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Abstract

Ice cream crystallization processes can be modeled by some population and energy balance equations. Due to the infinite dimen-

sional and nonlinear characteristics, such models are highly complex, especially when all the phenomena of nucleation, growth and

breakage are considered. Depending on the control problem under consideration, such a complexity can be useless and the control

law can be designed on the basis of an input-output reduced order model of the process. In the present paper, we first consider a

reduced order model of 6 ordinary differential equations obtained by the method of moments. By means of a sensitivity analysis and

a parameter identification, it is shown that, to accurately describe the input-output behavior of the system whatever the conditions

are, it is sufficient to change the values of only two parameters of this model, which is really interesting from a control point of

view. However, when looking at the simulated data, the complexity of this moments model appears useless, from the input-output

point of view. A second model reduction is therefore performed, based on physical assumptions. We finally get a new model with

3 ordinary differential equations, which is validated first on experimental data and then by comparison with the initial moments

model.

Keywords: ice cream crystallization, particulate processes, population balance equation, model identification, model reduction,

process control

1. Introduction

Crystallization (e.g. Mullin (2001)) is encountered in many

processes, in particular in the pharmaceutical industry and the

food industry (Hartel, 2001). In crystallization processes, an

important challenge is to control the quality and/or the proper-

ties of the product. In the case of ice creams, it is well known

that the quality, that is the hardness and the texture of the ice

cream, depends on the ice crystal size distribution (CSD). For

example, depending on the mean crystal size, or more precisely

on the dispersion of crystal sizes (that is on the shape of the

CSD), the obtained texture of the ice cream is more or less

grainy. Some physical properties of the ice cream, as for ex-

ample its viscosity, also depend on the CSD, or at least on its

moments.

In the model considered in this paper, the evolution of the

CSD is described by a population balance equation (PBE) (Ran-

dolph, 1971; Costa et al., 2007) to which an energy balance

equation is added. Due to the infinite dimensional and non-

linear characteristics, the model is highly complex, especially
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when all the phenomena of nucleation, growth and breakage

(Cook and Hartel, 2010) are considered. To control such a sys-

tem, and more generally the particulate processes, there exists

several approaches (see for example Christofides et al. (2008)

and Nagy et al. (2008)). In some papers, the proposed control

law is designed directly from the PBE (Mesbah et al., 2012;

Sheikhzadeh et al., 2008). It enables to take into account the

whole complexity of the system dynamics but in return, it often

needs sophisticated mathematical tools and can lead to some

complex controllers, not always easy to implement. That’s

why most of the time, a reduced order model (early lumping

- see Ray (1978)) is considered. Some examples of model re-

duction techniques for particulate processes can be found in

Christofides (2002), Dokucu et al. (2008) or Motz et al. (2004).

One of these techniques consists in applying the method of mo-

ments (Christofides, 2002), which transforms the PBE in an in-

finite set of moments equations (ordinary differential equations

- ODEs). The number of moments equations we will finally

keep, and the closure of the truncated system are some impor-

tant questions. In our case, the first four moment equations

are independent of the higher order ones, and the energy bal-

ance equation only involves moments of order 3 or less, so that

the system we consider is finally reduced to a set of 5 ODEs.

Note that this model is not well adapted for all control prob-

lems. In particular, the control of the shape of the CSD, which is

of importance in crystallization processes (Vollmer and Raisch,
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2006; Nagy, 2008; Ma and Wang, 2012), is not the kind of prob-

lems we will focus on. Indeed, it is well known that the recon-

struction of a distribution from its moments is really difficult.

However, the control of all quantities which can be expressed

as a function of the 4 first moments and of the ice temperature

(Mantzaris and Daoutidis, 2004) can be performed on the basis

of this reduced order moments model.

The first part of the paper deals with the identification of the

model parameters and the validation of this model by compari-

son with experimental data. A sensitivity analysis is performed

in order to determine the parameters to be identified. To com-

plete the model of 5 ODEs, an additive equation, which de-

scribes the dynamics of the compressor of the crystallizer is

proposed and identified from experimental data.

One objective of the present paper is also to propose (and

identify) a model suitable for control purposes, that is, which

appropriately describes the dynamic input-output behavior of

the system. In our case, we are interested in the dynamical

response of the saturation temperature1 to the variations of the

refrigerant fluid temperature. To approximate such a dynamic

behavior, some of the state variables of the model appear to be

useless (when looking at the simulated data). Based on physical

assumptions, a second model reduction is therefore proposed

which finally leads to a new model only composed of 3 ODEs.

The paper is organized as follows. The experimental setup

and the model of the crystallizer are described in sections 2 and

3. The identification of the moments model from experimental

data is then presented in section 4. To complete the modeling, a

model of the compressor is proposed and identified in section 5.

Some examples of simulated trajectories are finally compared

with experimental data in section 6. In section 7 the second

model reduction is presented. Finally a comparison between

the moments model and the reduced order one is performed in

section 8.

