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Abstract: The paper proposes a generic methodology to incorporate constraints (pollutant

emission, battery health, drivability) into on-line energy management strategies (EMSs)

for hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). The

integration of each constraint into the EMS, made with the Pontryagin maximum principle,

shows a tradeoff between the fuel consumption and the constraint introduced. As

state dynamics come into play (catalyst temperature, battery cell temperature, etc.),

the optimization problem becomes more complex. Simulation results are presented to

highlight the contribution of this generic strategy, including constraints compared to the

standard approach. These results show that it is possible to find an energy management

strategy that takes into account an increasing number of constraints (drivability, pollution,

aging, environment, etc.). However, taking these constraints into account increases fuel

consumption (the existence of a trade-off curve). This trade-off can be sometimes difficult to

find, and the tools developed in this paper should help to find an acceptable solution quickly.

Keywords: energy management strategy; hybrid electric vehicles; constraints; drivability;

pollutant emission; Li-ion battery aging; Pontryagin’s maximum principle
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1. Introduction

The hybrid vehicle is one of the possible solutions for reducing greenhouse gas emissions in individual

passenger transportation. Its ability to use various prime movers to satisfy the power demand allows the

supervisory control to choose the energy flow that minimizes global greenhouse gas emissions, such as

CO2 emissions. In a hybrid electric vehicle, the torque split (the ratio between electrical and thermal

torque) makes it possible to minimize fuel consumption and, hence, CO2 emissions over the whole

driving cycle. Most of the time, energy optimization in hybrid vehicles consists in minimizing the fuel

consumption [1,2]:

J =

∫ tf

t0

ṁf (u(t), t)dt (1)

where ṁf (u(t), t) is the instantaneous fuel consumption and u is the control vector, such as the

electrical/thermal ratio. In a general manner, it can be written:

J =

∫ tf

t0

L(u(t), t)dt (2)

where L(u(t), t) is the instantaneous cost function. The solution that minimizes Equation (2) is an

electrical mode, in which the energy comes directly from the battery, which makes it impossible to

maintain the battery state of charge x. Hence, the cost function must integrate a final constraint:

J = Φ
(

x(tf )
)

+

∫ tf

t0

L(u(t), t)dt (3)

where Φ
(

x(tf )
)

is a penalty function, which can be chosen to maintain the state of charge

x(tf ) = x(t0) [2,3]. Moreover, since the battery state of charge x is directly impacted by the chosen

control, it is necessary to respect its dynamics: ẋ = f(x, u)

It is possible to add constraints to the energy management strategy, such as pollutant emission [4,5],

engine events [6] or gear events [6,7], and this is what we will show in this paper. The first section recalls

the classical optimal energy management strategy with the Pontryagin maximum principle. The second

section shows how constraints can be easily incorporated into energy management strategies.

2. Optimal Energy Management Strategies

Energy management is a problem of optimal control with a finite horizon subject to system dynamics

and final constraints. Let X ⊂ R
n and U ⊂ R

m be the state and control sets. The m control variables

are denoted u ∈ U and the n states denoted x ∈ X . The optimal control problem consists in minimizing

J(x, u) ∈ R with the following system dynamics:

ẋ = f(x, u) (4)

where (x, u) 7→ f(x, u) is a function of class C1. Moreover, an initial condition is imposed x(t0) = x0.

Hence, the optimization problem can be summarized in:

P0(x, u) :















min
u∈U

J(x, u)

subject to ẋ = f
(

x, u
)

x(t0) = x0

(5)
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with a performance index to minimize:

J(x, u) = Φ
(

x(tf )
)

+

∫ tf

t0

L
(

x(t), u(t), t
)

dt (6)

where x 7→ Φ
(

x(t)
)

and (x, u, t) 7→ L(x, u, t) are of class C1.

In order to solve this problem, it is necessary to know the whole trip. As the driving conditions are

generally not known in advance, the theoretical optimal solution of Problem (5) gives the achievable

reference. Two methods have been developed to solve Problem (5), one numerical solution called

dynamic programming [8–10] and one analytical solution called the equivalent dual problem [3,10].

