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The law of the wall and the log law rule the near wall mean velocity profile of three dimensional
turbulent flows. These well known laws, which are validated by legions of experiments and simulations,
may be universal. Here, using a soap film channel, we report the first experimental test of these laws in
quasi two dimensional turbulent channel flows under two disparate turbulent spectra. We find that despite
the differences with three dimensional flows, the laws prevail, albeit with notable distinctions: the two
parameters of the log law are markedly distinct from their three dimensional counterpart; further, one
parameter (the von Kármán constant) is independent of the spectrum whereas the other (the offset of the
log law) depends on the spectrum. Our results suggest that the classical theory of scaling in wall bounded
turbulence is incomplete wherein a key missing element is the link with the turbulent spectrum.

PACS number: 47.27.nd

Turbulent flows over walls are ubiquitous, whether in
natural settings (e.g., rivers, atmospheric boundary layers)
or in industrial ones (e.g., channels, pipes) [1,2]. The wall
shear stress—which sets the cost of pumping liquid in a pipe,
for example—slows the mean flow near the wall, bringing
the flow at the wall to zero velocity (the no-slip boundary
condition). For three-dimensional wall-bounded turbulent
flows, Prandtl, in 1925, postulated the dominant role of
wall shear stress and fluid viscosity to derive the law of the
wall for the scaling of the mean velocity profile (MVP) near
the wall [2]. The near-wall spatial domain, where the law of
the wall reigns, can be divided into three layers. Starting
from zero velocity at the wall, the mean velocity linearly
increaseswith distance from thewall in the viscous sublayer,
then flexes in the buffer layer to blend into a logarithmic
variation with further distance from the wall in the log layer.
This logarithmic variation, the log law, was derived by
von Kármán in 1930 and is widely considered to be a
cardinal result in the study of 3D turbulent flows.
Mathematically, the law of the wall for the MVP, hUðyÞi

[where UðyÞ is the streamwise velocity at a distance y from
the wall, and hi denotes averaging over time] is typically
cast in terms of the so-called wall variables, Uþ ¼
ðhUðyÞiÞ=ð τw=ρ

p Þ and yþ ¼ y=ðν ρ=τw
p Þ, where τw is

thewall shear stress, and ρ and ν, respectively, are the density
and the kinematic viscosity of the fluid. This law reads:
Uþ ¼ fðyþÞ, where the functional form of f remains
unspecified. In the viscous sublayer, Uþ ¼ yþ. In the log
layer, the log law reads:Uþ ¼ ð1=κÞ lnðyþÞ þ B, where κ is
known as the von Kármán constant and B as the offset of
the log law. At high Reynolds numbers (Re), the log region
spans most of the spatial domain of the law of the wall, and,
as Prandtl demonstrated, for a given Re the log law can be

used to predict the wall shear stress [2]. To that end, precise
measurements of the two parameters, κ and B, are crucial
in estimating the wall shear stress. A multitude of studies
have shown that at high Re these parameters are indepen-
dent of Re, and that among different types of flows,
variation in κ is within 10% and variation in B (for flows
over smooth walls) within 25% [2–4]. A recent reanalysis
demonstrates that the variation in these parameters among
different flow types is even smaller [5]. These observations
indicate that the log law may be a universal feature of
3D wall-bounded turbulent flows [6].
The classical derivation of the law of the wall and the log

law is predicated on dimensional analysis and similarity
arguments [2]. As such, these laws are independent of the
dimension of the flow and the attendant turbulent spectrum.
If there be a dependence on the dimension or the spectrum,
this result would be outside the purview of the classical
theory, thereby rendering the classical theory incomplete.
While 3D flows allow only one turbulent spectrum (the
energy cascade), 2D turbulent flows allow two disparate
turbulent spectra (the enstrophy cascade and the inverse
energy cascade) [8–10]. Thus, considering 2D flows
permits testing the dependence of the MVP scaling laws
on both the dimensionality and the turbulent spectrum. In
contrast to 3D, there is no experimental study of the MVP
in 2D or quasi-2D wall-bounded turbulent flows. Further,
only a few theoretical and numerical studies [11,12] have
addressed this problem. Here we experimentally study the
near-wall MVP of quasi-2D turbulent channel flows, which
we realize using a soap-film channel.
In a standard soap-film channel, the soap film, supported

between two smooth nylon wires, flows down vertically
due to gravity [13–17]. The flow is rendered turbulent by



inserting a comb across the width of the channel and normal
to the plane of the film. The turbulent flow thus produced
exhibits features expected for decaying 2D turbulence [9],
notably an enstrophy cascade, typically spanning a range
of length scales between 0.1 and 1 cm. The properties of
such flows have been the subject of numerous studies, and
modifications have been proposed to obtain not only an
enstrophy cascade but also a coexisting inverse energy
cascade at large scales and (forward) enstrophy cascade at
small scales [13–18].