2. Process description

2.1. Pilot plant

The pilot plant is located at IRSTEA Antony (France). The

ice cream crystallizer is a 0.40 meter long cylindric Scraped-

Surface Heat Exchanger (SSHE), with inner diameter of 0.05

meter (see Figure 1). The sorbet mix, which is mainly com-

posed of sugar, gum and water, is first put in a mix storage tank

which is refrigerated at a temperature T0 of 5◦C. The sorbet

mix is then fed to the crystallizer by a piston pump with a mass

flow rate denoted mfr. Within the vessel jacket of the crystal-

lizer, a refrigerant fluid (R22), whose temperature Te is called

the evaporation temperature, is continually vaporizing to cool

down the sorbet mix and mainly to crystallize (to freeze) wa-

ter in the sorbet. When the temperature of the sorbet mix goes

below the saturation temperature (denoted Tsat), the crystalliza-

tion occurs. Some ice crystals appear on the inner wall of the

1The saturation temperature of the ice is a threshold temperature, below

which the crystallization occurs. It can be linked to the ice cream viscosity, the

control of which is interesting in a production point of view.

Figure 1: Schematic representation of the SSHE (Scraped-Surface Heat

Exchanger) WCB Model MF 50. 1. Inlet connection for sorbet mix. 2. Inlet

cover bowl. 3. Rotor. 4. Scraper blades rows. 5. Heat exchange cylinder jacket

with vaporizing R22. 6. Heat exchange cylinder. 7. Outlet cover bowl. 8.

Outlet pipe for sorbet.

cylinder (nucleation). Then, these crystals are scraped by two

scraper blades which turn with a rotation speed denoted Nscrap

and so mix the ice.

The dasher rotation speed Nscrap and the mass flow rate mfr

can be varied directly by the user, which is not the case of the

evaporation temperature Te. The temperature of the refrigerant

fluid is indeed modified by means of a compressor, whose ro-

tation speed is denoted Vcomp. The ranges of admissible values

for the 3 inputs Vcomp, Nscrap and mfr are given in Table 1.

Inputs Lower bound Upper bound

Compressor rotation speed Vcomp 500 rpm 2600 rpm

Dasher rotation speed Nscrap 300 rpm 1000 rpm

Mass flow rate mfr 20 kg.h−1 100 kg.h−1

Table 1: Bounds on the control inputs. rpm stands for ’rotation per minute’.

2.2. Available measurements

Two variables are accessible for on-line measurement :

the outlet temperature T of the ice cream and the evaporation

temperature Te. These quantities are measured every 5 seconds.

The temperature T is not measured directly at the outlet of

the freezer, but further in the outlet pipe. At the measure-

ment point, the temperature T can be reasonably considered to

be equal to the saturation temperature Tsat. Indeed, inside the

freezer, the temperature is lower than the saturation tempera-

ture so that the crystallization can proceed. But, when the ice

leaves the reactor through a non refrigerated pipe, there is no

more crystallization. The temperature of the ice increases until

it reaches the saturation temperature value. The location of the

measurement point at some distance of the reactor outlet also

generates measurement delay. By denoting Tsat,m the tempera-

ture measurement, we can assume that :

Tsat,m(t) = Tsat(t − d) (1)

where Tsat is the saturation temperature of the ice at the outlet

of the freezer and d is the measurement delay.

Note that the ice mean chord length (MCL) of sorbet was also

measured by using the focus beam reflectance method (FBRM)
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(see in Arellano et al. (2012)). As these measurements are only

made at equilibrium, they are only used to validate the model

reduction (see section 7.1).

Remark 1. The moments of the CSD are quantities that are of-

ten not measurable directly. They may appear to be related un-

der some conditions to the geometrical properties of the crystal

or to some physical quantities. In our study, we will see that

the saturation temperature gives an indirect measurement of the

third moment M3 of the CSD, whereas the mean chord length

is related to the ratio of moments M1

M0
.

3. Model of the crystallizer

The model of the crystallizer considered in this paper is com-

posed of one population balance equation describing the evo-

lution of the CSD inside the freezer, and one energy balance

equation. The definitions and units2 of all the variables used in

the sequel are given in Table 2.

