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Abstract—Trajectories can be encoded as attraction basin
resulting from recruited associations between visually based
localization and orientations to follow (low level behaviors).
Navigation to different places according to some other multimodal
information needs a particular learning. We propose a minimal
model explaining such a behavior adaptation from non-verbal
interaction with a teacher. Specific contexts can be recruited
to prevent the behaviors to activate in cases the interaction
showed they were inadequate. Still, the model is compatible
with the recruitment of new low level behaviors. The tests
done in simulation show the capabilities of the architecture, the
limitations regarding the generalization and the learning speed.
We also discuss the possible evolutions towards more bio-inspired
models.

I. INTRODUCTION

Action selection is the choosing of the most appropriate
action out of a set of possible candidates. The word “action”
can represent notions ranging from high level abstracts (“pour
water in a glass”) to low level motor commands (“move arm
joint with chosen speed”). We are interested in a task related
to the second case (Fig. 1). A robot must navigate to different
places depending on the transported object. The robot takes an
object at the picking place P and goes to the correct dropping
places (A or B) to release the objects depending on their sizes.
The robot has to select the adequate actions (moving directions
i.e. low level actions) according to the current sensory inputs.
After the mid 80’s, solutions to action selection problem based
solely on executing the steps of a given plan to achieve a
goal have been progressively abandoned for more reactive
behaviors [1]. Using behavior modules that always directly
monitor the environment allows the system to react faster
to changes. The organization of these modules can be in
parallel [2] or in hierarchy [3]. It has also been argued that
partial activation of reactive modules depending on a carefully
designed hierarchy with attentional switching can also provide
a robust solution with an easier coordination of modules [4].
In [2], the behavior modules are encoded as a condition (a
combination of sensory inputs determining when the behavior
can activate), an action (what the behavior consists in) and a
result (expected sensory inputs after the action is performed).
At first, the condition is general and the activation of the
behavior is easy. Learning increases the selectivity of the
condition to match the fact that the desired result cannot
be obtained by the particular action in any situation. The
learning is based on the correlation between the occurring
of particular sensory inputs and the occurring of the result
after the action is executed. Sensory inputs are progressively
integrated in the condition of a behavior to better determine
when it should be active, improving the coordination between

Fig. 1. Left Example of contextual task in navigation. A solution is to encode
contexts biasing the selection of actions in the particular situations (locations
(circles) + objects status) when there is a choice to make. In place P, the
decision is between picking objects, moving left and moving right. In place
A and B, the possible actions are dropping held object and moving to picking
place. Right Example of typical trajectory learned through interaction as an
attraction basin emerging from place-cell/orientation couples (black arrows).

the different behaviors. Reinforcement learning is another
candidate solution for the action selection problem [5]. Relying
on neurobiological results, computational models of the Basal
Ganglia were developed to explain the action selection by
humans. The properties of dopamine neurons indicate that they
could implement some kind of reinforcement learning [6]. The
Basal Ganglia, organized in parallel loops (potentially coding
actions) with mutual inhibition, can perform the competition
necessary for the action selection [7], [8]. However, both the
reinforcement learning and the correlation learning are quite
slow to learn. In order to have a reactive interaction, the
behavior should be adapted in a faster way.

Following a simple trajectory can be encoded as an at-
traction basin emerging from multiple place-cell/action asso-
ciations [9]. A place is encoded by merging “what” is seen
with “where” it is seen1. A recruited place-cell (PC) responds
accordingly to the distance to the encoded place with a
maximal response when at the learned spot (see [9] for details).
The actions are direction of movement2. The robot selects its
moving direction depending on its place in the environment
(see an example of learned trajectory in Fig. 1). The obtained
navigation controller is robust due to the generalization ca-
pabilities of the place-cell recognition. New place-cell/action
couples are learned from on-line non-verbal interaction [10].
When the robot moves too far from the desired trajectory, the
robot is shown how to get back to the desired trajectory by
forcing its orientation3. This corrected orientation is associated
to a new learned place-cell completing the encoded attraction
basin. In order to learn the task of Fig. 1, the information about

1The codes use visual, proprioceptive (camera orientation) and magnetic
compass information to build place-cells.

