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State and output feedback fuzzy variable structure controllers
for multivariable nonlinear systems subject

to input nonlinearities

Abdesselem Boulkroune - Mohammed Msaad -
Mondher Farza

Abstract This paper presents three fuzzy adaptive controllers
for a class of uncertain multivariable nonlinear systems with
both sector nonlinearities and dead zones: two first controllers
are state feedbacks and the last controller is an output feed-
back. The design of the first controller concems systems with
symmetric and positive definite control-gain matrix, while the
second control design is extended to the case of nonsymmetric
control-gain matrix thanks to an appropriate decomposition,
namely the product of a symmetric positive definite matrix, a
diagonal matrix with diagonal entries +1 or —1, and a unity
upper triangular matrix. The third controller is an output
feedback extension of the second controller. In this controller,
a high-gain observer is incorporated to estimate the
unmeasurable states. An appropriate adaptive fuzzy logic
system is used to reasonably approximate the uncertain
functions. A Lyapunov approach is adopted to derive the
parameter adaptation laws and prove the stability of those
control systems as well as the exponential convergence of
their underlying tracking errors within an adjustable region.
The effectiveness of the proposed fuzzy adaptive controllers
is illustrated through simulation results.
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1 Introduction

The design of robust adaptive controllers for multivariable
unknown nonlinear systems remains one of the most chal-
lenging tasks in the area of control systems. Based on the
universal approximation theorem [1], some adaptive fuzzy
control systems [2—11] have been developed for a class of
multivariable nonlinear uncertain systems. The stability of the
underlying control systems has been investigated using a
Lyapunov approach. The robustness issues with respect to
the approximation error and external disturbances have been
enhanced by appropriately modifying the available adaptive
fuzzy controllers. The cornerstone of such a modification
consists in a robust compensator which is conceived using a
sliding mode control design [3, 5, 6, 8, 10, 11] or an H”-based
robust control design [2, 4, 7, 9]. A key assumption in the
available fuzzy adaptive control systems [2—11] is that the
actuator dynamics may be reasonably approximated by a
linear model. This is more an exception than a rule in the
engineering practice.

The control problem of uncertain multivariable systems
with nonlinear input channels has received a remarkable at-
tention because of those ubiquitous actuator nonlinearities,
namely saturation, quantization, backlash, dead zone, and so
on [12, 13]. It is well known that the existence of input
nonlinearities may lead to poor performance or even instabil-
ity of the control system. It is thereby more advisable to take
into account the actuator nonlinearities in the control design as
well as the stability analysis. Decentralized variable structure
controllers have been proposed in [14—16] for a class of
systems with input sector nonlinearities and/or dead zones.



In[13, 17], the authors designed sliding-mode control systems
for nonlinear multivariable systems subject to both sector
nonlinearities and dead zones. The underlying results suffer
from two fundamental limitations. Firstly, the considered class
of systems is relatively reduced. Secondly, the gain reduction
tolerances of the nonlinear dead zones and upper bounds of
uncertain nonlinear functions are required to be known.

More recently, adaptive neural or fuzzy control systems
have been respectively proposed for a particular class of
multivariable nonlinear systems with unknown dead zones
and gain signs in [18] and [19]. These contributions suffer
from two restrictive modelling assumptions motivated by
technical purposes regarding the stability analysis and control
design. The first one consists in assuming a lower triangular
structure for the system under control while the second one
concerns the boundedness of the high-frequency control
gains. Moreover, an adaptive fuzzy control for a class of
multivariable nonlinear systems with unknown dead zones
has been designed in [20]. Note that, in [18-20], simple dead
zones having linear and nonlinear functions outside the dead
band have been considered.

In this paper, one aims at designing three fuzzy adaptive
controllers for three different classes of uncertain nonlinear
multivariable systems containing both sector nonlinearities
and dead zones, namely:

—  Multiple input, multiple output (MIMO) systems with
a symmetric positive definite control-gain matrix and
measurable states

—  MIMO systems with a nonsymmetric control—gain matrix
having non-zero-leading principal minors and measurable
states, and

—  MIMO systems with a nonsymmetric control—gain matrix
having non-zero-leading principal minors but with states
not being available for measurement.

Though this work borrows from the available results, it
presents a fundamental contribution to the fuzzy adaptive
control of uncertain multivariable nonlinear systems from an
applicability point of view. The main contributions of this
paper are emphasized below:

(a) Unlike in contributions [13, 17], the class of the consid-
ered systems is relatively larger and the gain reduction
tolerances of the nonlinear dead zones and the upper
bounds on uncertain nonlinear functions are not assumed
to be known. These bounds are indeed estimated using
adaptive fuzzy systems.

(b) And compared with contributions [18-20], there are three
features that are of practical interest. Firstly, the considered
class of systems is larger as the modelling assumptions
made in [18, 19] are relatively restrictive, namely lower
triangular control structure with bounded high -frequency
control gains. Such modelling requirements are mainly

motivated by stability analysis and control design pur-
poses. Secondly, the considered model of the input non-
linearity includes sector nonlinearities and dead zones and
is hence relatively larger than the one considered in
[18-20]. Thirdly, the nonsymmetric control-gain matrix
is appropriately decomposed into a product of a symmet-
ric definite positive matrix, a diagonal matrix with +1 or
—1 on the diagonal and a unity upper triangular matrix. It
is worth noticing that the diagonal matrix elements are
nothing than the ratios of the signs of the leading principal
minors of the control-gain matrix.

(¢) Moreover, unlike in the references [13, 17-20], in our
third controller, the system states are assumed to be
unknown. In fact, a high-gain observer is designed to
estimate those missing states.

2 Notation and problem statement

Consider the following class of nonlinear multivariable sys-
tems described by:

P
y(1rl) = f1(x) + Z gl_;(x)dsj(”j)’
=1

.p
y,(»r") =/, + Z 2, ()P (u;), (1)

_ T . )17 .
where x; = [x;1,Xi2, ..., Xir,] = [y,-,y,-,...,y,- } , for i=1,
..., p, is the state vector of the subsystem i, x=[x7,x3,
x}1"eR” is the overall state vector with r=r+...+r,
u=[u1,...,u,,]TeR” is the control input vector, y=[y,
..,y p) €R” is the output vector, f;(x) and g;(x),i,j=1,...,
p are unknown continuous nonlinear functions, and
D w)=[D1(u1),Dr(u>),.. .,@,,(u,,)]T is a nonlinear input func-
tion vector satisfying some properties which will be given in
Section 2.2.

Let us denote

Y = [ (lr‘)...y,(,r")] , F(x) = [fl(x)~~-fp(x)r’
gll(x) glp(x)
G(x) = : :
21 (%) 8pp(¥)

Then, the system (1) can be rewritten in the following
compact form:

W) = Fx) + G(x)D(u) (2)

where F()eR” and G(.)eR? ™.