3.1. Balance Equations

The ice cream crystallizer under consideration is a scraped

surface heat exchanger which is assumed to behave as a plug

flow reactor. The population balance equation considers trans-

port, crystal growth, nucleation and breakage, the radial diffu-

sion being assumed to be negligible. If the plug flow reactor is

approximated, from an input-output point of view, by a Contin-

uous Stirred-Tank Reactor (CSTR) with a transport delay3 (to

account for the fluid transport in the freezer), then we get the

following simplified equation :

∂Ψ

∂t
= −DΨ
︸ ︷︷ ︸

transport

− ∂(GΨ)

∂L
︸    ︷︷    ︸

growth

+ Nδ(L−Lc)
︸     ︷︷     ︸

nucleation

+ Bb
︸︷︷︸

breakage

(2)

where δ denotes the Dirac function and the dilution rate D is

deduced from the mass flow rate mfr by the relation:

D =
mfr

ρsV
. (3)

Growth term: the growth rate is assumed to be independent

of the crystal size; it is given by:

G = β(Tsat − T ). (4)

In this expression, the physical meaning of the saturation tem-

perature Tsat is respected: it is a threshold temperature, below

which (if T < Tsat) the crystallization occurs, and the crystals

grow (G > 0). On the contrary, if T > Tsat (in warm tempera-

ture zones), the crystals are melting and G < 0.

2The units of the variables are the S.I. Units, except for the rotation speeds

Nscrap and Vcomp which are expressed in revolution per second (r.s−1) instead

of radians per second.
3The transport delay does not appear in the Eqs. (2) and (7) because the

input variables, that is the CSD and the temperature of the mix at the inlet of

the freezer, are constant variables.

Variable Definition Unit

Ψ number of crystals per meter (of the freezer)

per cubic meter of the solution at the outlet of

the freezer

m−4

Mj jth order moment mj−3

t time variable s

r radial position variable m

L crystal size variable m

Lc initial crystal size m

Ri freezer minimum diameter m

Re freezer maximum diameter m

G growth rate of the crystals m.s−1

N nucleation rate m−4.s−1

Bb net increase of crystals number by breakage m−4.s−1

Tsat saturation temperature ◦C
Te evaporation temperature ◦C
T ice temperature ◦C
T0 inlet mix temperature ◦C
α surface nucleation constant m−2.s−1.K−2

β growth constant m.s−1.K−1

V volume of the freezer m3

φi ice fraction -

Nscrap dasher rotation speed r.s−1

Vcomp compressor rotation speed r.s−1

ν breakage power coefficient -

ǫ breakage constant m−1

ω mass fraction of solutes in the unfrozen phase -

ω0 initial mass fraction of solute (sucrose) -

ρi mass density of ice kg.m−3

ρs mass density of solution kg.m−3

U volumetric internal energy J.m−3

µ viscosity Pa.s

γ̇ effective shear rate s−1

µmix viscosity of the unfrozen phase Pa.s

χ viscous dissipation coefficient -

ξ adjustment parameter of the viscosity -

∆H specific fusion latent heat J.kg−1

Cs solute specific heat capacity J.kg−1.K−1

Cw water specific heat capacity J.kg−1.K−1

he convective heat transfer coefficient W.m−2.K−1

S ratio of the periphery over the surface of the

section

m−1

D dilution rate s−1

U0 inlet energy J.m−3

mfr inlet mass flow rate kg.s−1

Table 2: Nomenclature.

Nucleation term: The nucleation phenomenon consists in

the formation of crystals whose size is here assumed to be char-

acterized by Lc. Only heterogeneous nucleation at the freezer

wall (r = Re) is considered here. The nucleation rate N is ex-

pressed by:

N = α
2πRe

V
(Tsat − Te)2 > 0. (5)

Breakage term: Because of the scraper, the crystals can also

be broken. We assume that a particle of size L′ is broken into

two particles of the same size L. The total volume of ice is con-

sidered unchanged by the fragmentation4 and a spherical shape

is assumed (as in Arellano et al. (2013)). Under these assump-

tions, the relation between L′ and L is given by L′ = 21/3L and

the net increase of particles by breakage Bb, can be expressed

4The sum of the volume of the 2 crystals of size L equals the volume of the

crystal of size L′.
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as in Arellano et al. (2013) by:

Bb = ǫNscrap φ
ν
i

(

2 22/3 LΨ(
3
√

2 L) − LΨ(L)
)

. (6)

The breakage power coefficient ν is taken to be equal to 0, as in

Gonzalez et al. (2011).

Under the same hypotheses than for the population balance

equation, the energy balance equation is written as follows :

dU

dt
=D(U0 − U)
︸         ︷︷         ︸

transport

+ heS (Te − T )
︸           ︷︷           ︸

wall heat transfer

+ µγ̇2

︸︷︷︸

viscous dissipation

(7)

with: γ̇ =2πχNscrap and S =
2Re

R2
e − R2

i

. (8)

3.2. Moments model

Applying the method of moments5 to equation (2), we get,

for all j > 0 (Gonzalez et al. (2011)) :

dM j

dt
= −DM j + j G M j−1 + N L j

c + B

(

21− j

3 − 1
)

M j+1 (9)

where M j(t) =
∫ ∞

0
L jΨ(L, t)dL is the jth order moment of the

CSD, and:

B = ǫNscrap. (10)

Moreover Eq. (7) can be rewritten with the temperature T as

the state variable by using the following relation :

U = −∆Hρiφi + ρs (ω0Cs + (1 − ω0)Cw) T. (11)