2Orientations of movement are given with respect to an absolute reference
(North). The orientation of the robot is read from a magnetic compass.

3In the experiments of this article, a joystick was used considering that it
simulates the action of a leash.



the object (e.g. size, but it could be visual, tactile,. . . ) should be
included in the condition of the actions i.e. transforming place-
cells into multimodal categories. Two approaches are possible
to build the adequate multimodal categories. Local solutions to
action selection can be learned and progressivelly adapted to
enable good generalization. For instance, when the behavior of
the robot is corrected, multimodal categories can be recruited
and associated with the correct actions. The generalization
depends on how the different modalities contribute to the
context activation. Without any particular a priori, the recruited
categories would include all the modalities equally. Thus,
the generalization properties should be improved by learning
how much each modality should contribute, with a possible
pruning of the irrelevant links. The alternate solution is to
start from a general category (i.e. taking only a few modalities
into account) and progressively increase the selectivity of the
category (like with conditions in Maes’s model [2]). Selectivity
can be adapted on the basis of the feedback provided by the
interaction. In the framework of the place-cell/action based
controller, we propose that the place-cells be non-specific
categories progressively refined by inhibiting them in situations
when they predict undesired behaviors according to the inter-
action from the teacher. Some multimodal contexts are thus
recruited to store which place-cells should be inhibited and
when. A task may not be solved by only refining the existing
PC/action couples. The recruitment of new PC/action couples
may occur to enrich the basis of behaviors of the system. We
will also show that the whole process can run in parallel with
the aforementioned trajectory learning.

In Section II, we present the neural network based ar-
chitecture recruiting contexts for the inhibition of irrelevant
PC/action couples. The evaluation of the actions and the
context recruitment are detailed with the conditions to recruit
new place-cells. The model is implemented in the neural
network simulator Promethe [11], and tested in a robotic
simulation based on Webots (Cyberbotics) (Sec. III). The
first experiment studies the behavior of the learning process
when the contexts are not needed to learn a trajectory. Then,
the model is validated in the task described in Fig. 1. The
model manages to learn the task. Even though this learning
scheme shows limited generalization properties, we discuss
in Sec. IV whether they could be a basis for longer learning
that will focus on summarizing the contexts into chunks. Such
a fast adaptation of the action selection may be useful to
complete and even train a slower learning network extracting
the statistics of the task.

II. MODEL FOR SPECIFIC CONTEXT BUILDING BASED ON
INTERACTIVE LEARNING

The combination of several PC/action couples is sufficient
to shape an attraction basin so that the robot follows a desired
trajectory (Fig. 1 and 2, [9]). The action evaluation block in
the architecture learns the contexts in which some place-cells
should be inhibited. The place-cells are thus biased by the
output I of the action evaluation process before the competi-
tion between the biased place-cells. The winning biased place-
cell PCI determines the selected action i.e. the orientation
to be followed. Figure 3 details the action evaluation process
performed in the block shown in Fig. 1. Indeed, an action
is encoded as the dynamics which maintains a particular
orientation of movement. During an interaction, the teacher
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Fig. 2. Architecture for place-cell based navigation with the action evaluation
part of the architecture (see Fig. 3). Sensory and predicted signals are provided
to the action evaluation system. It outputs a vigilance signal and an inhibitory
signal preventing some place-cells to exhibit their associated orientation. The
vigilance signal can trigger the learning of a new place-cell.

