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ABSTRACT

This paper presents an adaptive fuzzy observer for a class of uncertain nonlinear systems.
More precisely, we propose a unified approach for designing such an observer with some
design flexibility so that it can be easily adaptable and employed either as a high-gain or a
sliding mode observer by selecting its gain appropriately. Additionally, we derive a suitable
parameter adaptation law so that the proposed observer is robust with respect to ubiqui-
tous fuzzy approximation errors and external disturbances. We also show that the obser-
. vation error is ultimately bounded using a Lyapunov approach without having recourse to

Adaptive observer . .. . . . .

Fuzzy system the usual strictly positive real (SPR) condition or a suitable observation error filtering. The

Pl adaptation law effectiveness of the proposed observers is illustrated through two simulation case studies

Nonlinear system taken from the adaptive fuzzy control literature.

High-gain observer

Sliding-mode observer

Keywords:

1. Introduction

In most practical situations, one is rarely if ever in the presence of a system whereby all the states variables of the system
are fully measured or accessible. This particular fact has been the main motivation and driving force behind the development
of the observation theory for dynamical systems for the purpose of process control and fault diagnosis. In effect, over the
years there has been a considerable development in various observer design methodologies using different approaches
(see list of references herein). Among these, the design of adaptive observers is quite challenging since they allow to estimate
not only the state variables but the unknown system parameters as well [14] and this in the presence of modelling
uncertainties.

The first nonlinear adaptive observer was proposed in [2] for single-input single-output (SISO) nonlinear systems that can
be transformed into an uncertain observable canonical form. The multiple-input single-output (MISO) case has been inves-
tigated in [22,23] for nonlinear systems that are linear with respect to the unknown parameters. Additionally, these systems
are transformable, by using a suitable change of coordinates, into a special canonical form whereby the nonlinearities are
functions of the output only. An adaptive observer with an arbitrary fast exponential convergence has been proposed in
[24] for the class of MISO systems mentioned above. The multiple-input multiple-output (MIMO) case has been treated
in [5,27] for a particular class of Lipschitz nonlinear systems that are linear in the unknown parameters owing to an
appropriate dissipative or strictly positive real (SPR) condition. In [12], an adaptive observer has been presented for a class
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of time-delay systems whereby the underlying observation algorithm is designed independently of the time-delay varia-
tions, thanks to an adequate SPR condition on the observation error dynamics along with a matching condition involving
the system nonlinearities.

Adaptive observers as well as adaptive controllers (see e.g. [17,6,25,26,34,44] and [18,20-21,26,30-32,35,36,38,41-43])
for nonlinear systems incorporating universal approximators, namely fuzzy systems (FS) and neural networks (NN) have also
received considerable attention over the past few decades. These universal approximators [4,11,36,37] make it possible to
relax the aforementioned structural constraints such as the linearity in the unknown parameters, the Lipschitz condition
on the nonlinearity involved or the prior knowledge of the nonlinearities and the output feedback form. In [17], an adaptive
observer has been proposed for SISO nonlinear systems based on the universal approximation theorem along with a suitable
SPR condition on the observation error dynamics. An appropriate filtering of the observation error dynamics is used to deal
with the SPR requirement. This filtering inevitably increases the order of the observer dynamics. In [29], a fuzzy adaptive
observer has been developed for a class of time-delayed chaotic systems. Sufficient conditions guaranteeing robust observa-
tion performances have been established.

A set of adaptive fuzzy or neural observers has been developed for a class of uncertain nonlinear systems in [6,25,26,34]
without resorting to the SPR condition. In [25,26], the output observation error is filtered and the state variables of the filter
employed are used to design the underlying adaptation law as well as the robust compensator. The filter is mainly used to
deal with the fuzzy approximation error as well as external disturbances. It is important to note that there is a kind of redun-
dancy in these contributions due to the use of a specific estimator consisting of a chain of integrators to estimate the filter
states. An adaptive observer has been developed in [6] using an appropriate filtering of the regressor vector for stability
purposes. It is mostly based on the nonlinear model estimation method for automated fault diagnosis proposed in [33].
Neural adaptive observers for a large class of unknown nonlinear systems have been designed in [34] with mild assumptions
without resorting to the usual SPR condition.