Remark 1 The system (1) represents a class of MIMO non-
linear systems with input nonlinearities @ (u) (i.e., with dead
zone and sector nonlinearities). It is worth noticing that the
input nonlinearities exist widely in the practical control sys-
tems, such as mechanical connections, hydraulic servo-valves,
piezo-positioners, and biomedical systems, but they are gen-
erally neglected in the control design for simplicity purposes.
Also, the MIMO system (1) without input nonlinearities has
been considered by many literatures [2—11] and is of higher
practical significance. Note that many practical systems can be
represented in the form of the MIMO nonlinear systems (1)
such as robotic systems, electrical machines, mechanical
systems, and chaotic systems.

The objective of this paper is to design a stable adaptive
control system allowing the system output vector y to follows
a specified desired trajectory yd=[yd1,...,ydp]TeR”. We

. -1
assume that the vector X = [ V1,9 415 ...,ygll ),ygll), oo Vs

).}dpa "'ayg;p 1)’ g;l’)]T
for measurement. Then, x, € £2,, cR"™? with {2,, is a known
compact set.

Let us define the tracking error as

is continuous, bounded, and available

€L =V1"Va1
1 (3)
ep = yp_ydp
and the filtered tracking error as
T
S=[S1,....5,)] (4)
with
d ri—1
S = [E_'_)\l] e; for )\l’>0, Vlzl,,p (5)
Then, one can rewrite Eq. (5) as follows
Si=XN"e + (r—1)\ e 4 + (rl-—l))\l-el(-r’fz) + el(-r’fl)
with i=1,....p (6)

Notice that if one chooses A; >0, withi = 1,...,p, then the
roots of the polynomial H,(s) = \," " 4 (r—1)\,/ s+ - +
(r—1)Nis" ™2 + 5771 related to the characteristic equation of
S;=0 are all in the open left-half plane [21].

The relation (6) can be rewritten in the following compact
form

S;=ClE; (7)

with
E = [ei él-...el(-r’fz) el(-r'fl) (8)
Cl = N7 DN L (e ] 9)

Consequently, the vector S takes the form:

S=C'E (10)
where
CT = diagClCT ... CT] - (11)
E=[EE] .. EﬂT (12)
(rx1)
And the dynamic of S; is described by:
S;=ClE;+¢é", and i=1,....p (13)

with
Cl=1[0 N7 (r=D)N" 2. 0.5(r=1)(r2)N* (r=1)\]]
(14)

The dynamic of S can be written into the following
compact form

S=CTE +¢ (15)
where
T _ g T AT T

CT = diag [C,lc,2 c,p] - (16)
T

= [e(f” . eﬁr”)] (17)

with

) = y(r)—yg) (18)

()]

where y(") = [y(l”) Wy ] is previously defined and
T

¥ = [ BTSN ygp")] : (19)

From (18), one can write (15) as follows
§=CIE+y"~Y (20)



Thereafter, (20) will be used in the development of the
proposed controllers and the stability analysis.

2.1 Description of the fuzzy logic system

In this paper, a zero-order Takagi—Sugeno fuzzy system will be
used to approximate unknown nonlinear functions. The basic
configuration of a fuzzy logic system consists of a fuzzifier, a
fuzzy inference engine, and a defuzzifier, as shown in Fig. 1.
The fuzzy inference engine uses the fuzzy IF-THEN rules to
perform a mapping from an input vector x” = [x1, X2, ..., X,]
€R" to an output / €R . The ith fuzzy rule is written as

RY - if x is A} and...and x, is 4 then f is f* (21)

where 41,45,...,and A, are fuzzy sets and f" is the fuzzy
singleton for the output in the ith rule. By using the singleton
fuzzifier, the product inference and the center-average
defuzzifier, the output of the fuzzy system can be expressed
as follows:

oy (T ()
) = 5 ) -

e

where j (x;) is the degree of membership of x; to 4}, m is
the number of fuzzy rules, 0 '=[ /', /%,..., /™] is the adjustable
parameter vector (composed of consequent parameters) and

y =[y' Wz .. y"] with
oy (M)
" )

being the fuzzy basis function (FBF). Throughout the
paper, it is assumed that the FBFs are selected so that
there is always at least one active rule [1, 22-24], i.e.,

2 (M () > 0.

(23)

Fuzzy Rule Base

X
|Defuzzifier ! fé_)

| 1=

Fuzzifier

Fuzzy Inference
Engine

Fig. 1 The basic configuration of a fuzzy logic system

It is worth noting that the fuzzy system (22) is commonly
used in control applications. Following the universal approx-
imation results, the fuzzy system (22) is able to approximate
any nonlinear smooth function on a compact operating space
to an arbitrary degree of accuracy [1]. Of particular impor-
tance, it is assumed that the structure of the fuzzy system,
namely the pertinent inputs, the number of membership func-
tions for each input and the number of rules, and the mem-
bership function parameters are properly specified before-
hand. The consequent parameters ¢ are then determined by
appropriate parameter adaptation algorithms.

2.2 Input nonlinearity

The mathematical model of the input nonlinearity (i.e., the
sector nonlinearity and dead zone) under consideration is
described by

Gip () (g — wiy ), wy > uyy,
Di(u;) = € 0, —u- < u; Sugy, (24)
O (i) (w; + i), wy <~y

where ¢;.(u;)>0 and ¢;_(u,;)>0 are nonlinear functions of u,
and u;,>0 and u; >0 are known constants. The involved
modelling assumption is

Assumption 1 The input nonlinearity @ ;(u;) satisfies the
following important properties:

(ul-—ul-+)d5i(ul-)2ml’f+(ui—uH_)z, for u; > u;y, (25)
(u; + wi)Di(u;) >m; (u; + ul-f)z, for u; < —u;,
where m;+ and m,— are unknown constants which are called
“gain reduction tolerances” .

It is worth mentioning that the models (24)—(25) allows to
consider both dead zones and sector nonlinearities with re-
duced prior knowledge. Indeed, the gain reduction tolerances
m’. and m” are unknown, unlike in [13] to [17], and the input
nonlinearity is only characterized throughout the property (25)
together with the knowledge of the constants u. and u_. By
the way, notice that the dead zone considered in the contribu-
tion [19, 20] is a particular case of the above general form.

3 Design of state feedback fuzzy adaptive controllers

In this section, two state feedback fuzzy adaptive variable
structure control designs are proposed up to an assumption
on the structure of the control—gain matrix. In the first one, the
control-gain matrix is assumed to be symmetric and positive
definite. Such an assumption is relaxed in the second design
where the control-gain matrix may not be symmetric and



positive definite provided that the signs of'its leading principal
minors are known.