corrects the behavior of the robot by opposing to the predicted
dynamics i.e. by moving the current orientation away from the
current desired orientation. The interaction may even be more
like making the robot turn left or right than explicitly giving
the exact direction to follow (no explicit supervision). Selected
PC/action couples predicting rotations opposite to the executed
rotation during the interaction are to be inhibited. Contexts
are created to encode which place-cells should be inhibited
and when. After this learning, if the behavior happens to be
corrected again, the task has probably changed. Therefore,
when a new interaction phase starts in an already known con-
text, the previous associations with place-cells to inhibit will
be removed to learn the new situation. However, a particular
case may be taught by the teacher by alternating between
correcting behaviors and evaluating the result. Though, it will
be sensed by the robot as separated interaction phases. The
aforementioned process is completed by a short term memory
of the wrong PC/action couples to ensure the consistency of
the teaching. Even if, the contextual associations are reset
prematurely, the short term memory keeps the results of recent
detections. Finally, repeated corrections in the same context
mean the condition refining of existing behaviors fails. Hence,
a new PC/action couple is recruited adding a new behavior to
solve the task, possibly through condition refining.

A. Wrong action detection

The neural layer DW outputs the result of the detection.
The neurons in DW match the existing place-cells. An activity
of 1 in DW means that the corresponding place-cell should be
inhibited because the associated action is evaluated as wrong.
A competition between the different biased place-cells PCI

determines the action to be performed (Fig. 2). Currently,
only the action predicted by the winning biased place-cell
iM = argmax

i
(PCI

i ) can be evaluated. Therefore no wrong

action detection can succeed with other PC/action couples
(DW

i 6=iM
= 0). In the case of the ithM couple, the action is eval-

uated as wrong if, during the interaction, the robot orientation
θcur moves away from the robot proposed orientation θd. The
teacher’s control being primary, he can prevent the robot from
following the desired orientation θd. The sensorimotor error
Er is based on the difference between these two orientations
Er = min(| θd − θcur |, (θmax − θmin)− | θd − θcur |) with
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Fig. 3. Context learning to inhibit PCs associated to wrong actions and learn new place-cells through on-line interactive teaching. Given a correction, the
variation of the similarity is used to estimate if the selected action is wrong. A multimodal context is then recruited if none already encodes the situation. Each
time a new interaction phase starts, the actions to inhibit are reset and the contextual vigilance increases. The short term memory of wrong actions ensures the
consistency of a split interaction. Eventually, if the activity of the winning place-cell after inhibition PCI is under the vigilance V , a new place-cell/action
couple will be recruited. This architecture details the content of the action evaluation block shown in Fig. 2.

θmax = 2π − ε and θmin = 0. This particular computation is
needed because the orientation space loops on itself (2π rad
is the same as 0 rad). The similarity measure S for the ithM
PC/action couple uses this error to recognize how much the
current orientation is similar to the desired orientation (Eq 1).

SiM = 1− 2Er

(θmax − θmin)
(1)

with H0 the Heaviside function that verifies H0(0) = 0. The
coefficient multiplying Er normalizes the dynamics of the
similarity measure (values between 0 and 1). Detecting that
the iMth PC/action couple is wrong (DW

iM
= 1) depends on

the dynamics of the similarity (∆SB
iM

) as well as on its value
SiM (Eq 3). An action is estimated as wrong if the evolution
of the similarity indicates that the followed orientation moves
away from the desired one (Eq 2) and if the similarity is low
enough. When a negative variation of the similarity for the
iM

th action is detected, ∆SB
iM

is equal to 1. In that case,
the similarity measure is compared with a similarity threshold
equal to 1− tE , with tE equivalent to an error threshold.

∆SB
iM (t) = H0(SiM (t−∆t)− SiM (t)) (2)

DW
iM = H0(∆SB

iM − tE − SiM ) and DW
i6=iM = 0 (3)

B. Context management

Contexts are recruited when the behavior of the robot
is corrected. The input X of the multimodal contexts C is
the concatenation of the different discrete binary codes for

each sensory modality. The raw place-cell activities PCR give
localization information. The obstacle detection US based on
ultrason sensor is categorized into 2 neurons (frontal obstacle
present or not). The gripper state GS is encoded by three
neurons each one corresponding to an opening width. The
input X is normalized and then connected to the context layer
C (Eq 4). The context learning (Eq 5) is based on Adaptive
Resonance Theory [12]. The maximal activity in the context
layer C is compared with a vigilance threshold λC . If the
maximum is lower, then a new context (with index r) is
recruited so that the weights ωC

rl reproduce the input pattern.
As the input is normalized, the activity of a context is maximal
when the same encoded pattern is presented again.