The second solution, which is very interesting for real-time use in a vehicle, is presented here. It consists

in defining a dual problem that has the same solution as the first one, while putting the constraints and

the cost function into a single function.

Let us define the Hamiltonian:

H
(

x(t), u(t),λ(t), t
)

= L
(

x(t), u(t), t
)

+ λ(t)Tf(x, u) (7)

where λ is the Lagrange variable (or co-state) associated with the state x.

By grouping the three stationary conditions
∂

∂x
,
∂

∂u
,
∂

∂λ
, the dual problem P ′

0(x,u) corresponding to

P0(x,u) is:

P ′

0(x,u)























































ẋ = f(x, u)

x(t0) = x0

λ̇
T = −

∂

∂x
H(x, u,λ, t)

λ(tf )
T =

∂

∂x(tf )
Φ
(

x(tf )
)

where u is the solution of
∂H

∂u
= 0

(8)

In order to take into account constraints, such as powertrain limitations, a constraint C(u, t) ≤ 0

on control variable u is introduced. The resolution is based on the maximum principle stated by Lev

Pontryagin [11].

Theorem 1. Let R ⊃ [t0, tf ] ∋ t → (x∗, u∗,λ∗)(t) ∈ R
n × R

m × R
n be the optima of Problem (8) with

constraint C(u, t) ≤ 0. For all t ∈ [t0, tf ],

H(x∗,u,λ∗, t) ≥ H(x∗,u∗,λ∗, t) (9)

Hence, the problem is simply solved by:

u
∗(t) = argmin

u∈U

H(x,u,λ∗, t) (10)

The main difficulty of this method is to obtain λ
∗.
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The equivalent consumption minimization strategy (ECMS) uses this principle of optimal control,

while controlling by a penalty coefficient between electrical energy and thermal energy [3,10,12]. For a

hybrid electric vehicle, Equation (7) can be rewritten into power flow, which is easier to interpret,

Heq

(

u(t),λ(t), t
)

= Pf

(

u(t), t
)

+ s(t)TPe(u, t) (11)

where:

• Pf

(

u(t), t
)

= HLHV ṁf (u(t), t) is the thermal power with HLHV the lower heating value of the

fuel and ṁf (u(t), t) the fuel flow;

• Pe(u, t) = −ẋ(u, t)·OCV ·Qmax is the battery electrical power with OCV the open circuit voltage

and Qmax the nominal battery capacity.

Hence, the penalty coefficient becomes:

s(t) = −λ(t) ·
HLHV

OCV ·Qmax

This coefficient, under the hypothesis of λ̇ ≈ 0, is a constant function of the driving cycle (as can

be demonstrated from the equation λ̇
T = −

∂

∂x
H(x, u,λ, t) of Equation (8)). In order to ensure charge

sustaining operation, some authors propose controlling this coefficient as a function of the state of charge

(SOC) [1,13]. In [14,15], the authors propose to use the dynamic programming results to compute the

value of the Lagrange coefficient.

To implement this energy management strategy based on the minimization of the Hamiltonian,

several solutions are possible. One can use look-up tables [16] in order to save the optimal control

policy. Another solution, used here, is directly solving the minimization by meshing the control and, so,

the Hamiltonian.

3. Incorporating Constraints into Energy Management Strategies (EMS)

In classical energy management strategies, the constraints on battery health, vehicle pollutant

emissions and drivability are not taken into account. Here, we propose a solution to take into account the

different constraints in the cost function J . The main problem is that it is often necessary to add some

dynamics to the problem to be solved, making it difficult to find a solution for the co-state [17].