If we consider the ice crystals as spherical particles (as in Arel-

lano et al. (2013)), then we have:

φi =
π

6
M3, (12)

which, after computations, leads to :

dT

dt
=D (T0−T ) + K2 (Te−T ) + N2

scrapK3µ + K1

(
3GM2 + NL3

c

)

(13)

with the following quantities :

K0 = ρs (ω0 Cs + (1 − ω0)Cw) , T0 =
U0

K0

, (14)

K1 =
π

6

∆H ρi

K0

, K2 =
heS

K0

, K3 =
(2πχ)2

K0

. (15)

The saturation temperature is supposed to depend only on

M3, that is Tsat = Tsat(M3). As a consequence, G and N can be

expressed as functions of the variables M3 and T , and M3 and

Te respectively (i.e. G = G(M3,T ) and N = N(M3,Te)). So, if

the viscosity µ is assumed to depend only on the third moment

M3, the temperature T , and the dasher rotation speed Nscrap (i.e.

µ = µ(M3,T,Nscrap)), then the system composed of the four

first moment equations and the temperature equation is closed.

5The method of moments consists in multiplying the population balance

equation by L j and then integrating it from L = 0 to L = ∞.

The closure of the system derives from the assumptions that

the total volume of ice is preserved by the fragmentation, and

that the crystals are spherical. Indeed, under these hypotheses,

the third moment M3 is proportional to the total volume of ice,

and, as a consequence, is also preserved by the fragmentation.

Concretely, these assumptions lead to the cancellation of the

breakage term in the equation of M3 (21− j

3 − 1 = 0 for j = 3),

and therefore to the closure of the equations of moments.

In the sequel we shall therefore consider the following

model :

dM0

dt
= − DM0 + N + BM1 (16)

dM1

dt
= − DM1 +GM0 + NLc + c1BM2 (17)

dM2

dt
= − DM2 + 2GM1 + NL2

c + c2BM3 (18)

dM3

dt
= − DM3 + 3GM2 + NL3

c (19)

dT

dt
=D (T0 − T ) + K2 (Te − T ) + N2

scrapK3µ + K1

(
3GM2 + NL3

c

)

(20)

with µ = µ(M3,T,Nscrap), G = G(M3,T ), N = N(M3,Te), B =

B(Nscrap) and the constants c1 = 2
2
3 − 1 and c2 = 2

1
3 − 1.

This model is a dynamic version of the one developed by re-

search teams of AgroParisTech and IRSTEA Antony (France),

and described in Arellano et al. (2013) and Gonzalez et al.

(2011).

3.3. Characteristic quantities of the product

The saturation temperature and the viscosity of the ice both

depend on the formula of the mix used (mainly on ingredients

content) and on the desired final product. The sorbet considered

in this study is only composed of water, gum and sugar, and no

air is added during the crystallization.

Saturation temperature: The expression of the saturation

temperature (in [◦C]) has been determined experimentally from

the commercial mix (Gonzalez, 2012); it is given by:

Tsat(M3) = −7.683ω + 8.64ω2 − 70.1ω3, (21)

where, the mass fraction of sugar in the unfrozen phase, ω, de-

pends on the ice fraction φi in the following way:

ω =
ω0

1 − ρi

ρs
φi

=
ω0

1 − ρi

ρs

π
6

M3

. (22)

According to the “liquidus curve” experimentally determined

for the sorbet mix in Gonzalez (2012), Tsat is a decreasing func-

tion6 of M3.

Viscosity: the expression of the viscosity (in [Pa.s]) has been

6The derivative of function Tsat is given by T ′sat(M3) =
ρi
ρs

pi
6
ω2

ω0
×

(

−7.683 + 2 × 8.64ω − 3 × 70.1ω2
)

< 0.
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obtained empirically in Gonzalez (2012); it is given by:

µ(M3,T,Nscrap) = µmix×
(
1 + 2.5 φi + 10.05 φ2

i + 0.00273 ξ e16.6 φi
)
,

(23)

where µmix, the viscosity of the unfrozen phase, is given by:

µmix = 39.02 × 10−9 × γ̇0.600−1e
2242.38
T+273 × (100ω)2.557. (24)

4. Parameter identification and validation of the model of

the crystallizer

The model under consideration in this paper will then be

used for a control purpose. More precisely, the goal is in the

end to control the saturation temperature of the ice cream at

the outlet of the freezer. As the control input is the evapora-

tion temperature, the objective of the modeling is to accurately

describe the input-output behavior of the system, that is the dy-

namical response of the saturation temperature Tsat to the input

Te. As a consequence, the model will be validated by compar-

ison between the simulated saturation temperature values and

the measured ones. Before that, a sensitivity analysis followed

by an identification step will be performed, to first determine

the more sensitive parameters and then estimate their values.

For a review about model identification for crystallization pro-

cesses, one can refer to Rawlings et al. (1993).