XN
k =

Xk

|| X ||
with X = [PCR;US;GS] (4)

Cj =
∑
k

ωC
jk ·XN

k

∆ωC
rk = (XN

k − ωC
rk) if λC > max

j
(Cj)

(5)

with λC the vigilance threshold equal to 0.99 if there is an
active neuron in the wrong action layer W and 0 otherwise.
The active context layer Ca only contains one active neuron
corresponding to the maximally recognized context jM =
argmax

j
(Cj) in C. The activity of the winning context must

be over the context threshold tC (Eq 6).

Ca
jM = H0(CjM − tC) and Ca

j 6=jM = 0 (6)



C. Short term memory of wrong PC/action couples

During an interactive teaching phase, the PC corresponding
to detected wrong actions are memorized in a short term
memory. The wrong PC/action layer W depends on the new
detected wrong action DW

i as well as on the content of the
memory of the recent incorrect actions MW (Eq 7). If there is
no ongoing interaction, the content of the wrong action layer is
inhibited. Otherwise, any active neuron in this layer will trigger
the learning of a multimodal context C and the association
between this context and the neurons corresponding to the
same PC in the inhibition layer I .

Wi = H0(MW
i +DW

i − 2 ·NI) (7)

The short term memory MW is fed by the wrong action layer
W . The temporal forgetting γ ensures that the memory is reset
within a few seconds. It can also be reset when the index of
the winning context in Ca changes (CC = 1).

MW
i (t) = [MW

i (t−∆t)− γ]+ +Wi − 2 · CC (8)

with [x]+ = x if 0 < x < 1, 0 if x < 0 and 1 otherwise. A
new correction phase starts whenever one neuron in the wrong
actions memory becomes active. During the first iteration a
new correction phase is detected (NC = 1). The phase ends
when all neural activities decay to 0 with the forgetting or
when a reset signal is received because the context changed
(CC = 1).

D. Learning PCs to inhibit

The inhibition layer I contains the PCs to inhibit. The
associations are learned with a Hebbian like rule (Eq 9) and
stored on the synaptic weights ωI connecting the active context
layer Ca with the layer I . When a new correction starts
(NC = 1), the previously stored inhibitions are reset. When
the teacher is correcting the robot, the wrong PC/actions stored
in the short term memory MW transit through the wrong
PC/action layer W . The PCs to inhibit are associated with
the active context in I . The context/PC associations are also
reset when a new place-cell is recruited (αPC = 1). Ii = [Wi +

∑
j

ωI
ij · Ca

j ]+

∆wI
ij = Wi · (Ca

j · Ii − ωI
kj)− (NC + V PC) · Ca

j · ωI
ij
(9)

where V PC = 1 when a new place-cell is recruited. The PCs
represented in the layer I are inhibited so that the selected
orientation is predicted by one of the correct place-cells (see
Figure 2).

E. Learning new PC/action couples

The aforementioned process may fail because PC/action
couples with sufficiently recognized PCs may not be already
encoded. The vigilance threshold V PC controlling the learning
of new PC/action couples is thus managed (Eq 10). Each time
a new correction occurs in a context (NC = 1), the vigilance
V associated with this context increases. V = [

∑
j

ωV
j C

a
j ]+

∆ωV
j = NC(PCI

iM
− V ) · Ca

j − V PC · V · Ca
j

(10)

Fig. 4. Simulated environment and robot. The robot has to learn to navigate
between the different blocks according to the object size signal.
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Fig. 5. Trajectory (gray line) during learning and reproduction of the
task (several times consecutively). The colored dots are the learned place-
cells. The chunks associated with the place-cells are represented around the
corresponding dots (circle: the context exists but does not inhibit an action,
square: the context does not inhibit the winning PC, star: the context is used).
The arrow starting from the dots indicates the orientations that are associated
to the place-cells. At the end of the learning, only one chunk still modifies
the behavior. The others only inhibit PC that could not win.

with iM = argmax
i

(PCI
i ). The activity of the winning action

PCI is compared to this vigilance threshold V PC = H0(V −
PCI

iM
) to trigger the recruitment of a new place-cell. When a

new place-cell is recruited, the context/PC association for the
context in which occurred the recruitment is reset (V PC =
1 in Eq 10). The context/action association in the inhibition
layer I is also reset for this context (V PC = 1 in Eq 9). The
system can switch between the PC inhibition and learning new
PC/action couples.