In this paper, we propose a unified adaptive fuzzy observer design framework for a class of uncertain nonlinear systems
based on the high gain observer concept. The proposed observer presents some design flexibility in the sense that one can
either obtain a high-gain observer or a sliding mode observer, depending on the choice of the output error corrective term of
the latter. Also, unlike previous adaptive fuzzy or neural observers, the corrective term is nonlinear with respect to the out-
put observation error. The main feature of the proposed observer is that, firstly, the SPR condition is no longer required and
secondly, a PI parameter adaptation is used to provide a suitable robustness with respect to fuzzy approximation errors and
external disturbances.

An outline of the paper is as follows: In the next section, the class of systems considered and notations employed through-
out the paper are given. In Section 3, an adaptive fuzzy system is used to approximate the unknown nonlinearity involved in
the system is presented. In Section 4, the adaptive fuzzy observer is derived under some given assumptions together with the
underlying adaptation law. The convergence analysis of the observer is also carried out. Section 5 is devoted to simulation
case studies dealing with a mass-spring—-damper system and a half-car active suspension system. Finally, some conclusions
are given.

2. Notation and the class of systems considered

Throughout the paper, R denotes the set of real numbers, R" the set of real n-vectors and R"*™ the set of real m x n matri-
ces. The Euclidian norm of a vector x € R" is denoted by ||x|, i.e. ||X|| = 1/X? +--- + X2, and the induced norm of a matrix

A e R™™ is denoted by ||A||,. More precisely, ||All, = 1/ max(ATA) = Gmax (A), imax() and Zmin(-) are largest and smallest eigen-

values of the matrix A and 0.« (A) is the maximum singular value. The absolute value is denoted by |- |.
We consider the class of nth order nonlinear dynamical systems of the form

Y =f 3,y u) + d(t) (1)
or equivalently of the form
X = Ax + BIf (x, u) +d(t)]

y==0
where
0 1 0 0 1
0 1 0 0
A=l o o] B2, = 3)
0o 0 o0 - 1 0 0
o o0 o --- 0 1 0

u € Q, C Ris the input, y € R is the output, fis an unknown but continuous function, d is the external bounded disturbances,
ie. |dt) <Dandx=1[y,y,... ,y(”*”}T =[X1,%s,..., %] € Q, C R" is the unknown state vector.



The main objective of this paper is to develop a unified adaptive fuzzy observer design framework for the above class of
system. For this, an adaptive fuzzy system is used to approximate the unknown function f(x, u).

3. Description of the fuzzy logic system

The basic configuration of a fuzzy logic system consists in a fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference engine
and a defuzzifier, as shown in Fig. 1. The fuzzy inference engine uses the fuzzy IF-THEN rules to perform a mapping from an

input vector " = [n,,1,,...,1,] € R’ to an output f € R. The ith fuzzy rule is written as
RY: if , is A} and...and 1, is A} then f is f' (4)
where A}, A}, ..., and A, are fuzzy variables and f is the fuzzy singleton for the output in the ith rule. By using the singleton

fuzzifier, product inference, and center average defuzzifier, the output of the fuzzy system can be expressed as follows:

) S FUTIE Hai(my)
fFop === <p” 5 J>=9T1//(ﬂ) (5)
i (Hj:l ﬂAJi(”Ij))

where 1, (17;) is the membership function value of the fuzzy variable #;, r is the number of fuzzy rules, 0" = [f',f2,....f]is the
Hpi (1 nj

adjustable parameter vector (composed of consequent parameters), and 7 = [/ ?. .- y/"] with

P
Vo - (H ) ©
Zi:1< 7 ﬂAJ’I(”Ij))

is the fuzzy basis function (FBF). Throughout the paper, it is assumed that there always exists at least one active rule, i.e.

i <H}P:1 ﬂAj’.(’?j)) > 0.

It is worth noting that the fuzzy system (5) is commonly used in control applications [36,37]. Following the universal
approximation results [36,37], the fuzzy system (5) can approximate any nonlinear smooth function f on a compact operat-
ing space to any degree of accuracy. Most importantly, it is assumed that the structure of the fuzzy system and the mem-
bership function parameters are properly specified beforehand by the designer. This means that the designer decision is
needed to determine the structure of the fuzzy system, namely the pertinent inputs, the number of membership functions
for each input, the membership function parameters and the number of rules. The consequent parameters, i.e. 0, are deter-
mined by learning algorithms.

4. Observer design and convergence analysis
In this section, a unified state observer is proposed to estimate the output derivatives.
4.1. Adaptive fuzzy observer design
Before giving the proposed observer structure, we define some key matrices and variables. More precisely, let
1. 4; be the diagonal matrix defined by
A,lzdiag{l,%,...,%} (7)

where 4 > 1 is a design parameter.
2. S be the unique solution of the following algebraic Lyapunov equation

S+A'S+SA=C"C (8)

It can be shown that the solution of (8) is symmetric positive definite [7-8,10,40].