3.1. Pollutant Emission Constraint

The historical objective of EMS was to minimize fuel consumption. However, decreasing the fuel

consumption does not directly minimize pollutant emissions, as the operation of the three-way catalytic

converter (3WCC) needs to be taken into account. Indeed, for a gasoline engine, the 3WCC temperature

dynamics plays a key role in pollutant emission. Hence, we propose to integrate pollutant emission

into the EMS with the Pontryagin minimum principle. A tradeoff between pollutant emission and fuel

consumption is then shown. The 3WCC temperature is integrated into the EMS and a simplification

is proposed.
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3.1.1. New Criterion

If a pollutant constraint is considered, it is necessary to add in the cost function the pollutant

emission at the catalytic output. Indeed, taking into account the emissions on the output of the engine

is not sufficient [5], as the catalytic converter has a great impact on each pollutant emission flow

ṁexhi
, i = NOx,CO,HC. The performance index is then written:

Jpollu = Φ(SOC(tf )) +

∫ tf

t0

ṁmix(u(t), Tcata(t), t)dt (12)

with:

ṁmix = ṁf (u(t), t) + α
∑

i

ṁexhi
(u(t),Tcata(t),t)

σi
(13)

where the σi are the acceptable pollution limits of the Euro standard with i = NOx,CO,HC and

where α is a desired weight on the pollution. This new criterion increases the complexity of the

minimization problem, because pollutant emissions ṁexhi
depend on other states, such as the catalytic

temperature Tcata. The air-to-fuel ratio (AFR) is considered well controlled at stoichiometry. The

use of the Hamiltonian with the Pontryagin maximum principle simplifies the problem, but there

are two co-states λ, one on the state of charge variation ˙SOC and one on the catalytic temperature

variation Ṫcata:

Hpollu = ṁmix(u(t), t) + λ1(t) ˙SOC + λ2(t)Ṫcata (14)

Then, the problem is to determine λi(t) by solving the third equation of Equation (8). For a classical

hybrid electric vehicle [10], it is possible to consider a constant λ1(t) depending on the driving cycle.

This co-state is generally found by binary search in order to have the desired final state of charge.

The second co-state λ2(t) is found to be an exponential of the time with a constant λ0
2 that has to

be determined:

λ2(t) = λ0
2e

at−b(u,t) (15)

where the constant a and the function b are the two parameters of the catalytic temperature dynamics.

Michel et al. [5] show that by using a null second co-state (λ2(t) = 0) a solution can be obtained that is

easily tunable compared to a variable λ0
2.

3.1.2. Results

Simulation results are based on a quasi-static model of a parallel gasoline hybrid vehicle. The first

result (Figure 1) shows that when α increases, the fuel consumption increases when pollutant emissions

decrease for the WLTC (Worldwide Harmonized Light Vehicles Test Cycle). Figure 2 shows that this

trade-off between fuel consumption and pollutant emission exists for different driving cycles.

Finally, the fuel consumption minimization with pollution constraint does not require considering

directly the 3WCC temperature in the minimization method. However, the catalytic temperature needs

to be estimated in order to compute the flows of each pollutant. The same principle will be applied to

take into account battery temperature dynamics in the minimization problem in the next section.
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Figure 1. The effect of α on the fuel consumption and pollutant emission for the WLTC

(Worldwide Harmonized Light Vehicles Test Cycle).
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Figure 2. Trade-off between fuel consumption and pollutant emission for different

driving cycles.
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3.2. Battery Temperature Constraint

3.2.1. Problem

The battery is often considered as the centerpiece of a hybrid electric application, especially for PHEV,

mainly because of its substantial cost and the fact that its performances fades over time. Matching the

battery and vehicle lifetimes is a crucial issue in improving the economic viability of HEV. Again, the

stake is even higher for PHEV, which rely significantly more on electric energy. If used properly, the

degree(s) of freedom offered by hybrid powertrains can contribute to slowing down aging mechanisms

by avoiding as much as possible the operating conditions that are harmful to the battery. While several

authors have submitted interesting ideas to take battery health into account in the EMS [18,19], the issue

remains unresolved.

Battery aging is monitored by the onboard battery management system (BMS) and is commonly

expressed as a non-dimensional parameter, the state of health (SOH) [20], decreasing from one (brand

new) to zero (worn out) as the battery wears. The aging process of Li-ion batteries is very intricate and

is currently the subject of many studies [21–23]. The primary factors enhancing battery aging are high

temperatures and high states of charge. The strategy presented in this paper therefore includes a penalty

regarding undesired battery temperatures in the optimality criterion. The objective is to combine energy

and thermal management and, thus, to ensure a trade-off between powertrain efficiency and battery aging

via a soft constraint on cell temperature [24].

