 :

∣∣∣∣∣∣∣∣∣∣
R
4 → R

x → Γ − 1
χ

⎛⎝−δ exp

⎛⎝−γ
√√√√1
ε

2∑
i=1

(x2i − κ2)2
⎞⎠ − η exp

(
1
ε

2∑
i=1

cos (2π(xi − κ))

)
+ ω

⎞⎠(22)

4.1.4. Case 4 : Rayleigh transfer function in dimension 15

In order to generate the Rayleigh law, we use as the input a normal law

and as the transfer function the Euclidean norm (Figure 5). The dimension of

input data has been greatly increased with respect to the previous test cases.

The estimated theoretical probability, obtained by 108 CMC simulations is

equal to 1.1.10−6.

S4 = 7.5 (23)

X ∼ N (015, I15) (24)

φ4 :

∣∣∣∣∣∣∣
R

15 → R

x → ‖x‖
(25)
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Figure 4: Representation of Ackley transfer function #3 in dimension 2

Figure 5: Rayleigh transfer function
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Even if the expression of the transfer functions are analytical, AST con-

siders them as input-output functions.

4.2. Optimal tuning determination

In this section, we present the results obtained with the proposed opti-

mization strategy. Each optimization has taken between two and four hours

using MATLAB, 2.4Ghz DualCore Pentium/Windows XP. For each of the

four performed optimizations, we consider that the tuning combinations that

lead to a performance index of the AST estimator (Equation 5) lower than

10% are valuable and we keep them for determining the relevant tuning sets

(Table 3). This is made possible since EGO allows the exploration of sev-

eral good candidates. These different sets are represented in Figure 6. The

intersection of these sets is not empty and is used to define the tuning rec-

ommendations (Table 4).

Test function/Parameter N Napp α β

Gauss [3000,15000] [1,4] [0.3,0.89] [0.41,0.89]

Ackley #1 [3300,13500] [2,5] [0.35,0.85] [0.60,0.85]

Ackley #2 [2000,16300] [3,10] [0.15,0.45] [0.28,0.92]

Rayleigh [3500,11000] [1,6] [0.3,0.65] [0.42,0.95]

Table 3: Tuning intervals leading to a performance index lower than 10%

Parameter N Napp α β

Recommendations [3500,11000] [3,4] [0.35,0.45] [0.60,0.85]

Table 4: Tuning recommendations
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These recommendations are relatively consistent with respect to the do-

main literature. Indeed, in [9, 46], the authors indicate that an intermediary

quantile level β between 0.75 and 0.8 and a Markov kernel stepsize α around

0.3 are, from their experience, valuable parameters. However, in this paper,

since the estimation has been performed with a restricted simulation budget,

the proposed recommendation for the number of Markov kernel applications

reveals to be lower than in [9].

Figure 6: Result synthesis : each rectangle corresponds to valuable tuning parameter

domain for a given test case

4.3. Verification of the tuning recommendations on the benchmark

In order to check the consistency of the tuning recommendations on the

benchmark, we have tested 40 combinations of tunings in the proposed tuning

set, using a Latin Hypercube Sampling (Figure 7). The results obtained for

the different test cases are summarized in Table 5. These results confirm the
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relevance of the proposed recommendations because the sampled simulation

parameter combinations in the recommended tuning set lead to a minimum

success rate of the AST estimator equal to 95% and an average performance

index which is always lower than 11%.

Figure 7: Latin Hypercube Sampling on valuable tunings

Test case Success rate Average s (success)

#1 100% 7.29%

#2 95% 9.9%

#3 95% 10.7%

#4 95% 7.5%

Table 5: Verification on the benchmark
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5. Experimentation on complex system cases

5.1. Spatial launch vehicle fall-back safety zone estimation

Spatial launch vehicle fall-back safety zone estimation is a very impor-

tant problem in spatial application since the consequence of a mistake can

be dramatic for the populations. We consider in this article a solid rocket

booster that is the first stage of a launch vehicle. Its weight is about 35, 000

kilograms and the launch point is at 112 kilometer height with a slope of

15 degrees. At the end of its mission, the rocket booster falls into the sea

at some distance of a predicted position. Similar models have already been

analyzed in [47].

The launch vehicle stage fall-back is thus modeled as an input-output func-

tion φ with 12 Gaussian inputs X and one output Y = φ(X), representing the

distance between the estimated launch stage fall-back position and the pre-

dicted one. In this study case, we aim at estimating the probability that the

distance to the predicted impact position exceeds 0.75km P (φ(X) > 0.75).

For this test-case, the estimated theoretical probability is equal to 6.72.10−6.

