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A New Rejection Sampling Method for
Truncated Multivariate Gaussian Random
Variables Restricted to Convex Sets

Hassan Maatouk and Xavier Bay

Abstract Statistical researchers have shown increasing interest ingenerating trun-
cated multivariate normal distributions. In this paper, weonly assume that the ac-
ceptance region is convex and we focus on rejection sampling. We propose a new
algorithm that outperforms crude rejection method for the simulation of truncated
multivariate Gaussian random variables. The proposed algorithm is based on a gen-
eralization of Von Neumann’s rejection technique which requires the determination
of the mode of the truncated multivariate density function.We provide a theoretical
upper bound for the ratio of the target probability density function over the proposal
probability density function. The simulation results showthat the method is espe-
cially efficient when the probability of the multivariate normal distribution of being
inside the acceptance region is low.

1 Introduction

The need for simulation of truncated multivariate normal distributions appears in
many fields, like Bayesian inference for truncated parameter space [11] and [12],
Gaussian processes for computer experiments subject to inequality constraints [6],
[9] and [10] and regression models with linear constraints (see e.g. [13] and [27]).
In general, we have two types of methods. The first ones are based on Markov chain
Monte Carlo (McMC) simulation [4], [18] and [24], as the Gibbs sampling [3], [13],
[15], [17], [19], [23] and [25]. They provide samples from an approximate distri-
bution which converges asymptotically to the true one. The second ones are exact
simulation methods based on rejection sampling (Von Neumann [26]) and its exten-
sions, [7], [16] and [18]. In this paper, we focus on the second type of methods.

Hassan Maatouk· Xavier Bay
Ecole Nationale Supérieure des Mines de St-Etienne, 158 Cours Fauriel, Saint-Etienne, France
e-mail:hassan.maatouk@mines-stetienne.fr, e-mail:bay@emse.fr

1

hassan.maatouk@mines-stetienne.fr
bay@emse.fr


2 Hassan Maatouk and Xavier Bay

Recently, researchers in statistics have used an adaptive rejection technique with
Gibbs sampling [13], [14], [20], [21] and [23]. Let us mention that in one dimension
rejection sampling with a high acceptance rate has been developed by Robert [23],
and Geweke [13]. In [23] Robert developed simulation algorithms for one-sided
and two-sided truncated normal distributions. Its rejection algorithm is based on the
uniform distribution. The multidimensional case where theacceptance region is a
convex subset ofRd is based on the same algorithm using the Gibbs sampling to re-
duce the simulation problem to a sequence of one-dimensional simulations. In this
case, the method requires the determination of slices of theconvex acceptance re-
gion. Also, Geweke [13] proposed an exponential rejection sampling to simulate a
truncated normal variable. The multidimensional case is deduced by using the Gibbs
algorithm. In one-dimension, Chopin [5] designed an algorithm that is computation-
ally faster than alternative algorithms. A multidimensional rejection sampling to
simulate a truncated Gaussian vector outside arbitrary ellipsoids has been developed
by Ellis and Maitra [8]. For higher dimensions, Philippe and Robert [22] developed
a simulation method of a Gaussian distribution restricted to positive quadrants. Also,
Botts [1] improves an accept-reject algorithm to simulate positivemultivariate nor-
mal distributions.

In this article, we develop a new rejection technique to simulate a truncated mul-
tivariate normal distribution restricted to any convex subset ofRd. The method only
requires the determination of the mode of the probability density function (pdf) re-
stricted to the acceptance region. We provide a theoreticalupper bound for the ratio
of the target probability density function over the proposal probability density func-
tion.

The article is organized as follows. In Section 2, we recall the rejection method.
Then, we present our new method, calledrejection sampling from the mode(RSM)
and we give the main theoretical results and the associated algorithm. In Section 3,
we compare RSM with existing rejection algorithms.

2 Multivariate Normal Distribution

2.1 The General Rejection Method

Let f be a probability density function (pdf) defined onR
d. Von Neumann [26] pro-

posed the rejection method, using the notion of dominating density function. Sup-
pose thatg is another density function close tof such that for some finite constant
c≥ 1, called rejection constant,

f (x) ≤ cg(x), x∈ R
d. (1)

The acceptance/rejection method is an algorithm for generating random samples
from f by drawing from the proposal pdfg and the uniform distribution.
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Theorem 1 (Rejection Sampling Algorithm, Von Neumann [26]). Suppose that
f and g are two pdfs such that f(x) ≤ cg(x) for all x in the support of f . Then the
random variable X resulting from the following algorithm isdistributed according
to f .