3.2.2. Battery Model

To implement a battery thermal management strategy, a control-oriented model of the battery cells’

temperature has to be designed. The zero-dimensional model considered is based on the heat transfer

equations between a cell and the air surrounding the battery pack [25]. The main assumption is a

homogeneous temperature of the cells. A depiction of the model’s heat transfers is given in Figure 3.

The prismatic cells are enclosed in modules composing the battery pack. As a result, four temperatures

are considered: Tcell is the cell temperature, Tsens is the temperature of the air confined in the module,

which is given by a sensor on an actual battery pack, Tcas is the temperature of the module casing and,

finally, Tair is the air temperature around the battery pack. The temperature model presented in [26] is

based on a similar approach, but applied to cylindrical cells and using an observer to consolidate the

estimation. For more details about the battery model used, see [24,27].

In order for the energy management strategy to be consistent with PHEV operations, the state of

energy (SOE) approach is favored over the classical state of charge calculation [28]. While the SOC is a

fair representation of the energy remaining in the battery when considering charge sustaining operation,

it is no longer the case for high depletion conditions. For HEV, the SOC is sustained around 50%,

where the open circuit voltage (OCV) of the battery is almost constant. Battery current and power flow

can therefore be considered proportional. As for a PHEV, the OCV decreases significantly with charge

depletion; consequently, current cannot be considered a faithful image of power flow. Ultimately, the
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charge remaining in the battery is not an accurate estimation of the energy left, which is an important

piece of information to assess the electric range of a PHEV. The SOE is defined by:

SOE(Pbat, SOC) =
ER(Pbat, SOC)

EN

(16)

where ER is the energy remaining in the battery, Pbat the reversible electric power exchanged with the

battery and EN = OCVMax; QMax is its nominal energy capacity (when fully charged).

Figure 3. Heat flow transfers with equivalent resistance modeling.
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3.2.3. New Criterion

As in the previous section for pollutant emission Criterion (12) with Criterion (13), a new cost

function Jaging is proposed with an additional cost on battery temperature evolution in addition to the

fuel consumption:

Jaging =

∫ tf

t0

{

ṁf (u(t), Twheel(t))

+κbatt(Tcell)Ṫcell(u(t), Tcell)

}

dt (17)

+ Φ (SOE(tf )) + Ψ (Tcell(tf ))

with:

Φ (SOE(tf )) =

{

0 if SOE(tf ) ≥ SOEfinal

∞ else

Ψ(Tcell(tf )) = 0

(18)

where ṁf is the instantaneous fuel consumption, u is the control variable and Twheel is wheel torque

request, imposed by the driver or a driving cycle (speed profile). Ṫcell is the cell temperature fluctuation,
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and κbatt is a weighting parameter depending on the cell temperature, as represented in Figure 4. The

chosen control variable u = Pbat is the power delivered by the battery, which has to be optimized by

the EMS to minimize the criterion Jaging. Φ(SOE(tf )) is a function ensuring a solution meeting the

final requirement on the SOE. The final SOE will be chosen equal to its initial value for sustaining

operation, but will be close to the minimal SOE admissible by the battery for depleting operation. The

function Ψ(Tcell(tf )) is set to zero, since no constraint is considered for the cell’s final temperature. The

above system has two state variables:

x =

{

SOE

Tcell

}

the SOE and battery cell temperature. Their dynamics are described in [24].

Figure 4. Weighting factor κbatt versus cell temperature.
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Under some hypothesis (a lack of constraint on the final cell temperature, very slow cell temperature

dynamics), the corresponding Hamiltonian of Criterion (17) can be written:

H(u,x, Twheel, λSOE) = ṁf (u, Twheel) + λSOE
˙SOE(u) + κbatt(Tcell)Ṫcell(u) (19)

In practice, at each sampling time, the command u = Pbat is meshed between the minimum and

maximum battery power tolerated by the powertrain, and the value minimizing Equation (19) is chosen

as the optimal command uopt(t) (Equation (10)). The process must be repeated for each time step of

the simulation.