Here, for both controllers, we assume that the system outputs
vi, i=1,...,p, and its jth derivatives (for j=1,..., r;—1) are
available for measurements, i.e., all state information are
available.

3.1 The first state feedback fuzzy adaptive controller

In the following, we present a fuzzy adaptive variable—struc-
ture controller for the class of system (2) under the following
assumption on the control-gain matrix.

Assumption 2 The control-gain matrix is symmetric, positive
definite, and of class C' with the following property

0g;(0)/ay"™ =0 ¥i=1,2,..p and j=1.2,...p.

Such an assumption is not too restrictive in nature as there
are many physical mechanical and electrical systems whose
dynamics can be described by Eq. (2) with symmetric, positive
definite, and class C' control-gain matrix [25]. The positive
definite property of the control-gain matrix, which is closely
related to the system controllability, has been already required
in recent fundamental contributions on adaptive (fuzzy or
neural) control of multivariable systems. Moreover, the required
property on the partial derivatives of the control-gain matrix
ensures that the time derivative of its inverse, i.e., dG~ '(x)/dt,
depends only on the state vector x (i.e., it ensures that dG ' (x )/
dt does not depend on the system input u). Notice that the
following fundamental results could be adapted, up to some
appropriate modifications, to the case where the control-gain
matrix is symmetric and negative definite.

By substituting (2) into (20), the dynamics of S become

S=CTE + F(x) + Gx)d(u) -y (26)
Letting G (x)=G " '(x), one has
G1(x) S = Gy (x) [CfE ) 4 F(x)| + &(u) (27)

For stability analysis and control design simplicity purposes,
it is more advisable to rewrite the dynamics of S as follows

%Gl x)S+ Gi(x)S = %Gl(x)S +Gi(x) [CTE-Y 4+ F(x)| + ®(u)
= a(x,v,S) + P(u) (28)

with

alx,v,S) = [oq(x,v,S), a(x,v,S),...,ap(x, v,S)]T

= (1/2)G1(0)S + Gi(x)[v + F(x)]

and

v=C'E —yg)

This form makes it possible to introduce a further assumption
that has to be made to get the fundamental result we are
concerned by, namely

Assumption 3 There exists an unknown continuous positive
Sfunction @;(x) such that |oy(x,v,S)|<na;(x) Vxef2,cR"
with n = rn%n {n,} wheren;=min{m; ,m; }

Notice that such an assumption is not restrictive since
@;(x) is assumed to be unknown. Moreover, since v and
S are functions of (x, x;), x,€L, and a,;(x,v,5) is a
continuous function, such a function always exists. The
unknown continuous nonlinear function @;(x) can be
hence approximated, on a compact set {2,, by the fuzzy
systems (22) as follows:
i, 0) = 6 v () (29)
where y;(x) is the FBF vector, which is fixed a priori by the
designer, and 6; is the adjustable parameter vector of the fuzzy
system (composed of consequent parameters). Its adaptive
law will be designed later.

According to [1, 26, 27], the unknown continuous function
@;(x) can be optimally approximated as

ai(x) = 51-(x, 91*) + 0;(x)
(30)
— 07y x) + i)

where §,(x) is the fuzzy approximation error and 6; is the
optimal parameter vector defined by

07 = arg min lsup a;(x) - 5:’(% 0:)] (31)

0; xelx

Note that this vector is mainly introduced for analysis
purposes as its value is not needed when implementing
the controller [28-31]. As in the open literature [1,
25-27], one assumes that the used fuzzy systems do
not violate the universal approximator property on the
compact set (2,, which is assumed large enough so that
the input vector of the fuzzy system remains in (2, for
the control system. It is hence reasonable to assume that
the fuzzy approximation error is bounded for all xe{2,,
ie.,

|(S[()C)|Sg[, Vx e Qx;



where §; is an unknown constant. From the above analysis,
one has

&-(x, 9[)_6[( ) 5 ()C 9 )

= 51-()6, 9[)_6

(x 9*) + a (x, 9:-’)—61-()6),
l-(x, 9?)_5[()6),
0"y (x)=6:(x) (32)

wheregl- = 0;—0; is the parameter estimation error.
The following fuzzy adaptive variable structure controller
is proposed to achieve the control objective.

—pi(t)sign(S;)—ui-, S >0,
u=1+< 0, S; =0, (33)
_pi(t)Sign(Si) + Uit Si < 0)

with

pi(t) = ko + ku|Si| + eiT‘//i(x)a Vi=1,...p

(34)
koi = —Yoi00ikoi + Yoil Si| for ko;(0) > 0

91, — _'yll-Ull'e[ =+ ’)/ll-|S[|l//l-(x) with 911(0) >0 (35)

where ~o;, V15> To0i» 0155 k1;>0 are design constants, and ko,
and 0, are the online estimates of the uncertain terms k,, = &;
and 6, respectively. It is important to remark that if k;(0)>0
and 0 ;(0)>0 fori=1,...,p and j=1,...,m, it follows from the
adaptive laws (34—35) that their respective solutions satisfy
ko;(t)>0 and 6 ;(¢)>0, for £>0.

Multiplying (28) by S” and using Assumption 3, one has

. N | 1
2—177STG1 (x)S + %STGl(x) S = 5STa(x, v,S) +—STd(u)
(36)
<Z IS, (x) + — Squ( )
And using (32) and (36) yields
1, . 1
Q—USTGl(x)S+5STG1 S<Z |S;[ai (x) STQ5 (u)
P
<= [Sifko; Z NIAZE: +Z|S ko
i=1 i=1
. T 1 T
2 1167 yi(x) + 5T (w) (37)
i=1
where 0; = 6, — 0" and ko; = ko; — ki = ko; — 0;.

This allows to state the fundamental result concerning the
first fuzzy adaptive control system.

Theorem 1 Consider the system (2) subject to Assumptions
1-3. Then, the control law defined by Egs. (33) to (35)
guarantees the following properties:

o All the variables involved in the closed-loop system are
uniformly ultimately bounded (UUB).

o The filtered tracking errors S; of the control system expo-
nentially converge to an adjustable domain defined by:

o\
(ZS,:{SA |Si|§< iU 1>
Og1 g

where 1,11 and o g1 will be defined later.

Proof Let us consider the following Lyapunov function
candidate:

LA LA e
—STG —k ) — 38
! z::v 227 G8)
Its time derivative is given by
201
V——STGl()SJr ST S+Z Koiko: + Z—--
i=1 Yoi i=1 i
(39)

One can easily show from (25) and (33) that
u; < —u for §; >0 = (ul-—l—ul-f)@l-(ui)

=m_(u; + Mi—)zzn(ui + Mif)z

and
w; >y for S; < 0 = (w; —uy )Pi(u;)

= m, (= wis ) 20w — i )?

