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A New Regjection Sampling M ethod for
Truncated Multivariate Gaussian Random
Variables Restricted to Convex Sets

Hassan Maatouk and Xavier Bay

Abstract Statistical researchers have shown increasing interegtnerating trun-
cated multivariate normal distributions. In this paper, ovdy assume that the ac-
ceptance region is convex and we focus on rejection samplilegpropose a new
algorithm that outperforms crude rejection method for tineugation of truncated
multivariate Gaussian random variables. The proposedittigois based on a gen-
eralization of Von Neumann'’s rejection technique whichuiegs the determination
of the mode of the truncated multivariate density functie. provide a theoretical
upper bound for the ratio of the target probability dengitiydtion over the proposal
probability density function. The simulation results shthat the method is espe-
cially efficient when the probability of the multivariatemmeal distribution of being
inside the acceptance region is low.

1 Introduction

The need for simulation of truncated multivariate normatritbutions appears in
many fields, like Bayesian inference for truncated paramsgace 11] and [12],
Gaussian processes for computer experiments subjectdqaality constraintsg],

[9] and [L0] and regression models with linear constraints (see &3j.gnd [27]).

In general, we have two types of methods. The first ones asgllmasMarkov chain
Monte Carlo (McMC) simulation4], [18] and [24], as the Gibbs sampling], [13],
[15], [17], [19], [23] and [25]. They provide samples from an approximate distri-
bution which converges asymptotically to the true one. Téwrd ones are exact
simulation methods based on rejection sampling (Von Neumji26]) and its exten-
sions, [], [16] and [18]. In this paper, we focus on the second type of methods.
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Recently, researchers in statistics have used an adagjaation technique with
Gibbs sampling13], [14], [20], [21] and [23]. Let us mention that in one dimension
rejection sampling with a high acceptance rate has beernapmaby Robert23],
and Geweke I3. In [23] Robert developed simulation algorithms for one-sided
and two-sided truncated normal distributions. Its refttlgorithm is based on the
uniform distribution. The multidimensional case where #teeptance region is a
convex subset dkY is based on the same algorithm using the Gibbs sampling to re-
duce the simulation problem to a sequence of one-dimerisonalations. In this
case, the method requires the determination of slices ofdhgex acceptance re-
gion. Also, Geweke13] proposed an exponential rejection sampling to simulate a
truncated normal variable. The multidimensional casedided by using the Gibbs
algorithm. In one-dimension, ChopiB][designed an algorithm that is computation-
ally faster than alternative algorithms. A multidimensibnejection sampling to
simulate a truncated Gaussian vector outside arbitrapselds has been developed
by Ellis and Maitra 8]. For higher dimensions, Philippe and Rob&2][developed
a simulation method of a Gaussian distribution restriotgubisitive quadrants. Also,
Botts [1] improves an accept-reject algorithm to simulate positiudtivariate nor-
mal distributions.

In this article, we develop a new rejection technique to $ateua truncated mul-
tivariate normal distribution restricted to any convexsettnfRY. The method only
requires the determination of the mode of the probabilitysity function (pdf) re-
stricted to the acceptance region. We provide a theoretfgatr bound for the ratio
of the target probability density function over the progdgsabability density func-
tion.

The article is organized as follows. In Section 2, we red¢sdl itejection method.
Then, we present our new method, caltefbction sampling from the modBSM)
and we give the main theoretical results and the associ@dedtam. In Section 3,
we compare RSM with existing rejection algorithms.

2 Multivariate Normal Distribution

2.1 The General Rejection Method

Let f be a probability density function (pdf) defined BA. Von Neumann26] pro-
posed the rejection method, using the notion of dominatewsdy function. Sup-
pose that is another density function close fosuch that for some finite constant
¢ > 1, called rejection constant,

f(x) <cgx), xeR% (1)

The acceptance/rejection method is an algorithm for géingreandom samples
from f by drawing from the proposal pdfand the uniform distribution.
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Theorem 1 (Rejection Sampling Algorithm, Von Neumann [26]). Suppose that
f and g are two pdfs such that) < cg(x) for all x in the support of f. Then the
random variable X resulting from the following algorithmdsstributed according
to f.

1. Generate X with density g.
2. Generate U uniformly of®, 1]. If cg(X)U < f(X), accept X; otherwise, go back
to step 1.

Furthermore it can be shown that the acceptance rate is gqliat. In practice
it is crucial to get a smalt.

Notice that the rejection sampling algorithm is immediatettended to pseudo-
density functions (i.e. positive function with finite inted), avoiding the computa-
tion of normalizing constant.