Figure 8 shows a sample histogram of CMC simulations and the correspond-

ing positions of impacts. Several inputs of X can then influence its impact

position:

• launch vehicle measurement unit uncertainty in position and speed (4

inputs). These parameters describe the performances of the launch

vehicle accelerometers and gyros.

• meteorological conditions (2 inputs). The wind variations during the

fall-back can influence the impact position.
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• launch vehicle design and weight (5 inputs). The weight and the size of

the different parts of the launch vehicle are also slightly random during

the fall-back.

• the slope angle between the vertical axis and the velocity vector (1

input).
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(a) Sample histogram of 108 CMC simulations
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(b) Impact positions of 104 CMC simu-

lations

Figure 8: CMC simulations of the considered system

5.2. Missile safety

Safety consideration takes a more and more important place in the de-

sign and the evaluation of a missile. It is indeed necessary to characterize

the risk that a missile does not reach its target in the evaluation of missile

performances. In the second application case of this article, one considers an

air launched missile. It is a supersonic stand-off missile powered by a liquid-

fuel ramjet. It flies at Mach 2 to Mach 3, with a range between 80 km and
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300 km depending on flight profile. More details on this computer code and

its different inputs are given in the reference [34]. This missile case is highly

multidimensional and is modeled with a continuous black-box computer code

φ with 51 independent Gaussian inputs X and one output Y = φ(X) where

Y is the distance between the missile and its target. Figure 9 shows a sam-

ple histogram of CMC simulations. The estimated theoretical probability for

this test case is 2.13.10−5. The different inputs of this black-box simulation

code are the following :

• launch aircraft inertial measurement unit in position and speed (10

inputs),

• missile inertial measurement unit in position and speed (10 inputs),

• meteorological conditions (4 inputs),

• ramjet combustion process (8 inputs),

• missile design and weight (6 inputs),

• internal hydraulic cylinders efficiency (6 inputs),

• aerodynamic and flight mechanics parameters (7 inputs).

5.3. Application of the proposed tuning policy

In order to test our proposed tuning policy on these real-world aerospace

problems, we have applied the same 40 combinations of tunings using a Latin

Hypercube Sampling taken from the recommended tuning set (Figure 10).

In these two test-cases, the tuning parameters have not been optimized and
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Figure 9: Missile safety sample histogram of 105 CMC simulations

have been simply selected according to the tuning recommendations (Table

4). The success rate of these real-world tests are respectively 92.5% and 75%,

with corresponding average performances indices of 11.6% and 19%. In order

to estimate the influence of the tunings on these problems, we have performed

another test of 40 tuning combinations but sampled in a larger tuning set

including the recommended one (Figure 10). As summarized in Table 6, the

results show that for these examples, the performance of the AST estimator is

greatly lessen when the tunings are chosen outside the recommended tuning

set. In that way, in this two test-cases, taking into account the tuning rec-

ommendations allows to improve by a factor 1.5 the performances of the rare

event probability estimator. We can note that the accuracy and the success

rate of the spatial launch vehicle fall-back safety zone probability estimation

are better than these of the missile-target distance probability estimation.

This can be explained on the one hand by the very high non linearity of the

missile safety computer code in comparison with the spacecraft fallback code.

On the other hand, the dimensions of the input space involved in the two test
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cases are different and vary by a factor 5 between the two cases. Therefore,

the performance of the importance splitting algorithm is logically relatively

worse in the missile safety case than in the spacecraft fall-back zone case.

Success rate Average s (success)

Spacecraft LHS with the recommendations 92.5% 11.6%

fall-back zone LHS without the recommendations 67.5% 23.3%

Missile LHS with the recommendations 75% 19%

safety LHS without the recommendations 47% 33%

Table 6: Obtained results for the two aerospace test cases

Figure 10: Latin Hypercube Sampling inside and outside the recommendation set

6. Conclusion

In this paper, we have proposed several recommendations for the tuning

of the Adaptive Splitting Technique. To this end, a methodology for the

determination of the optimal simulation parameters has been proposed and
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applied to several test cases representative of complex system simulations.

From the valuable tuning combinations obtained for these test cases, some

recommendations have been proposed and verified in a series of real aerospace

problems. The relevance of these tuning recommendations on other realistic

study cases remains to be assessed. The proposed recommendations are the

result of numerical global optimizations of the AST parameters. A theoretical

verification of the proposed recommendations would be very interesting and

will be tackled in future works. Moreover, it would also be interesting to ap-

ply the proposed tuning methodology to other rare event probability estima-

tors such as Importance Sampling. For non Gaussian cases, using Metropolis

Hastings algorithm or density transformations (Rosenblatt, Nataf, etc.) are

interesting ways of AST improvements but still require further development

to be used in industrial context.
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