4.1. Sensitivity analysis

Before identifying the parameters model, we first study the

sensitivity of the model to its parameters. To evaluate the ef-

fect of the variation of a parameter on the model, we use the

following quantity (as in Bernard et al. (2001)):

σx(p) =
1

T

∫ t0+T

t0

∣
∣
∣
∣

x(t, X0, p) − x(t, X0, p
ref)

x(t, X0, pref)

∣
∣
∣
∣
dt, (25)

where x is a variable of the model, p is the parameter, X0 is the

initial conditions of the model, t0 is the initial time and t0 + T

is the given final time, pref is the reference value of parameter

p and x(t, X0, p) is the value of the variable x at time t obtained

by simulation of the model with initial conditions X0 and pa-

rameters value p. The quantity σx(p) can be viewed as a mean

relative difference between the reference value x(t, X0, p
ref) of

x and the one obtained for the parameter value p.

The value of σx(p) has been computed for the parameters ǫ,

Lc, α, β, he, ξ and χ, which, among all the parameters of the

model, are the ones which are either ill-known or possibly de-

pendent on some neglected phenomena or external environmen-

tal conditions (as, for example, the temperature of the room in

which the freezer is located). In comparison, Ri, Re, V are some

constant physical parameters depending on the geometry of the

freezer; ρi, ρs, ∆H, Cs, Cw are well-known constants; and ω0

and T0 respectively depend on the mix and the process.

As for the variable x, the effect on all the state variables M0,

M1, M2, M3, and T and the one on Tsat have been studied. How-

ever, as explained before, we focus more specifically on the dy-

namical response of the saturation temperature.
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Figure 2: Sensitivity analysis: profile of the input Te used for the computation

of σx(p).

T0 5◦C Lc 5 10−6 m ρi 1000 kg.m−3

ν 0 Ri 0.016 m ρs 1100 kg.m−3

ǫ 20 m−1 Re 0.025 m ∆H 333.6 103J.kg−1

ω0 0.25 α 1 109 m−2.s−1.K−2 Cs 1676 J.kg−1.K−1

χ 2 β 5 10−7 m.s−1.K−1 Cw 4187 J.kg−1.K−1

ξ 350 V 3.87 10−4 m3 he 2000 W.m−2.K−1

Table 3: Sensitivity analysis: constant parameters values used for the simula-

tion of the reference trajectories (chosen according to Arellano et al. (2013) and

Gonzalez et al. (2011)).

The choice of the reference trajectories of the model is ob-

viously important. They have been obtained by simulation of

the model with the following input variable values: Nscrap =

750 rpm and mfr = 50 kg.h−1; the initial conditions M0(0) =

M1(0) = M2(0) = M3(0) = 0, T (0) = T0 which correspond

to the starting up of the process; and the constant parameter

values given in Table 3. The input profile of the evaporation

temperature is the one given in Figure 2. Finally, the initial

and final times are respectively taken equal to t0 = 200 s and

t0 + T = 600 s, time instants at which the process is stabilized.

The results are given in Figure 3.

Parameter Unit bmin bmax

ǫ m−1 0 40

Lc m 0 10−6

α m−2.s−1.K−2 3 × 108 7 × 109

β m.s−1.K−1 0 7 × 10−6

he W.m−2.K−1 1000 4000

ξ − 0 700

χ − 0 40

Table 4: Sensitivity analysis: minimum and maximum bounds bmin and bmax

of the parameters on which the sensibility analysis has been performed.

First note that the variations of ǫ, Lc, α and ξ have a very

low impact on Tsat. The parameter ǫ is the breakage constant;

as we assume that the volume of the ice is conserved when a

crystal is divided by breakage, it can be expected that M3 (and

so Tsat) that represents the volume of crystals per cubic meter, is

not very much affected by a variation of ǫ. The possible values

of Lc are very small: the effect of the considered variations of

Lc still remains too small to affect the value of M3. This obvi-

ously makes sense, because Lc is linked to the nucleation phe-

nomenon, by which the number of crystals, and not the volume,

increases. For the same reason, the effect of the variation of the

surface nucleation constant α is also small. Finally ξ is related

to the viscosity term of the model, which, for the considered

range of parameter variation, does not influence the volume of
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Figure 3: Sensitivity analysis: evolution of the quantity σx(p) defined by (25)

for different parameters and variables of the model, for p going from bmin to

bmax (see Table 4).

the crystals a lot.

The growth constant β influences the value of Tsat more than

the preceding parameters. This is physically consistent with the

fact that the volume of the ice depends on the growth rate G.

But the parameters which at the most affect Tsat are he end χ. It

is not surprising as he is the convective heat transfer coefficient,

which consequently has a direct impact on both temperatures T

and Tsat, and χ is the viscous dissipation coefficient on which

depends the temperature of the ice.