III. EMERGENT ATTRACTION BASINS AND CONTEXTS

In this section, the model is tested in two different ex-
periments performed with a simulated robot, running with
the Promethe simulator under the Webots (Cyberbotics) 3D
environment. The robot is composed of a mobile platform
with a camera mounted on a pan servomotor (Fig. 4). The
walls of the room are covered with pictures to provide textured
images for visual processing i.e. the recognition of the place-
cells. In the first experiment, the robot has to learn a simple
trajectory that does not require multimodal contexts. As the
new model extends the model from [10], the initial test aims at
studying whether the recruited contexts are useful and whether
the system will rely on these contexts to tackle the task. In
Figure 5, the learned place-cell/orientation associations are
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Fig. 6. Trajectory (gray line) during reproduction of the task (several
times consecutively). The colored dots are the learned place-cells. The chunks
associated with the place-cells are represented around the corresponding dots.
The arrows starting from the dots indicate the orientations that are associated
to the place-cells. Due to the effect of the chunks, the orientation may not be
followed as the PC selecting this orientation is inhibited.

displayed with the followed trajectories. During the learning
phase, the first time a correction is performed in a given place-
cell. A context is recruited to encode the sensory configuration.
Each time the orientation of the robot is corrected, the active
context is associated with the inhibition of the incorrect
PC/orientation couples. When a new place-cell is recruited in
a context, previous associations between this context and the
PCs to inhibit are unlearned. At the end of the learning phase,
i.e. when the robot is finally capable of performing rounds
without correction, the contexts do not influence the behavior
anymore because they do not inhibit the already winning
PC/orientation couple (see Fig. 5). The contexts appear as
only temporarily used. Only one context still influences the
behavior. It corresponds to the situation where the robot detects
a wall nearby, and thus should aim at a different direction than
the one associated with the winning place-cell.

In the second experiment, we focus on testing the learning
of a task that requires selecting the trajectory depending on
sensory information not directly related to navigation. The
information is the width opening of the gripper i.e. the size
of the held object. The environment contains three obstacles
at interesting locations (see Fig. 4). The white one is where
the robot has to take objects, the two others (red and blue) are
where the robot can drop them. The colors of the obstacles
are not directly used by the system. The task of the robot
is to take objects at the picking place and then, depending
on the simulated size of the object, move to one location or
the other to place it there. The objects are simulated through
the gripper state coding the object size. A correct orientation
maintained during a few seconds is a prerequisite to validate
the reaching to one of the places. In this experiment, there
is no obstacle avoidance behavior so that the robot can face
an obstacle without avoiding it. Yet, the forward speed of the
robot is decreased when the robot gets closer to an obstacle so
that it will not bump into it. The robot is corrected by simply
changing its orientation (using a joystick) whenever it moves in
the wrong direction. The trajectory followed by the robot dur-
ing the reproduction of the task is presented in Figure 6. The

learning phase is quite long as each new place-cell introduces a
new potential context preventing previous generalization from
other context and also a new possible PC/orientation that may
have to be inhibited when in other contexts. The robot can
reproduce the task without any correction after about fifteen
rounds of the pick-and-place task using a small object and
eleven rounds using a big object. As the robot only needs
correction when it makes mistakes, less and less corrections
are necessary as the learning process goes on.