From this analysis and (33), one can also conclude that for
S;>0 one has

(s + i) Bi (u;) = —p,(1)sign(S))Pi(us) =mi g} (1) [sign(Si)|* =g} (1),

(40)

and for S;<0 one has

(i) Pi () = —p,(t)sign(S:)Pi(u;) =m, p? (1) [sign(S;)]* =np} (1),
(41)

Then, for §;<0 and S;>0, one has
—p,(t)sign(S;)Di(u;) =np; (1) (42)



Using (42) and the fact that S7>0 and S,sign(S;)=|S,| yields

—pi(1)S:sign(S;)Pi(u;) =np; ()S7

2 2 (43)
= np; (1)|S]
Finally, because p;(¢)>0, thus for all S; one has
Si®i(ur) <=np(1)|Si] (44)

And using the expressions (34), (35), (44), and (37), (39)
becomes

1 P
V<Z 1S;[os + Z 15,167, (x) Ez
_ P
—Z ooikoikoi —Z oy’ Z |Silko: + Z 1Si[67 wi(x)
i=1 i=1

i=1

P o B
"‘Z _Pi(t)|Si|_Z UOikOikUi_Z 016" 0; = _Z k1:S?
i=1 i=1 i=1

i=1

o o
T
—E UOikOikoi—E 016" 0;
i=1 i=1

i=1

(45)

One can henceforth easily check that

00i

—o Oi%OikOif k + —kaz

_ %

2

—1,076,< U‘l ik

1'

And using the previous inequalities, (45) becomes

. ' 9 0’01 Oli Z 00i
<> jkh-sl.—E Ok § j +> it
i=1 i i=1

i=1
P
+ Z il (46)

i=1

9*

Taking into account the Assumption 2, there exists a pos-
itive scalar o4, such that G(x)>0 40/, and henceforth

1
STG™ (x)S = STGy(x)S<—|IS|? (47)
Og0
And using (46) and (47) yields
Vf_ﬂl V 4+ m (48)
with

P P
n=3 P+ e

i=1 i=1

where p, = mm{mm{Qnogokl,} rnm{fyoloo,} rnm{fyhol,}}

Multiplying (48) by 1" yields

i ( Ve/ht) Sﬂ-leﬂ’lt

49
7 (49)
And integrating (49) over [0,¢], one has
0<V (1)< n —+ (V(O)—ﬂ> et (50)
Hy Hy

Therefore, all variables of the control system, i.e.,
koi, 0;, S;, E and x are UUB. And hence the input u;
is bounded.

With bearing in mind of (38), one can define V' (0) as
follows

V(0) = 5-5(0) G (x(0))S(0) + 53— (ku(0) k)’

23 Leora) @0 51)

Since G(x) is symmetric and positive definite, i.e., there
exists an unknown positive constant o4, such that:
Gi(x)>0 411, it follows from (50) and (38) that

G (o))

Then, the solution of S; exponentially converges to

a bounded adjustable domain defined as follows (25, =
1/2

{Si| |Si|§(ﬁﬂ> } . This ends the proof of the theorem.

Tgl M

Remark 2 Since the fuzzy approximation (30) is only guaran-
teed with a compact set, the proposed stability results in this
paper are semiglobal in the sense that for any bounded initial
states, there exists a fuzzy controller with sufficient large
number of fuzzy rules such that the function approximation
(30) holds for possible operating region.

Remark 3 According to the definition of i1 and 74, it can be
seen that the size of p; depends on the controller design
parameters yo;, Y1i, Ooi» 015> and k; (which must be chosen
strictly positive) and that of 4; depends on the controller
design parameters o; and o ;. It is very clear that if we
increase 7;, v1; and k; and decrease o; and o y;, it will help
to reduce the term (2777r1/0g1u1)1/ 2. This implies that the
filtered tracking errors S; and the tracking error £ can
be made arbitrary small by appropriately choosing those
design parameters.



3.2 The second state feedback fuzzy adaptive controller

The fuzzy adaptive controller presented above is only
applicable for nonlinear systems with a symmetric and
positive definite control-gain matrix, e.g., robotic systems
and some electrical machines. Such a property is not
satisfied for several physical systems, e.g., the visual
serving and the automotive thermal management systems
[32]. In the following, one presents a fuzzy adaptive
controller in the case where the control-gain matrix is
no longer symmetric and positive definite using a suitable
matrix decomposition that has been already introduced in
[20, 25, 33-35].

3.2.1 Decomposition of the control-gain matrix

If the control-gain matrix is with non-zero leading
principal minors [36], it can be always decomposed into
the product of a symmetric positive definite matrix, a
diagonal matrix whose elements are +1 or —1 and a
unity upper triangular matrix as pointed out by the following
result.

Lemma 1 Any real matrix G(x)eR? P with non-zero leading
principal minors can be decomposed as follows [34, 35]:

G(x) = Gs(x)DT(x) (52)

where G ((x)eRP™? is a symmetric positive definite matrix,
D eR”™? is a diagonal matrix whose elements are +1 or —1
and T(x)eR? P is a unity upper triangular matrix.

Proof See [34].

It is worth noting that the decomposition (52) of the
matrix G(x) is very useful. The symmetric positive definite
matrix G(x) will be particularly exploited in the stability
analysis. The unity upper triangular matrix 7'(x) allows for
algebraic loop free sequential determination of the control
components. The diagonal elements are nothing than the
ratios of the signs of the leading principal minors of the
control-gain matrix. This implies the following facts when
the control-gain matrix has non-zero leading principal
minors.

* If G(x) is positive definite, then D =1p,

* If G(x) is negative definite, then D=—1,, and

* IfG(x)is indefinite, the diagonal elements of the matrix D
are +1 and —1.

3.2.2 Fuzzy adaptive control design

Consider the system (2) subject to Assumption 1 and the
following assumption.

Assumption 4 The control-gain matrix is of class C', has
non-zero leading principal minors of known signs and sat-
isfies the following property

agy(x)/ayl(’f” =0, Yi=1,2,...,pand j=1,2,....p.

Using the matrix composition (52) and Eq. (20), the
dynamics of S can be rewritten as follows.

G '(x)S= G (x)[v+ F(x)] + DT(x)®(u) (53)
with
V= CrTE—yg).