Fuzzy Rule Base I

n
- Defuzzifier —»

A
Fuzzy Inference
Engine

Fig. 1. The basic configuration of a fuzzy logic system.



3. &= M8 VE=[&1,8,.., &) R and K(&) = [ki(&),0,...,0]" € R" be a vector of smooth or non-smooth functions
satisfying:

- 1. -
VEER": EK(éy) > 5ETCTCE 9)

We design a unified adaptive fuzzy observer to estimate the state variables of the system (2) as follows:

X =AX+BIf(,u,0)] — 247'S 'K (&) (10)
y=Cx

where X is the estimate of the state vector x, y is the estimate of the output y, é; = y — y is the output observation error and

f (%,u,0) is the fuzzy estimate of the unknown nonlinear function f(x, u). It should be pointed out that the observer (10) is

composed of a copy of the system (2) together with a corrective term 24;'S™'K(&;), where K(&;) is selected so that condition
(9) holds.

Depending on the choice of K(é;), one can either obtain a high-gain observer or a sliding mode observer. It is worth noting
that, in previous adaptive fuzzy or neural observers proposed in [6,17,25,26,34,44], the corrective term is linear with respect
to the output observation error, i.e. 24;'S7'K(&;) = Koé;.

By defining the state observation error as € = X — x, we obtain
Aé + BIf (%,u,0) — f(x,u) — d(t)] — 24;'S'K(é1)

e=
ey =Ce

(11)

The unknown nonlinear function f(x,u) is approximated by a fuzzy system of the form (5) as
F(&u,0) = 0"y(i) (12)

Lo T .
where 7) = [x",u] is the estimate of the vector n=I[x, u)’.
The function f(#) can be appropriately determined according to the universal approximation theorem [36,37] as follows:

fn) =Fn,0%) +e(m) = 07w (n) + e(n) (13)
where 5 = [x", u] &(n) is the fuzzy approximation error and 6" is the optimal parameter vector defined as follows:

0" =arg min| sup [0"y(n) —f(n)l (14)

0eQy neQX xQu

with Q, being the set of suitable bounds on 0. Notice that the optimal parameter vector 0* is mainly introduced for analysis
purposes and its value is not needed when implementing the observer. However, the following boundedness assumption for
the optimal parameter vector is customarily made [36].

Assumption 1. The optimal parameter vector satisfies
[10°]] < My (15)

where M, is an unknown positive constant.
According to the universal approximation theorem [36,37] for the fuzzy logic systems, there exists a positive constant cg
such that the following inequality holds for all 7 € (2 x Q,):

le(n)] < co (16)
Using (12) and (13), the observation error dynamics (11) becomes
= Ae + BI0Ty (i) +w] — 24; 'S 'K(&r)

e
ey =Ce

(17)

where 0 = 0 — 0" is the parameter error vector and

w =0Ty (i) — ()] - &) - d(t) (18)

represents the lumped disturbances term induced by the state observation error, fuzzy approximation error and external
disturbances.
To simplify the stability analysis, let us define a scaling transformation as follows

z=4;e (19)



One can easily show that z has the following special properties:
@) izl < llef < A"zl (20)
i) Cz=z1=Ce=¢ (21)
Since 4,A4;! = A and taking into account the fact that K(&;) = K(z;), system (17) can be rewritten in term of z as follows:

2= Az S"'K(z:) + A;B[0Ty (i) + W]

(22)
z1=Cz
For the convergence analysis of the observer, the following lemma is required.
Lemma 1. There exists a positive constant c, such that
Wl < ¢, (23)

Proof of lemma 1. From (15), (16) and (18), one has

Wl = 10T [ (i) — w(m)] — &(n) — d(O)] < 0T (@) — vl + le(n)] + [d(O)] < My sup[y () —y(ll + o +D< e (24)

where ¢; = Mysup,[|y(7}) — ()| +co +D. O

4.2. Construction of the adaptive law

Since &, is available for measurement, the fuzzy parameters are updated according to the following PI algorithm
0+ 7,0 = —079,0 - P (i) (25)

where 71, 72, and ¢ > 0 are design constants. § € R', where r is the number of the fuzzy rules, is a design function which can be
selected as follows:

5= 00+ &) (26)

It is worth noting that the adaptation law (25) is augmented by two terms for different purposes. The g-modification term
[13] ensures the parameter estimates boundedness, while the proportional term 6 enhances the stability requirement of the
adaptive fuzzy system as it will be shown later. More specifically, the proportional term permits to drop the robust compen-

sator used in [17,25,26]; the latter is generally added to the adaptive fuzzy term, i.e. f()jc,u,()). in order to deal with the
approximation errors and external disturbances.