4.2. Identification of the parameters

According to the sensitivity analysis performed in Section

4.1, the saturation temperature Tsat is mostly influenced by the

parameters he and χ. Let’s now see if the identification of

these two parameters is sufficient to obtain simulated trajecto-

ries close to the experimental data.

For that, we have performed several identifications from 12

sets of experimental data. The identifications were made on

each of the 12 experimental data sets separately. Indeed, as

it will be discussed later, some parameters of the model de-

pend on some neglected phenomena or external environmental

conditions and can therefore vary from one experiment to the

other. As a consequence, it is impossible to find a unique set of

parameter values for which the model will explain well the 12

experimental data sets together.

For each i = 1 : 12, that is for each experimental data set,

we will denote in the sequel N i the number of measurement

instants, tk,i, k = 1 : N i the measurement instants, T
k,i
sat,m the

measurement of the saturation temperature at time tk,i, di the

measurement delay, X0,i the initial conditions values, and Uk,i

the control inputs values at time tk,i.

To identify the parameters (vector p in the sequel) of the

model, we used the Nelder-Mead simplex method (function

fminsearch of Matlab) to solve the least-squares minimization

problem:

p̂ = arg min
p

Ei(p) (26)

where Ei(p) is the least-squares error on the ith experimental

data set which is given by:

Ei(p) =
1

N i

N i
∑

k=1

(

Tsat(t
k,i − di, X0,i,Uk,i, p) − T

k,i
sat,m

)2

, (27)

with Tsat(t
k,i − di, X0,i,Uk,i, p) the value of the saturation tem-

perature at time tk,i − di obtained by simulation of the model

(16-20) with initial conditions X0,i, control inputs values Uk,i

and parameters values p. The value of the measurement delay

di considered for the identification is discussed in paragraph

4.4. The control inputs values Uk,i are either known (the mass

flow rate mfr and the dasher rotation speed Nscrap) or measured

(the evaporation temperature Te). As for the initial conditions

X0,i =
(

M
i,0
0 ,M

i,0
1 ,M

i,0
2 ,M

i,0
3 ,T

i,0
)
, they are deduced from the

measurements T
k,i
sat,m of Tsat in the following way:

M
i,0
3 = T−1

sat (T
0,i
sat,m), (28)

where T−1
sat is the inverse of the restriction of function Tsat (see

formula (21)) to the interval
[

0,
ρs

ρi

6
π

[

of admissible physical

values7 of M3; and:

∀ j , 3,Mi,0
j =

M
i,0
3

L
3− j
c

and T i,0 = T
0,i
sat,m − 0.25. (29)

The set of parameter values used for the initialization of the

identification is the one given in Table 3.

The set of parameters to be identified has been divided in 3

subsets, depending on their influence on the saturation temper-

ature value. We then have8:

7Indeed, the mass fraction of solutes in the unfrozen phase ω is necessarily

positive. From (22), we then deduce that M3 <
ρs

ρi

6
π

8Note that the parameter ε has not been identified, its influence on the satu-

ration temperature being too small compared to any of the other parameters.
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• subset 1: he and χ, the most influential parameters;

• subset 2: β whose influence on Tsat is lower;

• subset 3: α, ξ and Lc, the less influential parameters.

Based on these 3 subsets, we have performed different identi-

fications, the number of identified parameters varying from 1

to 6 as explained in Table 5. In this table the distribution of

the identified parameters in the 3 subsets is given, depending

on the total number of identified parameters. For example, for

an identification of 5 parameters, we will have: 2 parameters of

the subset 1 (that is he and χ), 1 parameter of the subset 2 (that

is β) and 2 parameters of the subset 3 (that is either α and ξ, α

and Lc, or ξ and Lc). The values of the parameters which are

not identified are the ones given in Table 3.

Parameters to be identified

Total Subset 1 Subset 2 Subset 3

1 1 − −
2 2 − −
3 2 1 −
4 2 1 1

5 2 1 2

6 2 1 3

Table 5: Parameters identification of the freezer model: Distribution of the

parameters to be identified between the 3 subsets, depending on the total num-

ber of parameters to be identified.

The results are given in Table 6. The first line of the table

corresponds with the reference model, that is the one charac-

terized by the initial set of parameters given in Table 3. The

identification results are then presented depending on the num-

ber of identified parameters. The quality of the identification

is estimated in terms of comparison between the simulations of

the identified model and the experimental data. For the identi-

fication of n parameters, we introduce the following quantities:

• mn
E and σn

E : respectively the mean value and the standard

deviation, on all the 12 experiments, of the minimal value

of Ei(p) on the set of all parameters distribution p of size

n (see Table 5):

mn
E =

1

12

12∑

i=1

min
size(p)=n

Ei(p),

σn
E =

(

1

12

12∑

i=1

(

min
size(p)=n

Ei(p)

)2

− m2
E

)1/2

;

• pn
E : the percentage of improvement of the identification

results (in terms of mn
E value, and with respect to the ref-

erence model) in comparison with the best identification

results obtained with m < n identified parameters:

pn
E = 100 × m

bn

E − mn
E

m0
E

, with bn = arg min
m<n

mm
E .