Letting G;(x)=G5 '(x) and F(x,u)=G, ' (x)[v+F(x)]+
[DT(x)—D]®(u), Eq. (53) becomes

Ga(x)S= Fy(x,u) + D P (u) (54)

Now, the following change of the variables for stability
analysis and control design simplicity are introduced

S=D"s (55)

orS; =dyS; asD=D"=D " and d;;=+1 or —1.
This allows to rewrite (54) under the form

Gyo(x) 5= DVF(x,u) + D(u) (56)

where Gsz(x)=D_le1(x)D. Due to the special forms of the
matrices D and Gy (x), G2(x) preserves the important
properties of the original matrix G (x) (or G(x)). In-
deed, one can easily show that G,(x) is also symmetric
and positive definite. This property is of fundamental
interest when investigating the control system stability.

Similarly to the first fuzzy adaptive control system, (56)
can be rearranged as follows

S
Goa(x) S+ 5 GoS = a(z) + B(u) (57)
where a(z) = [a1(z1), 2(Z), ..., p(3)] " = D7 Fi(x,u)+
1 Go(x)S » with z = [2{,25, o Zh
By carefully examining the expression of F';(x,u) and «(z) ,
the elements of the vector z can be selected as follows:

Z1 = [xT,ST,uz, ...,up]T

Zo = [xT,ST,m, ...,u,,]T
i o . (58)
Zp1 = [x ) ,up]

z, = [, 87"



It is clear from the propriety of the matrix of DT'(x)—D
that z; depends on control inputs u,,...,u,, Zo depends
on us,...,u,, and so on. The nonlinearities (z) has an
upper triangular control structure, allowing thereby for
algebraic loop free sequential determination of the control
variables.

Let us define the following compact sets

T T r
.Qg’ = {[}C ,S auH—l)"')MP] |x€QxCRr,Xd€.Qxd}

for i=1,2,...p-1

and

(%, = {[x".8T] [xe2cR" xqe82,, }

and introduce the following assumption.

Assumption 5 There exists an unknown continuous positive
function @;(z;) such that

()

The choice of the vectors z; , i.e., the input arguments
of the unknown functions @; , is not unique. Indeed, since
S and u are functions of state x and x,, then it can be
casily seen that all vectors z; are functions of x and x,,
e.g., one can choose z; = [xT,xdT]T orz; = [xT,E"] " for
i=1,2,...,p. Moreover, since x, is bounded, one can
choose z; = x .

As in Section 3.1, the unknown continuous function @;(z;)
can be approximated by a fuzzy system as follows

<na; (Zl) , VZ;ef2;, where ) = min {n,}.
1

o (z-, 9) =0Ty, (z-) (59)

where y,(z); is the FBF vector, which is fixed a priori by the

designer, and 6; is the adjustable parameter vector of the fuzzy
system. Furthermore, the functions @;(z;) can be approximated
optimally as follows:

Qi (z-) =a; (Ei,el’.’) +6; (z-) =0Ty, (z-) +6; (z-) (60)

and the fuzzy approximation error is assumed to be bounded
as usual [1, 26, 27], i.e.,

5 (z-)

where §; is an unknown constant.

Sg[, VE[E.QE’

From the above analysis, one has

Q2 0:)—u(z) =@z, 0:)—a (20, 07) +a: (2, 0;)—ai(z),

=ai(z1,0,)~ai(z:,0;)—6,(z1), (61)

~T

=0, yi(Z:)—0i(Z:)

The following fuzzy adaptive variable—structure con-
troller is proposed to perform the required tracking control
objective:

—pi(t) sign (S;) —u;-, gi >0,
Ui = 0) o §i = 0) (62)
—ﬁl-(t)sign(Si) + Uy, S; <0,

with

pi(t) = koi + k| Si| + 6 wi(z:) Vi=1,....p
. ) (63)
k{)l' = —')/01-0'0[]{0[ + 701’|Sl'|5 with kol(O) >0

Si

b = 10,010+ 71,|Si|wa(z1), with 6;(0) > 0 (64)

where ~vo;, V15> To0i» O 145 k1;>0 are design constants, and ko,
and 6, are the online estimates of the uncertain terms k), = ¢;
and 6, respectively.

Multiplying (57) by 5" and using Assumption 5 yields

1 7. — 1= = 1= 1—r
— 8 Go(x)S+—-8 Go(x)S==8 aZ)+—-85 @(u
o 2(x) ; 2(x) ; ()77 (u)
(65)
_ 1
<Y [Si) + 5 o)
i=1
And taking into account (61) and (65), one has
L S oS + L5 G 5= Sl + L5 o)
27] 52 n s2 —i:I i|i\&i n
p — ~ ~
S_Z ISi| (k()i + eiT'//i(Ei)> (66)
i=1

)4 _ 1_
+2 [Sil (ko + 07 wi(z) +. 5" @)
i=1

where 0; = 0,—0" and ko; = ko—k; = ko0, -

Theorem 2 Consider the system (2) subject to Assumptions 1,
4 and 5. Then, the control law defined by Egs. (62) to (64)
ensures the following properties:

* Al the variables in the closed-loop system are UUB.



o The filtered tracking errors S; of the control system expo-
nentially converge to an adjustable domain defined as:

5 1/2
P |S|<( n ”2)
Og2 [y

where 0 g satisfies 0 ol , <G 3o(x), To=m1, and

My = rnin{rniin {2nogkii}, ml.in {70901} mlm {’711'011'}}-

Proof 1t is carried out using the following Lyapunov function
candidate

V4
=—S Goa(x Z

(S |

1~
Vi

Since this proof is very similar to that of Theorem 1, it is
omitted.

4 Design of the output feedback fuzzy adaptive controller

In previous section, fuzzy adaptive variable structure control-
lers have been developed for multivariable systems with ac-
tuators nonlinearities using the state feedback, based on the
assumption that all the states system are measurable. It may be
impossible in reality to measure all the system states [37, 38].
In the case where only the output vector y=[y1,...,yp]T is
available, an observer is needed to estimate y¢’, for j=
1,...,r;—1. Below, a high-gain observer [39-41] is used to
reconstruct the missing states of the system.

Lemma 2 Suppose the function y(t) and its first derivatives r;
are bounded. Consider the following linear system, for i=1,...,p:

ET i1 = T
ETip = Tp3
: (68)
ET iy, = _bi17Tir,_'"_bi(r,—l)ﬂiz_ﬂil +y;

Where ¢ is any small positive constant, the param-

eters b;, b(, -1y are chosen so that the polynomial
s bysUTY 4 by, s+ 1 is Hurwitz. Then, there
exists positive constants h k =2,...,r;and fori=1,....p, and
t* such that for all t>t* we have:

7T'

A = e k=1 (69)
Tilket) _ 0| < k=1, .. 1 70
E—k Vi | =ERi(k+1)s =L .., ( )

where w; = ;. + b1y + 0 + i) Tt w denotes
the kth derivative of w;, and |w' )|<h ke

Proof The proof of this lemma can be found in [41, 42].