4.3. Observer convergence
The observer performances are given by the following theorem.
Theorem 1. Consider the observer (10) and let the parameter vector 0 be updated by the Pl adaptation law (25). Then, the

observation error e and the parameter estimation errors 0 are uniformly ultimately bounded (UUB). Furthermore, the observation
error converges in a neighborhood of the origin.

Proof. Define the following Lyapunov function

V=V 1BV, (27)
where = 1/22"2,
- (28)
and,
v, = % (04720 (0+7,0) (29)
1

Differentiating V; along the solution (22) and using (8), one obtains

Vi=2'Sz+2'Sz=-iz"Sz — 24[2'K(z1) — 0.52"C"Cz] + 22"SA,B[0"y (i) + W) (30)

Due to the special forms of the matrix 4, and vector B, it can be easily shown that S4,B = \/BSB.



Now, using Lemma 1, we get

Vi < —2min(S)||2)* — 242K (z1) — 0.52'C"Cz] + 2+/B|z"SB||07y (i7) + W]

< —min (S)|12II* — 22[2"K(21) — 0.52C"CZ] + 2 /BesIB|l 1|z 10]] + 2+/Be: [1SBIl 2]
= —2min(S)|2|I* = 24[2'K(z1) - 0.52"C"CZ] + 2+/Beal|2||0]] + 2/ Bes lz] 31

where ¢, = sup,||y(77)], ¢3 = ¢1||SB|, ¢4 = ¢2||SB|| and imin(S) is the smallest eigenvalue of the matrix S.

The time-derivative of (29) along the solution of (25) is given by
. 1 - B . ~ - N ~ J— “ ~ ”
Vo= (0:4920) (04 728) = (04 7,0) (-0 ~ &0 (i) = ~0070 ~ 407 (7) 750" (00 + en (1) (32)
1

where 0 = 0 — 0" = 0.
Since 2070 > 110> - ||6*||?, we have

. - g, .. . omT s . - g, . A .
Va<—3 161 +5110 I = e0"y (i) — 7,0" (00 + eyy() < — 5 161 +5110 12+ cal@[[10]] = 7,07 (G0 + @1 (7)) (33)

where ¢; = sup,||y(#7)]].

It is worth noting that the choice of § defined by Eq. (26) allows to introduce a negative term, in the expression V5, which
can be important provided that ), is large enough.
From (31) and (33), the time derivative of (27) can be bounded as follows
. - o~ (. P,
V < —imin(S)2IP - 2212'K(@1) ~ 0.52'C'Cal + 2+/Bealzl| 0] + 2v/Feslzl — B2 101 + B 101 + peatea 1]
— B728" (00 + eay (1)) (34)

Using the following inequalities

i Ci 12 7112
2/ BeallZII0N < GE izl + poa 1]
1
2/Besllzl < -zl + o

5 N7 B 5 22 _ C5 2 52
Cyleq]||0]] < == le os)|0]]° < -—=1||z 03|60
pealenl II\4063 llell” + Bos]|6] < 203 llzl|” + Bos]|O]]

where o4, 0, and o3 > 0, one gets

V < ~(Wmin(S) = Dl|zl* = 22[2"K (1) - 0.52"C" Cz] — 0.58(5 — 0)[|0]]* — py,0" (50 + éyys(ip)) + pi (35)
where

1= i l i g — M — E %112 2

A= TR 0=2(y+03) and QL= 3 107]|7 + oac5

If K(z1) and § are designed according to (9) and (26), respectively, then the terms [z'K(z;) — zZ'C"CZ] and 7,46 (60 + e (1))
become positive.
Using (20), we obtain

V < —B(2min(S) — A)[I€]* — 0.58(0 — 6)[|0]* + (36)

Choosing 2 > 1/imin(S) and ¢ > G, one can guarantee that V is negative as long as & is outside the compact set Q; defined
as

=<{elle L
9@‘{QIHQH< ;.;.min(s)z} .