For each identification, only 2/3 of the data set are used to com-

pute the estimate p̂, the last 1/3 being saved for the cross val-

idation. In Table 6, we use the subscripts cv and t to point out

when the computation of Ei(p) (which appears in the expres-

sions of mn
E and σn

E ) has been performed on the last 1/3 of

the data set (“cross validation” data) or on the whole data set

(“total” set of data).

n: number of mn
Ecv

mn
Et

σn
Et

pn
Et

parameters (×10−2) (×10−2) (×10−2) (%)

0 95.3 95.8 60.6 −
1 9.38 8.04 5.61 90.2

2 1.88 0.988 0.604 8.10

3 1.90 1.00 0.583 −3.35 10−3

4 1.74 0.942 0.573 5.15 10−2

5 1.71 0.941 0.531 −1.85 10−2

6 1.96 1.04 0.613 −1.67 10−1

Table 6: Parameters identification of the freezer model: estimation of the

quality of the identified model depending on the number of identified parame-

ters.

From Table 6, we first conclude that the identification process

consequently increases the quality of the model. Indeed, by

identifying only 1 parameter (he or χ), the value of m0
E has been

decreased of 90.2%.

The results of the identification of both parameters he and χ (n =

2) are even better, the value of m2
E being 8.10% smaller than

m1
E . However, the addition of 1 identified parameter or more

(n > 3) does not improve the quality of the model any more.

As expected from the sensitivity analysis, the identification of

the two parameters he and χ is therefore sufficient to get an

accurate model (see Section 6 for a comparison between some

experimental data and the associated simulated trajectories).

We also note that the values of mn
Ecv

are obviously greater

than the ones of mn
Et

(about 2 times greater) but that they are

even though sufficiently small for control purposes.

4.3. Comments on the identified values of parameters he and χ

The identification process presented in the previous section

leads to the conclusion that the identification of parameters he

and χ is sufficient to get a good input-output approximation of

the dynamic behavior of the process. However, each identifica-

tion has been performed on each data set separately. We there-

fore have obtained one set of identified parameter values per

data set and per identification. Let’s now make a few comments

about the identified values.

First focus on the identified values of he and χ for a given set

of data. For identifications of at least 2 parameters, the obtained

identified value of he does not vary a lot from one identification

to the other. At mean (on the 12 experiments), the standard de-

viation is indeed equal to 111.7 W.m−2.K−1, the mean values

ranging from 1800 W.m−2.K−1 to 3600 W.m−2.K−1. The varia-

tions of the identified value of χ are slightly greater. To quantify

these variations, we only consider identifications in which the

parameter ξ is not identified. Indeed, both parameters ξ and χ

are related to the viscous dissipation term. In the input-output

point of view, their respective contributions to the variation of

the output value can not be distinguished by the identification

process. As a consequence, when ξ is also identified, the ob-

tained identified values of χ can vary a lot in comparison with
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other identifications. If we do not consider identifications in

which ξ is identified, the mean standard deviation is equal to

0.1169, the mean values ranging from 0.01 to 1.02. The fact

that the identified values of he and χ do not vary a lot with re-

spect to the number of parameters to be identified shows that

their contribution to the saturation temperature dynamic are es-

sential and can not be compensated by other parameters.

Let now look at the identified values of he and χ obtained

when only both of them are identified. In Table 7 the standard

deviation and the minimal, maximal and mean values of he and

χ computed on the set of the 12 experiments are given. As we

Parameter Min Max Mean Standard deviation

he [W.m−2.K−1] 1827 3486 2496 541.1

χ [−] 3.116 10−3 0.9782 0.4223 0.3326

Table 7: Parameters identification of the freezer model: identified values

of he and χ when only both of them are identified. The standard deviation

and the minimal, maximal and mean values are computed on the set of the 12

experiments.

can see, the identified values can vary significantly from one

experiment to the other. As a consequence, is is impossible to

find a unique set of parameters values for all the experiments.

Several factors can explain the variations of the values of these

parameters. For example, the heat losses to the ambiance have

not been considered in the modeling: as a consequence, the

parameter he should vary with the temperature of the room in

which is located the freezer. The heat transfer between the evap-

oration temperature and the ice is also directly affected by the

thickness of the ice layer which is formed on the wall (by nu-

cleation). We know that this thickness varies depending on the

dasher rotation speed, which is also not taken into account in

the proposed model.

4.4. Measurement delay

The value d of the measurement delay has also been identi-

fied from the experimental data, using an identification process

similar to the one described in Section 4.2. The obtained iden-

tified value is given in Figure 4 as a function of the mass flow

rate. As we can see, the larger the mass flow rate, the smaller
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Figure 4: Measurement delay: identified values of the measurement delay d

versus the mass flow rate mfr.

the delay. Indeed, the delay measurement is mainly due to the

distance between the outlet of the freezer and the measurement

point: the ice reaches it more rapidly when the mass flow rate

is large.