Now, let us consider the system (2) subject to Assumptions
1, 4, and 5. Having the observers (i=1,...,p) in (68), we can
define the following variables:

T T
2 ’ .
W= |:07W1(')7 7W§r):| 3 1217~--7P7 W= [W{7 W§77W;:| 5
T
A T T T
7T-l:[77-1'1777-1'27~~~77rir,] ) 1217~--7P7 ™= |:7r177r27~~~77rp:| )
T
- T2 Ti3 i 17T ~ r.rr
Xi = xil7?78_277~”78r’,l s l:17~~~7p7x: l7x27"'7xp ’
T T
— ; (ri=1) - _ | 1 T
Xdi = [Ythdu o Vi v I= 1Py Xa = (X Xy Xgp|
T~
3, C (xl_xdl>
~ Tl
Sp G é‘p xdp)

Now, we can show as in [39, 40] that S and its dynamics
can be given by:

R Cciw,
S=5--¢| =S§-<C'w (71)
T
crw,
§=S—=<CT W (72)

The vectors Cy, ...,
section 2.

From (20), (52), and (72), the dynamics of S can be
rewritten as follows.

C, have been previously defined in

G (x)§= G, (0)v+ F(x)] + DT(x)P(u)=G,' (x)C W
(73)
with v=CTE—-y{). Letting G,,(x)=G,'(x) and

Fi(xu)=G, ' (x)[v+F(x)]+ [DT(x)-D]®(u), Eq. (73)
becomes

~

Gy (x)S = Fy(x,u) + DB(u)—<Gyy (x)CTW (74)

Now, we use the following change of coordinates
S=D'S (75)

Recall that D=D”=D""'. This allows to rewrite (74) as

Gyo(x) S=p! Fi(x,u) + ®(u)-Gu(x)D'CTW (76)

With G4»(x)=D"'G4(x)D.



Similar to the previous section, (76) can be arranged as
follows

1. = .
Gox) S+ 5 GaS = a(z) S B(u)-eGo()D ' CT W (77)

where a(2) = [a1(21), 2(22), -, 0 (3)]" = D7 Fy(x,u)+

2
linearities «(zZ) has an upper triangular control structure,
allowing thereby for algebraic loop free sequential determina-
tion of the control variables. Then, the inputsZ; can be selected
as in the previous section. The functions «;(Z;) are assumed to
satisfy Assumption 5.

As in the previous section, the unknown continuous func-
tions «;(Z;) (fori=1,..., p) can be approximated by adaptive
fuzzy systems as follows

. = T
$Go(x)S > withz = [E{,EQT .. ET} . Recall that the non-

a(2.0) = 07wi(%) (78)

where EI is an estimate of zZ; . The elements of EI can be
directly determined from the designed observers (68).
Similarly to the previous section, we have

o) -0 ) T (E) o)
+07[wi(2) ()] (79)
This fuzzy approximation error 0;(Z;) + 91’.‘T [l//l- @) -y, (El-)]

can be assumed to be bounded as usual [1, 26, 27], i.e.,
one has

(=) + 67 [wi(2)-i(=) || <5 vz (80)

Let us introduce the following assumption

Assumption 6 We assume

~T . ~2
£S5 Gu)D'CT WgamHSH Yen (81)
1

where k; and k, are unknown constants.

Remark 4 Note that Assumption 6 is not restrictive for the
following reasons:

.« W is generally assumed to be bounded, please see
[39-42].
*  Gyi(x) is a symmetric positive-definite matrix, i.e., 3 04

=T = =012
>0 such as G,1(x)20,1. Then, S Goo(x)S< 1 HSH .

The following fuzzy adaptive variable—structure controller
is proposed to achieve the control objective:

—p;(#) sign (§1> ~Uj-, §1’ >0,
U= 0) §i = 0) (82)
_b—\i(t)sign(gl) +uiy, §; <0,

with

=

p:i(t) = koi + ku|S

+91.T1//l-(’2}>, Vi=1,...p

§1’ , kol(O) >0

1

feoi = —Yoi0ikoi + Yoi

S

9;’ = 71,010 + 71| Si |V; (2)5 with 6;(0) > 0 (84)

where vo;, V1iy Tois 011, k1;>€K are design constants, and

ko; and 0; are the online estimates of the uncertain terms
= * .

ky; = 6; and 0, respectively.

~T
Multiplying (77) by S  and using Assumptions 5 and 6
yields

1 e 1. Lol o 1_g € 7 o
Lot 5= G0 5= 2T a(?) + ~ B(u)- 227G (x) (D CT W
oS G.\z(x)s+7ls 2(X)3 S (’(Z)+7]S (u) 7S 2 (%) (. )

(85)

from (79) and (85), one has

+ §1’

i

I
-

(%Oi + 0 vi (Z))

2
o+ on |

§TG,V2(X) §TGs2(x)§S_

L)
SR

1
2n

+ i 5| (ko +00ui(3)) +

1
i=1 n

1

~T
S

+ eRa
(86)

where 0; = 0,07 and ko; = ko—k; = ko0, -

Theorem 3 Consider the system (2) with observers (68)
and subject to Assumptions 1 and 4-6. Then, the control
law defined by Egqs. (82) to (84) ensures the following
properties:



o All the variables in the closed-loop system are UUB.
o The filtered tracking error S; converges to an adjustable
domain which can be defined by:

m 12
25 =451 Isis(2L 2) "y aw
Og2 M3
where 0 g, satisfes Ogolp, > Gy (%), W > ||CTW||
P
Ty = 21 ”“’k{‘)? + Z 2L |9*|| + eka and
1

fl3 = min

{mm {2nogs(kii—eki)}, mm {Yoi00 } mln {v01}} -

Proof 1t is carried out using the following Lyapunov function
candidate

1 27 2_'_12": LA
2_S 5 i=1 711 zz:_ )

Since this proof is very similar to that of Theorem 1, it is
omitted.

Remark 5 Two notes are worth to be made. Firstly, in the case

where u;.=u;_=u,, the expressions (33), (62), and (82) are
respectively simplified as

up = ~(p; (1) + ui)sign(S;) (88)
U = —(ﬁi(t) + um) sign(@-) (89)

U = —(ﬁ-(l) + um) sign(i-) (90)

where

pi(t) = koi + ki Si| + 0] wi(x),
.(El) and
i)

Secondly, the sign function has to be replaced by any
equivalent smooth function to deal with the chattering effects
[43-45].

pi(t) = koi + k1| Si

A()—kOI"‘klz

Remark 6 We can show without any technical difficulty that
the proposed controller remains applicable for MIMO system
(2) free of the input nonlinearities (i.e., in the case where u; =
u;-=0, and ¢, (u)=¢,(u;)=1).