According to the standard Lyapunov theorem (see [14]), one concludes that ¢ is bounded and will converge to Q.. More-
over, the radius of Q; can be m:ade arbitrary small if 4 is chosen to be sufficiently large.
The parameter error vector 0 is also bounded and converges to Q; which is defined as follows

0, = {émén <2 } (38)

g—0

The boundedness of 0 results from that of 0 and Assumption 1, i.e. 0" € L... This completes the proof of the theorem. O
To summarize, Fig. 2 shows the overall scheme of the unified adaptive fuzzy observer.
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Fig. 2. Over all scheme of the unified adaptive fuzzy observer.

4.4. Some general remarks

Remark 1. The main characteristics of the proposed framework of the adaptive fuzzy observer design can be summarized as
follows:

1. The unifying feature of the high gain concept through a suitable design function.

2. The requirements of an off-line learning phase, the persistent excitation condition and the prior knowledge of an upper
bound on the unknown ideal parameters are not required at all.

3. The usual SPR condition has been dropped without resorting to any filtering unlike in [6,25,26].

4, Asin the universal approximator-based observation algorithms [17,6,25,26], the nonlinear function f (x, u) is not assumed
to be known, Lipschitz or linear in the unknown parameters.

5. The approximation error and external disturbances can be appropriately reduced in the proposed observation design
framework thanks to the proportional action involved in the parameter adaptation law unlike in [17,25,26].

6. The number of design parameters is relatively small, namely 7}, y,, 0, 4 and k,, compared to those employed in [17,25]
where seven and nine design parameters should be respectively specified.

Remark 2. The adaptive law (25) can be rewritten as follows

0= [ [rono-new]dr - pulo0 + e (39)

Consequently, it cannot be used directly because of the underlying algebraic loop problem; i.e. 0 appears in both the
left-hand and right-hand sides of (39). To avoid this problem, one simply rewrites (39) as follows:

~ o | Fono - newide - (40)

Remark 3.

1. Table 1 summarizes a set of observers that can be obtained from appropriate specification of the design function K(é;).
Sign, Sat, Tanh, Sinh and Arctan respectively denote the usual sign function, the usual saturation function, the hyperbolic
tangent function, the hyperbolic sine function and the inverse tangent function and k,, ¢, and p > 0 are real numbers.
Notice that the name “sliding mode observer” of the observers 2-8 is inspired from the control literature [9,15,16].

2. Table 2 summarizes another set of sliding mode observers that can be obtained by exploring the involved design function.
It is very easy to check that the considered functions in Table 2 satisfy the condition (9) for a relatively high value of |, e.g.
the observer with Kgy(&;) = IC"(Csign(é)) satisfies the condition (9) for | > 1sup,|é;|. This condition on the gain [ is
commonly used in the control literature [1,39].

5. Simulation studies

Simulation studies are carried out to show the effectiveness of the proposed adaptive fuzzy observers. Two observation
problems are considered to this end. The first one concerns a mass-spring—-damper system, while the second one concerns a
half-car suspension system.



Table 1
High-gain and sliding mode observers (first type), obtained according to the choice of K(é;).

K(ey) Observer type

High-gain observer [28]

Ezi Ksmiéii = CTE@; +ICT (Csign(e)) (Non-smooth) Sliding mode observer, [15,16]
(3) Ksu (81) = CT(Ce) + ICT (CTanh(k,¢)) (Smooth) Sliding mode observer [9]
(4) Ksu (81) = C"(Ce) + ICT (CSinh (ko)) (Smooth) Sliding mode observer
(5) Ksm (1) = CT(Ce) + lCT(CArctan(kué)) (Smooth) Sliding mode observer
(6) Ksm (1) = CT(Ce) + ICT(CSat(é)) (Smooth) Sliding mode observer
(7) Ksm(81) = CT(Ce) + ICT (Ce/ (&0 + |CE))) (Smooth) Sliding mode observer
(8) Ksy(81) = CT(Ce) + I(|ce|)"C" Csign(e) (Non-smooth) Sliding mode observer
Table 2
Sliding mode observers (second type) obtained according to the choice of K(é;).
K(ey) Observer type
(1) Ksu (1) = ICT(Csign(e)) (Non-smooth) Sliding mode observer [1]
(2) Ksm(81) = ICT(CTanh(kue)) (Smooth) Sliding mode observer
(3) Ksu (&) = ICT (CSinh (ko)) (Smooth) Sliding mode observer
(4) Ksy (81) = ICT (CArctan (ko)) (Smooth) Sliding mode observer
(5) Ksu (&1) = ICT (CSat(e)) (Smooth) Sliding mode observer
(6) Ksm(81) = ICT(Ce/(¢o + |CE)) (Smooth) Sliding mode observer
(7) Ksu(&1) = I(|Ce|)**C" Csign(e) (Non-smooth) Sliding mode observer [3]

Example 1. Consider the mass—spring-damper system shown in Fig. 3 whose dynamics are described by [25]:

X1 =X
_ —fX) - fr®) +u+d (41)
- M

where x = [x; ,xz]T is the state vector, y = x; represents the displacement of the mass, x, represents its velocity, fi(x) is the
spring force due to spring constant K, fz(x) is the friction force due to friction constant B, M is the body mass, u is the applied
force and d denotes the disturbances.