1. Generate X with density g.
2. Generate U uniformly on[0,1]. If cg(X)U ≤ f (X), accept X; otherwise, go back

to step 1.

Furthermore it can be shown that the acceptance rate is equalto 1/c. In practice
it is crucial to get a smallc.

Notice that the rejection sampling algorithm is immediately extended to pseudo-
density functions (i.e. positive function with finite integral), avoiding the computa-
tion of normalizing constant.

Corollary 1. Let C be a subset ofRd and f̃ andg̃ be two pseudo-density functions
on C such that f̃ (x) ≤ kg̃(x). Then the algorithm in Lemma1 is still valid if the
inequality condition cg(X)U ≤ f (X) is replaced by

kg̃(X)U ≤ f̃ (X). (2)

The rejection constant is c= k
∫

C g̃(t)dt
∫

C f̃ (t)dt
.

Proof. We havef̃ (x)≤ kg̃(x), and so

f (x) =
f̃ (x)

∫

C
f̃ (t)dt

≤ c
g̃(x)

∫

C
g̃(t)dt

= cg(x), (3)

with c= k
∫

C g̃(t)dt
∫

C f̃ (t)dt
. The conditioncg(X)U ≤ f (X) is equivalent tokg̃(X)U ≤ f̃ (X).

⊓⊔

2.2 Rejection Sampling from the Mode

Suppose thatX has multivariate normal distribution with probability density func-
tion:

f (x | µ ,Σ) =
1

(2π)d/2 | Σ |1/2
exp

(

−
1
2
(x− µ)⊤Σ−1(x− µ)

)

, x∈ R
d (4)

whereµ = E[X] andΣ is the covariance matrix, assumed to be invertible.

We consider a convex subsetC of R
d representing the acceptance region. We

assume thatµ does not belongs toC , which is a hard case for crude rejection sam-
pling. Furthermore, as explained in Remark1 (see below) the proposed method is
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not different from crude rejection sampling ifµ ∈ C . Without loss of generality, let
µ = 0. Our aim is to simulate the multivariate normal distributionX restricted to the
convex setC . The idea is twofold. Firstly, we determine the modeµ∗ correspond-
ing to the maximum of the probability density functionf restricted toC . It is the
solution of the following convex optimization problem:

µ∗ = argmin
x∈C

1
2

x⊤Σ−1x. (5)

Secondly, letg be the pdf obtained fromf by shifting the center toµ∗:

g(x | µ∗,Σ) =
1

(2π)d/2 | Σ |1/2
exp

(

−
1
2
(x− µ∗)⊤Σ−1(x− µ∗)

)

. (6)

Then we prove in the next two theorems thatg can be used as a proposal pdf for
rejection sampling onC , and we derive the optimal constant.

Theorem 2. Let f̃ andg̃ be the pseudo-density functions defined as

f̃ (x) = f (x | 0,Σ)1x∈C and g̃(x) = g(x | µ∗,Σ)1x∈C ,

where f and g are defined in (4) and (6). Then there exists k such thatf̃ (x)≤ kg̃(x)
for all x in C and the smallest value of k is:

k∗ = exp

(

−
1
2
(µ∗)⊤Σ−1µ∗

)

. (7)

Proof. Let us start with the one-dimensional case. Without loss of generality, we
suppose thatC = [µ∗,+∞[, whereµ∗ is positive andΣ = σ2. In this case, the con-
dition f̃ (x)≤ kg̃ is written

∀x≥ µ∗, e
− x2

2σ2 ≤ ke
−

(x−µ∗)2

2σ2 , (8)

and so

k∗ = e
(µ∗)2

2σ2 max
x≥µ∗

e
− xµ∗

σ2 = e
(µ∗)2

2σ2 e
− min

x≥µ∗
xµ∗

σ2
= e

−
(µ∗)2

2σ2 . (9)