The key idea behind this additional cost is to penalize the commands causing the battery temperature

to get further away from its slow-aging operating range and to favor the ones that get the temperature

closer. The weighting factor κbatt will allow a trade-off between fuel consumption and safe battery

temperature. Setting κbatt to zero when the battery operates in its slow-aging zone, there will be

no additional cost and only fuel consumption will be minimized. On the other hand, κbatt increases

when the temperature gets past the slow-aging zone, the higher the temperature, the higher the cost,

to prevent the temperature from rising further. On the opposite, the negative cost caused by negative
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values of κbatt when the temperature is too cold favors battery warming, once again to get it closer to the

slow-aging zone.

3.2.4. Results

The PHEV considered is provided with a parallel hybrid powertrain. Simulation results are based on

a quasi-static model of the vehicle and powertrain. The vehicle’s dynamics is given by Newton’s second

law. As for the hybrid powertrain, engine, electrical machine and battery efficiencies are computed using

look-up tables. The considered scenario is based on charge sustaining operation in normal weather; the

external air temperature (and initial cell temperature) is set to 25 ◦C and κbatt = 0 between 0 ◦C and

25 ◦C. The trip is made of a succession of the chosen cycles; the total length of the trip is 80 km. SOE

is controlled around 50% with a proportional integral control on the λSOE as in a real vehicle. Figure 5

displays the decrease in the cell temperature (%) as a function of the fuel overconsumption (%). It

shows a trade-off curve between battery health through cell temperature decrease and fuel consumption.

The same principle will be applied to take into account drivability in the minimization problem in the

next section.

Figure 5. Trade-off curve of the final cell temperature decrease (%) versus fuel

overconsumption (%) normalized with κbatt = 0.
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3.3. Drivability Constraint

As previously mentioned, the historical objective of EMS was to minimize fuel consumption only.

However, classical ECMS gives an erratic control behavior, especially when considering gear shifting in

the control vector (the top of Figure 6).

The problem of defining comfort is not straightforward, and studies, such as [6], show that simpler

criteria could be used in the EMS. Unlike fuel consumption, which can be easily evaluated, drivability

is fairly subjective. However, to assess the performance of a strategy and also the tradeoff between fuel

consumption and drivability, it is necessary to quantify drivability based on specific behaviors. The most
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common metrics are the number of events (or mean dwell time) on engine and gear states. Let us define

a generic criterion for discomfort:

Discomfort =
1

dcycle

kfinal−1
∑

k=1

β(M cin
k ,M cin

k+1) (20)

where k is the discrete time, dcycle is the cycle distance (m) and β a matrix of weights that are a function of

the kinematic mode M cin (e.g., gear shifting) that can be equal to |M cin
k −M cin

k+1| as in [6], (M cin
k −M cin

k+1)
2

as in [7]. The proposed methodology is to attribute a higher penalty to transitions most inconvenient for

the driver, implying, for example, torque interruption, jerk, engine start, etc. On the contrary, the more a

transition is unnoticeable for the driver, the lowest its penalty may be. Here, β, which could be considered

as a specific penalty for each possible transition, is a combination of engine events and gear events.

Figure 6. The effect of the drivability constraint on the engaged mode: (a) κcomf = 0;

(b) κcomf 6= 0).
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3.3.1. New Criterion

As shown in the two previous sections for other constraints, the Hamiltonian can be simply penalized

by an additional cost. Hence, to take into account the drivability constraint, a new Hamiltonian function

Hcomf is proposed with an additional cost on discomfort that multiplies the classical Hamiltonian

Henerg (Equation (11)):

Hcomf = Henerg + κcomf |β(M
cin
k ,M cin

k+1)Henerg| (21)

where κcomf is the tunable constant.
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3.3.2. Results

Simulation results are based on a quasi-static model of the vehicle and powertrain with five modes.

As shown at the bottom of Figure 6, the new Hamiltonian decreases mode shifting. The first study shows

that increasing κcomf increases comfort (Figure 7) for different cycles (New European Driving Cycle,

Artemis cycles and Worldwide Harmonized Light Vehicles Test Cycle).