In the following simulation, the nominal parameters and their corresponding uncertainties are selected as follows:
M, = 1Kg,Ko =2 and By = 2 and AM = 0.1 sin(x;) kg, 4K = 0.5 and 4B = 0.5. Furthermore, the nonlinear spring, the friction
forces and the disturbance effects are assumed to be modelled by fi(x) = Kox; + 4Kx:, fp(x) = Box, + 4Bx2 and
d(t) = 0.2sin(2t) exp(—0.1t).

Solving the matrix Eq. (8), one gets the following symmetric positive definite matrix:

=[5 2]

The state variables of the system (41) are estimated using the following sliding-mode adaptive observer:

X

X1 =Ry — 2781 — 271 arctan(k, é;)

. ) . (42)
X, = 0"y(7) — %8, — 2%l arctan(k, é;)

where /) = [%1,%,,u]” and the design parameters are specified as follows, y, = 8,7, = 120, ¢ = 0.3, k, = 1000 and 4 = 2. Note
that a small value for 7 is chosen so as to emphasize the contribution of the fuzzy system for the observation process.
The initial conditions are chosen as, X"(0) = [1, 4], X7 (0) = [0.5, 0], 0;(0) = 0 (i.e. no a priori information on the fuzzy param-
eters) and the control input u is a square wave having amplitude +1 with a period of 2s [25].
The membership functions for #;, with j = 1,2, 3, are predefined as follows:

P 1 2000 oo [ A0S o
A1) = T3 exp(1838(7 + 0.75))" Af(””‘“"( 00s ) AW =exP{~5og)
4y — e [~ =05\ s o 1

Af(’“‘“"( 009 ) AU =T ep-1838( — 0.75)

The simulation results of the smooth sliding mode adaptive observer (42) are shown in Fig. 4. The actual and estimated states
are shown in Fig. 4a and b, while Fig. 4c shows the estimated nonlinear function f(ﬂ, 0) = ()Tz//(ﬂ) with the actual nonlinear
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Fig. 3. A mass-spring-damper system.
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Fig. 4. Simulation results: (a) state x; (dotted line) and its estimate X; (solid line). (b) State x, (dotted line) and its estimate X, (solid line). (c) The estimated
function ()Tn//(ﬂ) (solid line) and the actual function f(x, u) (dotted line). (d) Norm of adaptive parameters ||0].

function f(x, u). It is worth noting that f(x, u) is only used for simulation purposes, since it is not known by the observer. The
norm of the fuzzy parameters is shown in Fig. 4d.

Fig. 4a and b clearly show that the observation error is actually vanishing according to the observer dynamics. The param-
eter adaptation alertness is particularly emphasized in Fig. 4c which shows the estimated function f(}, 0) as well as the ac-
tual function f(x, u). B

Example 2. The model of half-car suspension is shown in Fig. 5 [19]. The half-vehicle suspension model is represented by a
nonlinear four degree-of-freedom system. It consists in a single sprung mass (car body) connected to two unsprung masses
(front and rear wheels) at each corner. The sprung mass is free to heave and pitch, while the unsprung masses are free to
bounce vertically with respect to the sprung mass. The suspensions between the sprung mass and unsprung masses are
modelled as linear viscous dampers and spring elements, while the tires are modelled as simple linear springs without
damping. Applying a force-balance analysis, the equations of motion are given by

| . . . .
z=_- [—(Bf + Br)z+ (aBf — bB;)0 cos 0 — ke(zss — zyf) — Kr(Zsr — Zur) + Bszug + Brzur + ff + fi]

s

0 =T [7(azBf + b*B,)0cos? 0 + (aBy — bB:)zcos 0 + aks(zy — z,5) cos 0 — bk, (zs — zur) COS 0

—(aByzys — bB,Zur) cos 0 — afy cos 0 + bf; cos 0]

1
y

. 1 . : . .
Zy = e [Bf(z — a0 cos 0 — zyr) + (K + Kif)(zof — zur) — Kipz + aKig sin 0 + Kpzip — ff]

Zy = mi [Br(z + b cos 6 — zy) + (kr + Kur)(Zsr — Zur) — Kz — bKer SN0 + Kyeziy — f;) (43)

ur

where zy = z — asin 6 is the front body displacement, z;; = z + bsin 0 is the rear body displacement and J, = m5r§ is the cent-
roidal moment of inertia. Different notations of this half-car model are given in Table 3.
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Fig. 5. Half-car suspension model.