Remark 7 In the proposed adaptive laws, the o — modification
technique is used to prevent parameter drift. Also, we can use
a projective operator method (1), and e — modification method
in place of o — modification technique.

Remark 8 Table 1 summarizes the comparison between the
three fuzzy adaptive controllers proposed in the paper:

Remark 9 Although the class of systems considered in our paper
and that in [13] are all completely different, a simple theoretical
comparison is made here and it is summarized in Table 2.

5 Simulation results

Simulation studies are carried out to show the effectiveness of
the proposed adaptive fuzzy controllers. Two control prob-
lems are considered to this end. The first one concerns a two-
link rigid robot manipulator (its model has naturally a sym-
metric control-gain matrix), while the second one concerns an
academic multivariable nonlinear system (its model has a
nonsymmetric and indefinite control—gain matrix).

5.1 Test of the fuzzy adaptive state feedback controllers
5.1.1 Example 1 (Test of the first controller)

In the following, one presents simulation results showing the
performances of the first controller applied to a two-link rigid

Table 1 Comparison between the three proposed controllers

Type of the Assumptions made
controller
Controller 1 A state feedback The matrix G(x) is symmetric and
controller positive definite

The state vector is available for
measurement.

Controller 2 A state feedback
controller

The matrix G(x) is not necessary
symmetric and but with non-zero
leading principal minors. Their
signs are assumed to be known.

The state vector is available for
measurement.

Controller 3 An output feedback The matrix G(x) is not necessary
controller symmetric and but with non-zero
leading principal minors. Their
signs are assumed to be known.
The state vector is not measurable,
except the output vector.

The class considered of the MIMO systems in the design
of the second and third controllers is large that the one
considered in the first design.

Remarks

The third controller is an output feedback extension of
the second controller.




Table 2 Comparison between our third controller and that proposed in [13]

Comparison Controller 3 proposed in this paper Controller proposed in [13]

The class of MIMO YO=F(x)+Gx)P(u) X = Ax+ B(P(u) + d(x,p,t)) with 4"™" is a state matrix, B" “” is a constant
nonlinear system control gain matrix, d(xp,)€R” is the lumped uncertainties and external
considered disturbances, and p(¢) is a vector of uncertain parameters.

Type of the controller An output feedback fuzzy adaptive A state-feedback sliding mode controller
designed variable structure controller

The control problem A tracking problem A stabilization problem
considered

Type of input Sector nonlinearities with dead zones ~ Sector nonlinearities with dead zones
nonlinearities

The state vector is not measurable
F(x) and G(x) are unknown

The gain reduction tolerances of the
nonlinear dead-zones are unknown.

Assumptions made

Control gain matrix The control gain matrix G(x) is a

function the state vector.

Singularity of the
controller
Conclusions

problem.

The state vector is available for measurement

The matrices 4 and B are perfectly known.

The gain reduction tolerances of the nonlinear dead-zones are known.
The nonlinear term d(x,p,t) is bounded by a known function.

The control gain matrix B is constant. Remark. This assumption can be
considerably simplifying the controller design .

Our controller is free of the singularity The proposed controller in [13] can be singular, when [IS1|=0.

Note that the class of the MIMO systems considered in [13] is simple and its model is almost known. Moreover, the

controller designed is a state-feedback and can be singular when [IS[I=0.

robot manipulator which moves in a horizontal plane. The
dynamic equations of this MIMO system are given by [6, 20,
25]:

(2)= (o 2) {(e)) -Gtz Hargr ) (22}

(91)

where

My = ay + 2a;3cos(qy) + 2assin(gy), Mxn = ay,
Moy = My = ay + a3 cos(q,) + assin(q,), h = azcos(q,)—ascos(q,),

with

a =1+ mllgl + 1, + meli + mel%, a, =1, + m,l
az = mel11.0c08(8.), as = melil.sin(de).

2
ce’

Note that @ ,(u;), for i=1,2, are the considered input non-
linearities. The robot parameters are:
mp; = 1,m@ = 2,11 = 1,101 = 0.5,103 = 0.6,[1 = 0.12,
1, =025 §,=30°

Let [y, po] = g1, ¢5),u = [ulaMQ]TaQS(”) = [P1(w1), Do
()], X = [q1,G 1,92 G5)" - One can rewrite the robot mod-
el with actuator nonlinearities (Eq. 92) as follows

y=F(x) + G(x)d(u) (92)

where

-1
_ My M,
=M'= )
<M21 Mzz)

(x)
ro= (7)== G 0 (8

The input nonlinearities are described as in [16]:

(u1—3)(1.5—0.360'3|Si“(“‘)|>, w >3,
D1(uy)) =< 0, lu|<3,
(1 +3)(1.5—0.3e°'3lsi“<“1>|), < -3,
(u2—3)(1.3—0.260'”“’5(”2)'), w >3,
Dy(us) = ¢ 0, lua| <3,
(1 +3) (137020 ) |y < 3,

The control objective consists in allowing the system out-
puts ¢, and g, to respectively track the sinusoidal-desired
trajectories y 4, =sin(¢) and y, ,=sin(¢). Two square waves
having an amplitude £1 with a period of 27(s) are added to
system states as external disturbances. Then, the system (92)
becomes

y= F(x) + G(x)®P(u) + d(t) (93)



Recall that the system nonlinearities F'(x) and G(x) are
assumed to be completely unknown except the symmetry
property and the sign of the matrix G'(x) when designing the
fuzzy adaptive controller.

The fuzzy systems 011 (x) and 021,(x) used to approx-
imate the unknown nonlinearities are designed as (22) and
have only the state vector x = [¢,,d 1, ¢s,§5]  as input. For
each variable of the entries of the two fuzzy systems, as in
[26], one defines three (one triangular and two trapezoidal)
membership functions uniformly distributed on the interval
[-2,2]. Thus, the number of the fuzzy rules is 3* (because our
fuzzy rule base is a completed base). The consequent param-
eters are estimated online via the adaptive laws (35), they are
initialized as follows: € ;(0)=6,;(0)=0.001, for i=1,...,81.

The design parameters used in this simulation are specified
as follows: Yo1 :’)/02:30, ’)/11:’)/12:700,0'01 :0'()2:0.001 .
011=012=0.001,\;=\»=2 and k,;=k,=2. The initial con-
ditions are chosen as follows: x(0) =[0.5 0 0.5 0]",

and k¢(0)=k(»(0)=0.0005. It is worth noticing that the sign
function has been replaced in the simulation by a smooth
function tanh(k;S;), with k;;=20.