Corollary 1. Let ¢ be a subset dk? and f and§ be two pseudo-density functions
on ¢ such thatf (x) < k§(x). Then the algorithm in Lemmais still valid if the
inequality condition cgX)U < f(X) is replaced by

kg)U < F(X). (2)

(t)dt
ndt”

The rejection constant is¢ kf*f?
3

Proof. We havef (x) < k§(x), and so

f(x) §(x)
f(x) = = <c— =cg(x), 3
)= T flodt = °7, aodr — @
with ¢ = k}igg;% The conditiorcg(X)U < f(X) is equivalent tkg(X)U < f(X).
¢
O

2.2 Regection Sampling from the Mode

Suppose thaX has multivariate normal distribution with probability dsty func-
tion:

_ 1 1 Ts-1 d
whereu = E[X] andZ is the covariance matrix, assumed to be invertible.
We consider a convex subsgt of RY representing the acceptance region. We

assume thati does not belongs t@’, which is a hard case for crude rejection sam-
pling. Furthermore, as explained in Remdrksee below) the proposed method is
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not different from crude rejection samplingiife €. Without loss of generality, let
i = 0. Our aim is to simulate the multivariate normal distributK restricted to the
convex sets’. The idea is twofold. Firstly, we determine the mqafecorrespond-
ing to the maximum of the probability density functidrrestricted to#’. It is the
solution of the following convex optimization problem:

S ]
*=argmin=x' X7 X. 5
H gminz (5)

Secondly, leg be the pdf obtained fronfi by shifting the center tq*:

1 1
gx|u*,2) = WGXP<§(XH*)TZ_1(X IJ*)) : (6)

Then we prove in the next two theorems thatan be used as a proposal pdf for
rejection sampling of#’, and we derive the optimal constant.

Theorem 2. Let f andg be the pseudo-density functions defined as
F(X) = f(x|0,2)lxes and §(x) = g(X| U*, 2)lxew ,

where f and g are defined id)and ). Then there exists k such thfa(tx) <kg(x)
for all x in ¥ and the smallest value of k is:

* 1 * — *
€ —exp(~5(u7) 7z ) ™)
Proof. Let us start with the one-dimensional case. Without lossenfegality, we

suppose that’ = [u*, +o[, wherep™ is positive and> = o?. In this case, the con-
dition f(x) < kg is written

A _(X*IJ*)2
VX > U*, e 202 <ke 202 | (8)
and so .
)2 ot @2 —min iy )2
K*=e202 maxe oZ =e22 e ®H 7 =g 2072, (9)

X>

.. . 1/, \Ts—1,,* Ts—1,,* .
In the multidimensional case, we hakée = m?/xe?(“ ) ZTHTXIETE  Since
XEE

U € ¢, we only need to show that
YXe @, x I ut > (ur) =t (10)

The angle between the gradient vecior* u* of the function%xTZ*lx at the mode
u* and the vectofx — u*) is acute for allx in & since%’ is convex (see Figurg).
Therefore(x— pu*) " =~1u* is non-negative for akin . O

By now, we can write algorithrih as follows:

Theorem 3 (RSM Algorithm). Let f and§ be the pseudo-density functions defined
as
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Fig. 1 Scalar product between the gradient vecforu* of the function 3x" =~x at u* and
(x— u*). The blue lines are the level curves of the functior x>~ 1x.

f(x)=f(x]0,2)Ixer and §(x) =g(X| K", Z)lyew,

where f and g are defined bg)( (5) and ). Then the random vector X resulting
from the following algorithm is distributed accorded to

1. Generate X with pseudo-dendity
2. Generate U uniformly of0,1]. If U < exp((p*) "= 1p* —X"=-1u*), accept
X; otherwise go back to step 1.

Proof. We applied Corollaryl with the optimal constank* of Theorem2. The
inequality condition 2) is equivalent to

U< e%(u*ﬁz*u*e—%xTz*xe%(X—u*>TZ*l<X—u*>7 (11)

which is equivalent to
U< exp((p*)Tz—lp* - XTZ_lu*) . (12)
m

Remark 1In practice, we use a crude rejection method to simutatéith pseudo-
densityg’in the RSM algorithm. So if1 € ¥, RSM degenerates to crude rejection
sampling sinceu* = p and f = g. Therefore, the method RSM can be seen as a
generalization of rejection sampling.
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Remark 20ur method requires only the maximum likelihood of the pditrieted

to the acceptance region. It is the mode of the truncatedvatritite normal distri-
bution. The numerical calculation of it is a standard probie the minimization of
positive quadratic forms subject to linear constraints,eg. P].

3 Performance Comparisons

To investigate the performance of the RSM algorithm, we iciarsa zero-mean
bivariate Gaussian random vectowith covariance matrix, equal to<245 2'25) .

Assume that the convex séte R? is defined by the inequality constraints:
—10<x <0 and x3 >—15 5x;—x+15<0. (13)

It is the acceptance region used in Figu2esd3. By minimizing a quadratic form
subject to linear constraints, we find the mode

u* =arg min%xTZ’lxz (—3.4,-2.0), (14)

XEC

and then we compare crude rejection sampling to RSM.

x[2]

2]

-10

-5 1o B 0 5 .

y1l '
Fig. 3 Rejection sampling from the mode
using 2000 simulations. The acceptance rate
is 21%.

Fig. 2 Crude rejection sampling using 2000
simulations. The acceptance rate is 3%.