Table 3

Parameters and variables of the half-car active suspension model.
fir Subscripts of front and rear 2,z
Kir, Kig Tire spring coefficients 0,0
ky, kp Spring coefficients Zyf Zyf
By, By Damping coefficients Zur, Zur
My, Myp Unsprung masses Zyf, Zgf
a, b Distance of axles from centroid Zor, Zsr
ms, Jy Mass of body and Inertia moment Zif, Zrr

I Fr

Heave (ride height of sprung mass) and payload velocity
Pitch angle and pitch velocity

Displacement and velocity of the front wheel
Displacement and velocity of the rear wheel
Displacement and velocity of the front car body
Displacement and velocity of the rear car body

The front and rear terrain height disturbances

The front and rear force inputs

To design the observer, let us define the state vector as follows:

T . . . .. T
X= [Xl ,X2,X3,X4,X5, X6, X7, XS] = [‘27 Z, 97 evzufvzufvzuﬁzw’]
This results in the system state equation given below

X1 =X

. 1 . .
Xy = — [—(Bs + By)x; + (aBy — bB,)X4 COS X3 — Kp (X — asinxs — Xs) — Ky(X; + bsinxs — x;)+BsXs + ByXg + Uy + U]

s

X3 = X4

X4 :Jl [7(azBf + sz,)x4 c0s? x3 + (aBy — bB,)x, cos X3 + aky(X; — asinxs — Xs) cosx3 — bk, (X; + b sinxs — x7) cos x3
y

— (aBsxg — bB,xg) cOS X3 — auly cOS X3 -+ bu, cos x3
f

5(5 = X6

. 1 .
Xe = — [Br(x2 — ax4 cos X3 — Xg) + (ks + Kir) (X1 — asinxs —

mys
X7 =Xg
. 1 i
Ky = [B (%3 + bx4 cosx3 — xg) + (k; + Ky) (X1 + bsinx; —

ur

where u; = f; and uy = f..

X7) — KXy — bKy sinxs + Kyzyr —

Xs) — thX1 -+ ath sin X3 + ther — U1]

Up] (44)

Dynamic system (43) can be finally rewritten in the following compact form:

X1 =X
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Fig. 6. Simulation results for the passive suspension. (a) Heave (ride height of sprung mass). (b) Payload velocity. (c) Pitch angle. (d) Pitch velocity.

X = fi(x,uy,uy)

X3 = X4

X4 =f2(&ul7u2)

X5 = Xg

X6 = f3(x,u1,up) + dy
X7 = Xg

X3 = fa(x,u1,up) + da

y= [X17X37X57X7]T (45)

where dy = Kisz;s/mys, dy = Kz /my, and y is the output vector which is assumed to be available for measurement. The func-
tions fi(x,uy,uy) gather all subsystems nonlinearities. This model will be used later in the observer design.
For simulation purposes, we will use the following control law proposed in [19] for the half-car active suspension:

Uy = mg[K(ky + Ko )Xa — KK (X2 — aXq COSX3 — Xg) + (€3 — 1)21] + (By + Br)X2 + k(X1 — asinxs — Xs) — ByXe

Up = —mg[K(aky — bKi)X4 €OS X3 + KK (X2 + bXs4 cOSX3 — Xg) + (€1 + C2)Z2] — (aBf — bB)x4 cos X3 + kr(x1 + b
x sinxs — X7) — Byxs (46)
with

Z1 = X1 + K(MsXy + MypXe + MyrXs)
2z, =X — K[(Ky + Kir)x1—(aKyr — bKyy) sinxs — Ky (x1 — asinx; — xs)

—Ku (X1 + bsinxs —x7)] — c1z4

where ¢y, ¢; and k are positive design constants. Even though the control system design has been carried out for the half-car
suspension model (43), the observer design has been performed without assuming any knowledge of the system as well as
the control law (46). The considered control system is mainly for simulation purposes.