Recently, we introduced yet another way to generate
turbulence in a soap-film channel, wherein, as illustrated in

Fig. 1(a), we replace the nylon wires with one rough wall
and one smooth wall [13,19]. We adopt two configurations:
we insert at the channel entrance, normal to the plane of
the film, either a rod or a comb. Along with the forcing
due to the rough wall, the former configuration renders the
flow turbulent under an inverse energy cascade [Fig. 1(b)],
while the latter under an enstrophy cascade [Fig. 1(c)],
where both cascades typically span a range of length scales
between 0.1 and 1 cm. In previous work [13,20] this
empirical finding allowed us to carry out quantitative tests
of the frictional drag in quasi-2D turbulent channels for the
different turbulent spectra. Here we use this channel to

FIG. 1 (color online). Soap film channel. (a) Schematic of the channel. Soap water (2% dish detergent in water) from the upper
reservoir feeds the soap film that is supported between a smooth wall and a rough wall. (The walls are steel blades.) After draining at the
bottom, the pump P brings the soap water from the lower reservoir to the upper one, thereby establishing steady flow in the channel. The
injection of turbulence is controlled in two ways. (b) Experimental setup with a rod at the channel entrance. The resultant energy spectra
EðkÞ corresponds to the inverse energy cascade (where the spectral exponent is −5=3). The spectral exponent is the same for both the
longitudinal (black) and transverse (gray) components of EðkÞ, and the same across the width of the channel (see dotted and solid lines).
We compute the spectra from velocity fluctuations measured using a LDV probe sampling at about 5 kHz acquisition rate and use
Taylor’s hypothesis to transform from frequency space to wave number space (see Methods section in Ref. [20]). In the adjacent
photograph we show interference fringes (in white light) close to the rough wall; a large eddy shed from rod interacts with the rough
wall. (c) Experimental setup with a comb at the channel entrance. The resultant energy spectra EðkÞ corresponds to the enstrophy
cascade (where the spectral exponent is −3). In measuring and plotting EðkÞ, we adopt the same convention as described in (b). In the
adjacent photograph we show interference fringes (in white light) close to the rough wall; eddies of different scales are shed from
the comb.
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measure the MVP in quasi-2D turbulent flows with differ-
ent turbulent spectra.
Using laser Doppler velocimetry (LDV), we measure a

time series of the instantaneous streamwise velocity UðyÞ
at different locations y from the smooth wall. At each
location, averagingUðyÞ over time yields the MVP, hUðyÞi.
The Reynolds number of the flow is defined using the mean
velocity in the channel U [the average value of hUðyÞi
over y] as Re ¼ ðUWÞ=ν, where W is the channel width.
By varying U (through changing the inlet flow flux or the
streamwise position) and by varying W, Re in our experi-
ments spans the range 6000 to 90 000.
In Fig. 2 we show representative MVPs corresponding

to the two turbulent spectra. In both MVPs we note

features that are reminiscent of their counterparts in 3D
wall-bounded turbulent flows. A linear region—the
viscous sublayer—prevails near the wall, giving a
well-defined shear rate; thus, the wall shear stress is
τw ¼ ρνðdhUðyÞiÞ=ðdyÞjy¼0. (In previous work [13,20],
we measured τw using this approach.) Farther away the
profile flexes in the buffer layer to blend into a logarithmic
variation in the log layer (see inset of Fig. 2).
To test the validity of the law of the wall and the log law,

we gather MVPs for different Re and recast them in wall
coordinates, Uþ versus yþ. In Fig. 3 we plot the MVPs for
both turbulent spectra in semilog coordinates. For each
spectra, the MVPs corresponding to different Re collapse
onto a universal curve in the near-wall region, thus
validating the law of the wall, Uþ ¼ fðyþÞ. (Farther away
the MVPs for different Re peel away from the universal
curve, entering the domain where the law of the wall no
longer holds.) Examining this universal curve, we note that
in the viscous sublayer, Uþ ¼ yþ, in the buffer layer the
curve flexes toward the logarithmic region, and in the log
layer (which in semilog coordinates manifests as a straight
line), Uþ ¼ ð1=κÞ lnðyþÞ þ B, thus validating the log law
[21]. At first glance our results appear to suggest an
intriguing prospect: that the law of the wall and the log
law are not only universal features of 3D wall-bounded
turbulent flows, but also of quasi-2D wall-bounded turbu-
lent flows. There are, however, two telling details—the
parameters of the log law—to which we turn next.
First, consider the von Kármán constant κ. To compute κ

we take each MVP (such as the ones shown in Fig. 3) and
replot as yþðdUþÞ=ðdyþÞ versu yþ, wherein we look for a
plateau, which, the log law tells us, corresponds to 1=κ. For
each spectra we plot the κ thus obtained versus Re in Fig. 4.
For flows with an inverse energy cascade, we find that, for
the whole span of Re, κ is approximately constant, with a