In Figure2, we use crude rejection sampling in 2000 simulations of €0, ).
Given the number of points i (red points), it is clear that the algorithm is not effi-
cient. The reason is that the mean of the bivariate normaifaision is outside the
acceptance region. In FiguBs we first simulate from the shifted distribution cen-
tered at the mode with same covariance malrifstep one of the RSM algorithm).
Now in the second step of the RSM algorithm, we have two typesints (red and
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black ones) in the convex s&t. The black points are i but do not respect the in-
equality constraintX2). The red points are i#”, and respectl2). We observe that
RSM outperforms crude rejection sampling, with acceptaate of 21% against
3%.

Tablel Comparison between crude rejection sampling and RSM wteeprtibability to be inside
the acceptance region becomes low. The acceptance regios-igu—, +oo|.

U~ Average of acceptance rate with Average of acceptance iittie V@ain

crude rejection sampling (%) RSM (%)

0.5 30.8 34.9 11

1 15.8 26.2 1.6
15 6.7 20.5 3.0

2 2.2 16.8 7.4
2.5 0.6 14.2 23.1

3 0.1 12.2 92.0
35 0.0 10.6 455.6

4 0.0 9.3 2936.7
4.5 0.0 8.4 14166.0

The performance of the method appears when the probalalibetinside the
acceptance region is low. In Table we consider the one dimensional cake 1
and we only change the position pf . From the last column, we observe that our
algorithm outperforms crude rejection sampling. For ins& the proposed algo-
rithm is approximately 14000 times faster than the crudect&n sampling when
the acceptance region[5, +o[. Note also that the acceptance rate remains stable
for largeu™ (near 10%) for the RSM method whereas it decreases rapidigrm
for crude rejection sampling.

Table 2 Comparison of average acceptance rate between Robert®d 3] and RSM under
the variability of the distance betwe@m andu™. The acceptance region@®= [u~, u*], where
-~ is fixed to 1.

ut —pu~ Robert's Rejection sampling Gain
method (%) from the mode (%)

0.5 77.8 18.0 0.2
1 56.4 21.2 0.3
2 35.0 27.4 0.7
5 11.6 28.2 2.4

10 7.0 28.4 4.0
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Robert R3] also proposed a rejection sampling method in the one diroeak
case. To compare the acceptance rates of RSM with Robertfsocheve consider
a standard normal variable truncated betwgenand u™ with p~ fixed to 1. In
Robert's method, the average acceptance rate is high weeactteptance interval
is small (see Table 2.2 ir2f)). In the proposed algorithm, simulating from shifted
distributions (first step in the RSM algorithm) leads to thetfthat the average ac-
ceptance rate is more important when the acceptance ihigtaage. As expected,
the performance of the proposed algorithm appears when wedéarge gap be-
tweenu~ andu™, as shown in Tablg.

Table 3 Comparison between crude rejection sampling and RSM wépeet to the dimension d.
The acceptance region = [u~, 4o[9.

Dimension u~ Average of acceptance rate with Average of acceptance iigieGain

d crude rejection sampling (%) RSM (%)

1 2.33 1.0 15.0 15.0
2 1.29 1.0 5.2 5.2
3 0.79 1.0 25 25
4 0.48 1.0 1.5 15
5 0.25 1.0 12 1.2

Now we investigate the influence of the problem dimension d.3dihulate a
standard multivariate normal distributidhrestricted to¢’ = [u~, 4[4, whereu
is chosen such th&(X € ") = 0.01. The mean of the multivariate normal distribu-
tion is outside the acceptance region. Simulation of trtestaormal distributions in
multidimensional cases is a difficult problem for rejectagorithms. From Tabl8,
we can remark that when the dimension increases, the pagmetends to zero.
Hence, the modg* = (u—,---,u™) tends to the zero-mean of the Gaussian vector
X. And so, the acceptance rate of the proposed method comsvertiee acceptance
rate of the crude rejection sampling. As an additional eXxamfenu~ is fixed
to 1.35 andd = 5, the RSM algorithm is 135 times faster than the crude rigject
sampling. In that case, the probability of the normal disttion X being inside the
acceptance region is low.

4 Conclusion

In this paper, we develop a new rejection technique, callBiRo simulate a trun-
cated multivariate normal distribution restricted to aoyeex set. Our method only
requires to find the mode of the target probability densityction restricted to the
convex acceptance region. The proposal density functidharRSM algorithm is

the shifted target distribution centered at the mode. Weigdeoa theoretical for-
mula of the optimal constant such that the proposal dengitgtfon is as close as
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possible to the target density. Note that the RSM algoritbradsy to implement.
An illustrative example to compare RSM with crude rejecampling is included.
The simulation results show that using rejection sampliognfthe mode is more
efficient than crude rejection sampling. Comparisons withé&tt's method in the
one dimensional case is discussed. The RSM method outperfRobert’s method
when the acceptance interval is large and the probabilitysformal distribution to
be inside is low. The proposed rejection method has beeregplthe case where
the acceptance region is a convex subsét®%fand can be extended to non-convex
regions by using the convex hull.

Acknowledgements The authors wish to thank Olivier Roustant, Laurence Graniraad Yann
Richet for helpful discussions, as well as the participaftd CQMC conference.
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