It is clear that the system (45) can be considered as a set of the subsystems having the form (2). Then, one can design the
following coupled fuzzy adaptive observers to estimate the state vector x:



Ry =Ry — 278
Xo = 00y, (i) — 2%&
X3 =g — 2/
Xa = 050 (1)) — 2283
Xs = Xg — 285
X5 = 035 (7]3) — /&5
X7 = Xg — 28

Xs = 0404 (114) — 12&; (47)

For simplicity purposes, the input vectors of the adaptive fuzzy systems are selected here as follows: /j; =il =3 = s = X
where & is the estimate of the state vector x. Notice that the functions f;(x, u;, u,) depend implicitly of x since the control law
is a function of state x.

The parameters of the half-car model selected for this study are [19]:

ms = 575 kg, my = my = 60kg, J, =769 kg/mz, a=138m, b=136m

ki =k =16,812 N/m, By =B, = 1000 N/m/s, Ky =K, =190,000 N/m
and the road disturbances employed on the front and rear wheels are:

Z,s(t) = u,(1 — cos(8mt)), for 0.5<t<0.75

Zy(t) = p.(1 — cos(8mt)), for3 <t <325

where u, is the amplitude (meters).
The design constants for controller are selected as in [19]:

c1=c =1, k=0.000003
For all observers of the subsystems, the design parameters are specified as follows:

y; =50, y,=50, 0=0.1, and 2=15
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Fig. 7. Simulation results for the passive suspension. (a) Displacement of the front wheel. (b) Velocity of the front wheel. (c) Displacement of the rear wheel.
(d) Velocity of the rear wheel.
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Fig. 8. Simulation results for the active suspension (without noise). (a) Heave (ride height of sprung mass). (b) Payload velocity. (c) Pitch angle. (d) Pitch
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Fig. 9. Simulation results for the active suspension (without noise). (a) Displacement of the front wheel. (b) Velocity of the front wheel. (c) Displacement of
the rear wheel. (d) Velocity of the rear wheel.

For each variable of the entries (of the fuzzy systems), one defines three triangular membership functions uniformly dis-
tributed on the following intervals: [—0.04, 0.04] for %, %5, [-0.2,0.12] for Xs,X;, [—0.4,0.4] for X,, %4 and [—1.5,1.5] for X¢, Xs.
The initial values of the fuzzy parameters are chosen as, 0;(0) = 0 (i.e. no a priori information on the fuzzy parameters).

Three different simulation cases are considered to demonstrate the performances of the proposed adaptive fuzzy
observer.

(a) Case 1: The fuzzy adaptive observer (47) is used to estimate the states of the standard passive suspension. The sim-

ulation results are shown in Figs. 6 and 7. Notice that the estimated values of the state variables are close to the actual
ones.
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Fig. 10. Simulation results for the active suspension (with noise). (a) Heave (ride height of sprung mass). (b) Payload velocity. (c) Pitch angle. (d) Pitch
velocity.
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Fig. 11. Simulation results for the active suspension (with noise). (a) Displacement of the front wheel. (b) Velocity of the front wheel. (¢) Displacement of
the rear wheel. (d) Velocity of the rear wheel.

(b) Case 2: The observer (47) is used to estimate the states of the active suspension. The simulation results shown in Figs.
8 and 9 emphasize the estimation performances.

(c) Case 3: To simulate practical situations, the output measurements have been corrupted by an additive noise. Figs. 10
and 11 show the simulation results obtained on the active suspension in the presence of noise measurements. From
these results, one can notice that the considered fuzzy adaptive observer is not quite sensitive to noise measurements.

6. Conclusion

In this work, a unified adaptive fuzzy observer design framework for uncertain nonlinear systems has been proposed. The
adaptive fuzzy system is used to approximate an uncertain nonlinear function. The proposed observer presents some design
flexibility and can be easily adaptable into high gain based observers, namely the usual high gain observers and the sliding
modes observers together with their practically oriented versions, and a Pl parameter adaptation law for updating the fuzzy



parameters. The usual SPR condition as well as the error filtering are no longer required. The approximation error and exter-
nal disturbances can be appropriately reduced in the proposed observation design framework thanks to the proportional
action involved in this PI adaptation law. A Lyapunov based approach has been adopted to show that the involved observa-
tion and parameter errors are ultimately uniformly bounded. The effectiveness of the proposed adaptive fuzzy observers has
been illustrated via simulation results involving a mass-spring—damper system and a half-car active suspension system.
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