Figure 2 shows proposed fuzzy adaptive controller performs
well in spite of the input nonlinearities, uncertainties and state
disturbances. Indeed, the tracking errors for both links are
bounded and converge towards small values as pointed out
by Fig. 2a, b. Figure 2c, d show that the control variables as
well as the norms of the estimated parameters are bounded.

5.1.2 Example 2 (Test of the second controller)

In the following, one presents simulation results showing the
performance of the second fuzzy adaptive control system
involving an academic multivariable nonlinear system having
a nonsymmetric and indefinite control-gain matrix. The dy-
namics of this system is given by:

X11 = X12,
X190 = XQ1_0.3SiIl(X11)C12) —|—xf2 + (2 + Cos(xll))dﬁ(ul) + (1 + (Sill(XQl))2>Q52(u2),
X1 = X22,

(94)

).CQQ = x%z + e + X%Z - 0.5 @1(1/{1) - (1 + (Sill(le))2> @2(142),

Y1 = X1, Vo= X21-

Let y=[y1.yal"s u=[u1us]",®w)=[P1(u1),P2(u2)]",
and x=[x11,X 12,X21,X2,]". Then, the system (94) can be given
in the following form:

y=F(x) + G(x)d(u) (95)

where

x21=0.3sin(x11x12) + x°
F()C) = ( 2 x3 _'_ixllll_;zx)Z 12> )
22 12

Glx) = ( (2 4 cos(x11))

1+ (Sill(le))z
iy )

~(1+ (sin(x21)))*

The input nonlinearities @ ;(u;) for i=1,2 are described by:

(M[_3)(1_0.3Si11(l/t[)), u; >3,
Qsl'(ul') = 0) _351"1'53)
(l/tl' + 3)(0.8_0.3COS(M[)), u; < =3,

Recall that the matrix G(x) is nonsymmetric and
the system nonlinearities (F(x) and G(x)) are assumed
to be unknown except the signs of its leading

principal minors when designing the fuzzy adaptive
controller.

The control objective consists in allowing the system out-
puts y; and y, to track the sinusoidal desired trajectories y ;1=
sin(¢) and y ;,=sin(¢), respectively.

The fuzzy system GlTwl (z1) has the vector [x”,u,]" as
input, while the fuzzy system 651),(2,) has the state vector
x as input. For each variable of the entries of these fuzzy
systems, as in [26], one defines three (one triangular and two
trapezoidal) membership functions uniformly distributed on
the intervals [-2,2] for x11,x12,X51,and x5,, and [—25,25] for
uy. Thus, the number of the fuzzy rules (for both fuzzy
systems) is 3° and 3%, respectively. Note that our fuzzy rule
bases are completed bases. The consequent parameters are
estimated online via the adaptive laws (64), they are initialized
in a random way: 6,,(0)=0.001, for i=1,...,243 and 6,,(0)=
0.002, forj=1,...,81.

The design parameters used in this simulation are chosen as
follows: vo1=702=20, ~11=712=1500, 0¢;=0¢,=0.01,
011=0.001,0,=0.001,\ ;=\,=2 and k,=k,=0.5. The ini-
tial conditions are selected as: x(0) =[0.5 0 0.5 0]"
and k1(0)=k»(0)=0.001,. The sign function has been re-
placed by an equivalent smooth function, i.e., tanh(kyS,;),
with k;=20.
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Figure 3 shows that the proposed fuzzy adaptive
control system performs well from tracking point of
view. In fact, Fig. 3a, b illustrate the boundedness and
convergence of the tracking errors for both subsystems.
The boundedness of the corresponding control signals as
well as of the estimated fuzzy parameters is well illus-
trated in Fig. 3c, d, respectively. In spite of the presence
of the unknown input nonlinearities (dead zone and
sector nonlinearities) and the uncertainties, those simu-
lation results show a good tracking performance.

Fig. 3 Simulation results
obtained by the controller 2 of the

Norms of fuzzy parameters Q

5.2 Test of the fuzzy adaptive output feedback controller

5.2.1 Example 1

When the states (x,,x2,) of the system (92) are not measur-
able, a high-gain observer is designed as follows:

ETT11 = T2

e 12 = —bnm—m + ) (96)
ET21 = T2

€T 9y = —by1m2—m21 + ),
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parameters: |0l (dotted line),
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Fig. 4 Simulation results
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with £€=0.01, b,;=b,;=1, and the initial conditions
7(0)=[0,0,0,0]”. The respective estimates of the vectors z;
and z, are:

. T2 my T
21 = I:yla ?a V25 ,M:|
N 12 m2 1T
Z [yl’ e I ?}

Figure 4 illustrates the simulation results of the fuzzy
adaptive output feedback controller. Figure 4a, b show the

Fig. 5 Simulation results
obtained by the controller 3 of the

boundedness and convergence of the tracking errors

(e1,€1,e2,¢2) towards small values for both subsystems.
Figure 4c indicates the boundedness of the applied control
signals. Figure 4d shows the observation errors (€12 = X19—X12 ,

@99 = Xo9—X99 ) are very small and bounded.

5.2.2 Example 2

When the states (x1,,X,,) of the system (94) are not available
for measurement, the high-gain observer (96) can be designed.
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The parameters of this observer are selected as £ =0.01 and
by1=b»,=1, and the initial conditions as 7(0)=[0,0,0,0]". The
respective estimates of the vectors Z; and zo can be deter-
mined as

. T2 T 17
R
. T2 T 1T
22:[)}1’ G ?}

The simulation results of the fuzzy adaptive output feed-
back controller are given in Fig. 5. It can be seen in Fig. 5a, b,
and d that tracking errors (e, é1,e,¢2) and observation
errors (€19 = X19—X12 , €29 = Xoo—X3o ) are small. Figure 5¢
indicates the boundedness of applied control signals. The
proposed output feedback controller achieves a satisfied track-
ing performance even with little knowledge of the system, in
the presence of input nonlinearities and only the measurement
of the output.

6 Conclusion

In this paper, three fuzzy adaptive controllers (the two first
controllers are state feedback and but the last one is an output
feedback) for a class of multivariable unknown nonlinear
systems subject to actuator sector nonlinearities and dead
zones have been proposed bearing in mind the usual stability
and convergence requirements. The first one has been de-
signed for systems having a symmetric and positive-definite
control-gain matrix, while the second one has been particu-
larly designed for systems with a nonsymmetric control gains
matrix whose leading principal minors are non-zero. A suit-
able decomposition of the control-gain matrix has been fully
exploited to carry out the second control design. The third one
is an output feedback extension of the second controller. In the
latter, a high-gain observer has been designed to estimate the
missing states. Of fundamental interest, it has been proven that
the proposed control systems are stable and their underlying
tracking errors converge exponentially to an adjustable do-
main. Simulation results have been given to emphasize the
effectiveness of the proposed controllers.
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