FIG. 2 (color online). Representative MVPs for both turbulent
spectra. The MVPs are measured using LDV. The MVP is linear
near the wall (see black lines). The inset (semilog coordinates)
shows a zoomed view of the log layer (the logarithmic variation is
marked by black lines).

FIG. 3 (color online). MVPs as Uþ versus yþ in semilog coordinates for both turbulent spectra (left, inverse energy cascade; right,
enstrophy cascade) and for a range of Re. The solid black lines correspond to the viscous sublayerUþ ¼ yþ. The solid gray lines, which
correspond to the log law, are the best fit to the log layer with κ as 0.14 for the inverse energy cascade and 0.13 for the enstrophy cascade
(see Fig. 4). The gray dashed line in the enstrophy cascade profiles is a fit to the low Re profile with a value of κ ¼ 0.09. The intercept of
these lines at yþ ¼ 1 (see arrow) yields an estimate of the value of B, which is ≈20 for the inverse energy cascade and ≈7 for the
enstrophy cascade. Tests of power law behavior are shown in the insets (log log coordinates), where the line next to the wall corresponds
to the viscous sublayer and the line farther away is the power law region.
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mean value of ≈0.14. For flows with an enstrophy cascade,
we find that at large Re, κ is approximately constant, with a
mean value of ≈0.13, and that at lower Re (Re≲ 20 000), κ
assumes smaller values [22]. Within experimental uncer-
tainty we conclude that at high Re κ in quasi-2D flows is
independent of the turbulent spectra. This value of κ is
markedly different from that in 3D flows, where, to our
knowledge, such small values of κ have not been observed
[23]—the reported values hover around 0.4 with a
dispersion of roughly 10% [2–4].

Next, consider the offset of the log law, B. Limited by
experimental scatter, we estimate B from the MVPs shown
in Fig. 3—using our above-mentioned estimate of κ, we
compute a best fit line for the log law, whose intercept at
yþ ¼ 1 corresponds to the value of B (see the arrows in
Fig. 3). (For the best fit we use all MVPs for the inverse
energy cascade and MVPs at large Re for the enstrophy
cascade where κ is independent of Re.) In contrast to κ, B
depends on the turbulent spectra: for flows with an inverse
energy cascade, B ≈ 20; for flows with an enstrophy
cascade, B ≈ 7. Interestingly, this latter value is close to
3D channel flows where B ≈ 5 [2].
As an aside, we note that theoretical work by Barenblatt

and co-workers [26] has disputed the existence of a log law
for 3D flows and proposed a power law scaling instead,
where the exponent of the power law depends on Re. (This
proposal also violates the law of the wall.) To test for a
possible power-law MVP, we plot our data in log-log
coordinates in the insets of Fig. 3. For intermediate
distances from the wall, insofar as a power-law exponent
can be discerned, this exponent is ≈0.17 for the inverse
energy cascade and ≈0.2 for the enstrophy cascade except
for lower Rewhere the exponent seems to be higher (≈ 0.3).
One proposal for the expected power-law exponents in the
inverse energy cascade and the enstrophy cascade, respec-
tively, are 1=7 and 1=3 [12]. This prediction is difficult to
verify from our results.

In our considerations thus far we have treated soap-film
channels as quasi-2D counterparts of 3D channels. This
approach neglects two factors: the frictional drag between
the falling film and surrounding air, and the Marangoni
stresses due to soap molecules [27–29]. How these factors
affect the near-wall MVPs in soap-film channels remains an
open question.
In summary, using quasi-2D turbulent flows in soap-film

channels we have verified that—the differences with 3D
wall-bounded flows in dimensionality, turbulent spectra,
and additional forcing notwithstanding—the near-wall
MVP comprises a viscous sublayer, buffer layer, and log
layer, and obeys the law of the wall and the log law. The
parameters of the log law manifest notable features: the
von Kármán constant κ is independent of the turbulent
spectra and is about one-third of its 3D counterpart; the
offset of the log law B depends on the turbulent spectra and
for the enstrophy cascade is close to its 3D counterpart. Our
results, which render the classical approach incomplete,
await theoretical elucidation.
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