In the multidimensional case, we havek∗ = max
x∈C

e
1
2 (µ

∗)⊤Σ−1µ∗−x⊤Σ−1µ∗
. Since

µ∗ ∈ C , we only need to show that

∀x∈ C , x⊤Σ−1µ∗ ≥ (µ∗)⊤Σ−1µ∗. (10)

The angle between the gradient vectorΣ−1µ∗ of the function1
2x⊤Σ−1x at the mode

µ∗ and the vector(x− µ∗) is acute for allx in C sinceC is convex (see Figure1).
Therefore,(x− µ∗)⊤Σ−1µ∗ is non-negative for allx in C . ⊓⊔

By now, we can write algorithm1 as follows:

Theorem 3 (RSM Algorithm). Let f̃ andg̃ be the pseudo-density functions defined
as
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Fig. 1 Scalar product between the gradient vectorΣ−1µ∗ of the function 1
2x⊤Σ−1x at µ∗ and

(x−µ∗). The blue lines are the level curves of the functionx 7→ 1
2x⊤Σ−1x.

f̃ (x) = f (x | 0,Σ)1x∈C and g̃(x) = g(x | µ∗,Σ)1x∈C ,

where f and g are defined by (4), (5) and (6). Then the random vector X resulting
from the following algorithm is distributed accorded tof̃ .

1. Generate X with pseudo-densityg̃.
2. Generate U uniformly on[0,1]. If U ≤ exp

(

(µ∗)⊤Σ−1µ∗−X⊤Σ−1µ∗
)

, accept
X; otherwise go back to step 1.

Proof. We applied Corollary1 with the optimal constantk∗ of Theorem2. The
inequality condition (2) is equivalent to

U ≤ e
1
2 (µ

∗)⊤Σ−1µ∗
e−

1
2X⊤Σ−1Xe

1
2 (X−µ∗)⊤Σ−1(X−µ∗), (11)

which is equivalent to

U ≤ exp
(

(µ∗)⊤Σ−1µ∗−X⊤Σ−1µ∗
)

. (12)

⊓⊔

Remark 1.In practice, we use a crude rejection method to simulateX with pseudo-
densityg̃ in the RSM algorithm. So ifµ ∈ C , RSM degenerates to crude rejection
sampling sinceµ∗ = µ and f = g. Therefore, the method RSM can be seen as a
generalization of rejection sampling.
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Remark 2.Our method requires only the maximum likelihood of the pdf restricted
to the acceptance region. It is the mode of the truncated multivariate normal distri-
bution. The numerical calculation of it is a standard problem in the minimization of
positive quadratic forms subject to linear constraints, see e.g. [2].

3 Performance Comparisons

To investigate the performance of the RSM algorithm, we consider a zero-mean

bivariate Gaussian random vectorx with covariance matrixΣ , equal to

(

4 2.5
2.5 2

)

.

Assume that the convex setC ∈ R
2 is defined by the inequality constraints:

−10≤ x2 ≤ 0 and x1 ≥−15, 5x1− x2+15≤ 0. (13)

It is the acceptance region used in Figures2 and3. By minimizing a quadratic form
subject to linear constraints, we find the mode

µ∗ = argmin
x∈C

1
2

x⊤Σ−1x≈ (−3.4,−2.0), (14)

and then we compare crude rejection sampling to RSM.

Fig. 2 Crude rejection sampling using 2000
simulations. The acceptance rate is 3%.

Fig. 3 Rejection sampling from the mode
using 2000 simulations. The acceptance rate
is 21%.

In Figure2, we use crude rejection sampling in 2000 simulations of aN (0,Σ).
Given the number of points inC (red points), it is clear that the algorithm is not effi-
cient. The reason is that the mean of the bivariate normal distribution is outside the
acceptance region. In Figure3, we first simulate from the shifted distribution cen-
tered at the mode with same covariance matrixΣ (step one of the RSM algorithm).
Now in the second step of the RSM algorithm, we have two types of points (red and
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black ones) in the convex setC . The black points are inC but do not respect the in-
equality constraint (12). The red points are inC , and respect (12). We observe that
RSM outperforms crude rejection sampling, with acceptancerate of 21% against
3%.

Table 1 Comparison between crude rejection sampling and RSM when the probability to be inside
the acceptance region becomes low. The acceptance region isC = [µ−,+∞[.