At the end of the learning process, the robot performs the
task without any correction. The learned contexts enable the
robot to exhibit the correct behavior. Depending on the gripper
information, the robot follows different trajectories. Even if the
learned contexts are very specific and encode particular sensory
configurations, the effective attraction basins can be interpreted
as depending on the gripper state. The resulting attraction
basins are displayed in Figure 7. Because the robot did not
start from any location in the environment, the attraction basin
is only correct in a limited area. Depending on its starting
position, the robot can end up stuck in front of a wall (as
there is currently no obstacle avoidance). The robot may also
select the wrong dropping place. For instance in Fig. 7b), the
dropping place on the left is where the robot should go with
a small object. However, the dropping place on the bottom-
right of the figure is also an attractor where the robot can go
depending on its starting position. Without the corresponding
learning, the robot has generalized the dropping place on the
bottom-right as valid for any size of object. This is due to
the fact that the learned PC/orientation couples in the vicinity
of this place converge to the dropping place. The interest of
the contexts appears when no object is held, by reducing the
attraction basin so the robot can move to the picking place.
Hence, the robot exhibits the expected contextual behavior
that can emerge from the recruited contexts and the learned
inhibition of PCs.

IV. DISCUSSION

In this paper we presented a model of action selection based
on contexts guiding sensory-motor associations. This approach
allows us to extend the place-cell/action model [9] to solve
the action selection problem. In [10], the authors showed the
influence of the teacher on the learned trajectory by comparing
different methods of learning. The authors showed that a
compromise between proscriptive and prescriptive learning
was more robust and that the choices of the human interacting
teacher corresponded to such compromise. We expect the same
kind of influence to be at work in the contextual navigation
task. The issue will be explicitly addressed in future work, in
order to validate that the convergence of the context learning
is not (too) dependent on the expertise of the teacher. Besides,
in our experiment, we tested the model in a simulated envi-
ronment, without variations and always in the same situation.

The goal of this paper was to study a minimal model
that could explain the fast adaptation of multimodal behaviors
during interaction with a teacher. The results showed that the
proposed principles are efficient but need to be improved for a
real autonomous development. First, the contexts are computed
with a threshold that prevent generalization on different place-
cells. Second, we also used binary values to build the sensory
inputs of the contexts. This allowed us to ease the study but
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Fig. 7. Change in behavior according to the held object. Trajectories (gray) from different starting points when the gripper is holding (a) no object, (b) small
object, (c) big object. Contextual attraction basins toward the pickup place P, the dropping place A and the dropping place B can emerge even though the
contexts encode specific sensory configurations.

this constraint should be removed for better generalization. The
generalization properties of the existing low level behaviors
also determines the quality of overall behavior. There should
be a cooperation between the proposed fast learning of con-
texts and a slower learning solution improving the low level
behaviors at the basis of the system.

Many neurobiological studies were dedicated to the action
selection process and thus can give hints to improve the
capabilities of a robotic system. Different cerebral regions
are involved in the action selection process. In particular,
the implication of the cortico-baso-thalamo-cortical loop was
clearly exposed [13]. The GPR model [7] is based on a
dynamical system approach and the internal connectivity of
the BG is unknown. The CBTC model [8] tends to improve
the exposure of the internal connectivity and introduces a
fusion with reinforcement learning mechanisms to improve
the GPR model. Those models tend to be very complex. In
this paper, we focused on a minimal solution to obtain an
action selection behavior, by using a selective inhibition of
PC/action couples depending on the recruitment of multimodal
contexts. However, this fast on-line learning is to be com-
pleted by a slower learning that could encode chunk like
categories directly selecting the action to be done. The theory
of chunking was first introduced in the 1950s by DeGroot
[14] and Miller [15]. The main idea is that a chunk collects
pieces of information in order to obtain a higher level of
information coding. In a previous work [16], we suggested
that a modified version of Schmajuk’s and DiCarlo’s learning
of conditioning [17] could model the cortico-basal loop with
associative conditioning in the cerebellum and resulting in
the learning of chunks. Our goal is now to combine the
fast on-line learning of contexts presented in this paper with
the aforementioned slower learning of chunks to improve the
action selection capabilities of the robot.
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