Figure 7. Influence of κcomf on discomfort Equation (20) normalized with κcomf = 0.
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Moreover, as previously mentioned, only a simpler variable κcomf permits one to decrease every

drivability metrics (Table 1). The extra fuel consumption is computed with respect to κcomf = 0.

Table 1. Drivability metrics on the WLTC (Worldwide Harmonized Light Vehicles Test

Cycle) for different values of κcomf .

κcomf 0 0.01 0.05 0.1 1

Gear events 442 316 262 266 191

Engine events 150 140 120 114 102

Mean dwell time (s) 4.1 5.7 6.8 6.9 9.4

Events lasting less than 4 s 81 9 5 2 1

Extra fuel consumption (%) 0 0.6 3.28 5.4 15.6

Hence, the use of this new Hamiltonian provides a solution that is easily tunable, as shown in Figure 8

for different cycles. Moreover, it is shown that a trade-off between fuel consumption and comfort exists.
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Figure 8. Trade-off curve of the fuel overconsumption versus discomfort Equation (20)

normalized with κcomf = 0.
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3.4. Drivability and Pollutant Emissions Constraints

In Sections 3.1 and 3.3, it was shown that constraints on pollutant emission or drivability can be taken

separately. In this section, we will show that we can take both constraints into account at the same

time in the energy management strategy. Hence, by grouping Equations (13), (14) and (21), the new

Hamiltonian Hmix becomes:

Hmix = Hpollu + κcomf |β(M
cin
k ,M cin

k+1)Hpollu| (22)

with:

Hpollu = ṁf (u(t), t) + α
∑

i

ṁexhi
(u(t), Tcata(t), t)

σi

+ λ1(t) ˙SOC (23)

where κcomf is the tunable constant on the drivability and where α is the tunable constant on the

pollutant emission.

Figures 9–11 show the simulation results with a quasi-static model of the vehicle and powertrain with

five modes and a one-dimensional model for the catalytic temperature [29]. The simulation results are

charge sustaining constrained, with a binary search of the constant λ1 (Equation (23)). In each figure, the

variation of β, pollutant emission or fuel consumption are shown relative (%) to the value computed for

α = κcomf = 0 (reference point). Figure 9 shows that the comfort increases for each value of α. Indeed,

β decreases exponentially when κcomf increases for any value of α, as shown previously in Figure 7 for

α = 0. It can be noticed that α has a negligible influence on the drivability.
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Figure 9. The effect of α and κcomf on the drivability variation β relative (%) to the value

computed for α = κcomf = 0 (reference point).
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Figure 10 shows that the pollutant emissions decrease when α increases for each value of κcomf . Here,

κcomf has a great influence on the vehicle pollutant emissions, so that in order to maintain the pollutant

emissions to the level without drivability (with κcomf = 0), the value of α must increase. For example,

to get the same amount of pollutant emission as α = κcomf = 0 for κcomf = 0.2, the value of α must be set to 10.

Figure 10. The effect of α and κcomf on the pollutant emission variation, relative (%) to the

value computed for α = κcomf = 0 (reference point).
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Finally, as the constraint parameters κcomf and α increase, fuel consumption increases (Figure 11),

so that a trade-off appears between fuel consumption, comfort and pollutant emissions. Note that the

choice for the couple {α, κcomf} is guided by:

• a minimum and maximum frequency of gear/engine events, represented by the iso-lines of

Figure 9;

• the pollution standard, represented by an iso-line of Figure 10, that must not be exceeded;

• the maximum allowed fuel consumption, represented by an iso-line of Figure 11.

For example, a compromise setting could be α = 20 and κcomf = 0.05.

Figure 11. The effect of α and κcomf on the fuel overconsumption variation, relative (%) to

the value computed for α = κcomf = 0 (reference point).
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4. Conclusions

From these examples, it seems possible to find an energy management strategy that takes into account

a constraint (drivability, pollutant emissions, aging, environment). However, taking these constraints

into account is made to the detriment of fuel consumption (the existence of a trade-off). This trade-off

may sometimes be difficult to find, and it increases the complexity of the optimization problem, but the

generic tools developed in this paper should help to find an acceptable solution quickly.
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