µ− Average of acceptance rate with Average of acceptance rate with Gain
crude rejection sampling (%) RSM (%)

0.5 30.8 34.9 1.1
1 15.8 26.2 1.6

1.5 6.7 20.5 3.0
2 2.2 16.8 7.4

2.5 0.6 14.2 23.1
3 0.1 12.2 92.0

3.5 0.0 10.6 455.6
4 0.0 9.3 2936.7

4.5 0.0 8.4 14166.0

The performance of the method appears when the probability to be inside the
acceptance region is low. In Table1, we consider the one dimensional cased = 1
and we only change the position ofµ−. From the last column, we observe that our
algorithm outperforms crude rejection sampling. For instance, the proposed algo-
rithm is approximately 14000 times faster than the crude rejection sampling when
the acceptance region is[4.5,+∞[. Note also that the acceptance rate remains stable
for largeµ− (near 10%) for the RSM method whereas it decreases rapidly tozero
for crude rejection sampling.

Table 2 Comparison of average acceptance rate between Robert’s method [23] and RSM under
the variability of the distance betweenµ− andµ+. The acceptance region isC = [µ−,µ+], where
µ− is fixed to 1.

µ+−µ− Robert’s Rejection sampling Gain
method (%) from the mode (%)

0.5 77.8 18.0 0.2
1 56.4 21.2 0.3
2 35.0 27.4 0.7
5 11.6 28.2 2.4
10 7.0 28.4 4.0
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Robert [23] also proposed a rejection sampling method in the one dimensional
case. To compare the acceptance rates of RSM with Robert’s method, we consider
a standard normal variable truncated betweenµ− andµ+ with µ− fixed to 1. In
Robert’s method, the average acceptance rate is high when the acceptance interval
is small (see Table 2.2 in [23]). In the proposed algorithm, simulating from shifted
distributions (first step in the RSM algorithm) leads to the fact that the average ac-
ceptance rate is more important when the acceptance interval is large. As expected,
the performance of the proposed algorithm appears when we have a large gap be-
tweenµ− andµ+, as shown in Table2.

Table 3 Comparison between crude rejection sampling and RSM with respect to the dimension d.
The acceptance region isC = [µ−,+∞[d.

Dimension µ− Average of acceptance rate with Average of acceptance rate with Gain
d crude rejection sampling (%) RSM (%)

1 2.33 1.0 15.0 15.0
2 1.29 1.0 5.2 5.2
3 0.79 1.0 2.5 2.5
4 0.48 1.0 1.5 1.5
5 0.25 1.0 1.2 1.2

Now we investigate the influence of the problem dimension d. We simulate a
standard multivariate normal distributionX restricted toC = [µ−,+∞[d, whereµ−

is chosen such thatP(X ∈ C ) = 0.01. The mean of the multivariate normal distribu-
tion is outside the acceptance region. Simulation of truncated normal distributions in
multidimensional cases is a difficult problem for rejectionalgorithms. From Table3,
we can remark that when the dimension increases, the parameter µ− tends to zero.
Hence, the modeµ∗ = (µ−, · · · ,µ−) tends to the zero-mean of the Gaussian vector
X. And so, the acceptance rate of the proposed method converges to the acceptance
rate of the crude rejection sampling. As an additional example whenµ− is fixed
to 1.35 andd = 5, the RSM algorithm is 135 times faster than the crude rejection
sampling. In that case, the probability of the normal distributionX being inside the
acceptance region is low.

4 Conclusion

In this paper, we develop a new rejection technique, called RSM, to simulate a trun-
cated multivariate normal distribution restricted to any convex set. Our method only
requires to find the mode of the target probability density function restricted to the
convex acceptance region. The proposal density function inthe RSM algorithm is
the shifted target distribution centered at the mode. We provide a theoretical for-
mula of the optimal constant such that the proposal density function is as close as
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possible to the target density. Note that the RSM algorithm is easy to implement.
An illustrative example to compare RSM with crude rejectionsampling is included.
The simulation results show that using rejection sampling from the mode is more
efficient than crude rejection sampling. Comparisons with Robert’s method in the
one dimensional case is discussed. The RSM method outperforms Robert’s method
when the acceptance interval is large and the probability ofthe normal distribution to
be inside is low. The proposed rejection method has been applied in the case where
the acceptance region is a convex subset ofR

d, and can be extended to non-convex
regions by using the convex hull.
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