From Figure 4, we also note that, for a given value of the

mass flow rate (mfr = 25 kg.h−1 for example), the value of the

measurement delay varies from one experiment to another. This

can be due to several other factors, such as the viscosity of the

ice, or the value of the evaporation temperature.

5. Model of the compressor

According to the responses of the evaporation temperature Te

to some step inputs of the compressor rotation speed Vcomp (see

Figure 5a.), the dynamics of the compressor (in the input Vcomp

- output Te point of view) can be approximated by a first order

equation with a nonlinear gain, i.e. :

dTe

dt
= − 1

τc

Te +
1

τc

Gc, (30)

where Gc = Gc(Vcomp,mfr) is the nonlinear gain which is as-

sumed to depend on Vcomp and mfr, and τc is the time constant.

Gc and τc have been identified separately.

5.1. Identification of the time constant τc

To identify τc, we used 3 experimental data sets obtained

for different step inputs of the compressor rotation speed Vcomp.

The values of mfr, Nscrap, and the initial and final values of the

step input Vcomp are given in Table 8 for each data set.

Step mfr Nscrap Initial Vcomp Final Vcomp

number [kg.h−1] [rpm] [rpm] [rpm]

1 25 750 750 600

2 50 652 562 1025

3 65 445 1300 750

Table 8: Identification of the model of the compressor: values of mfr, Ncrap,

and the initial and final values of the step input Vcomp for each experimental

data sets used for the identification of the time constant τc of the Te dynamic.

After normalization of the data sets, we applied the Simpli-

fied Refined Instrumental Variable method for Continuous-time

model (SRIVC - see Young (2002); Garnier and Young (2004));

we get the following identified value of τc:

τc = 31.77 [s]. (31)

In Figure 5a, the trajectory obtained by simulation of model
dy

dt
= − 1

τc
y + 1

τc
u(t) with u(t) = −1(t) and τc given by (31)

is compared to the experimental normalized data; as expected,

the model fits well the data.

5.2. Identification of the nonlinear gain Gc

The nonlinear gain Gc has been identified from a data set

composed of 68 measurements of Te at equilibrium, obtained

for different values of mfr and Vcomp, going from 25 kg.h−1 to

75 kg.h−1 for mfr and from 520 rpm to 1487 rpm for Vcomp. As

8



−400 −200 0 200 400 600 800

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time [s]

N
or
m
al
iz
ed

ev
ap

or
at
io
n

te
m
p
er
at
u
re

a.

step 1
step 2
step 3

model

500 750 1000 1250 1500
−25

−20

−15

−10

Compressor rotation speed Vcomp [rpm]

E
va
p
or
at
io
n

te
m
p
er
at
u
re

T
e
[◦
C
]

b.

data
nonlinear gain Gc

Figure 5: Model of the compressor a. identification of the time constant τc.

b. identification of the nonlinear gain Gc, for mfr = 50 kg.h−1 and Nscrap =

750 rpm.

identification model for the nonlinear gain Gc, a polynomial

function of degree 2 of the following form has been chosen:

f (Vcomp,mfr) = a0 + a1 mfr + a2 m2
fr + a3 Vcomp + a4 V2

comp. (32)

The estimations of parameters a j, j = 0 : 4 have been obtained

by resolution of the least squares problem:

{
a j

}

j=0:4
= arg min

a j

68∑

i=1

(
f (V i

comp,mfr
i) − T i

e

)2
,

where
(
V i

comp,m
i
fr,T

i
e

)

i=1:68
are the points of the experimental

data set. The obtained values of a j, j = 0 : 4 are given here

after:

a0 = −1.122, a1 = −3.025 102, a2 = 1.386 104,

a3 = −1.370, a4 = 2.687 10−2. (33)

As an illustration, the curve of the estimated Gc as a function of

Vcomp (mfr being kept constant and equal to 25 kg.h−1) is plot-

ted in Figure 5b. and compared to the experimental data used

for the identification. As we can see, the qualitative behavior

of the function is good. However, we also note that, from one

experiment to the other, there can be large differences (2◦C or

more) between the evaporation temperature values. In the con-

trol point of view, this “modeling error” can be compensated

by the control law, because it only affects the gain, and not the

dynamics of Te. But, to compare the evaporation temperature

measurement data with the model (30), we have introduced in

the sequel an additive adjustment parameter θi, which depends

on the experimental data set under consideration: this param-

eter enables to compensate the static error. For the ith experi-

mental data set, we will therefore have :

Gc(Vcomp,mfr) = f (Vcomp,mfr) + θi, θi ∈ R. (34)

As we shall see in paragraph 6, this constant adjustment pa-

rameter will be sufficient to get a good approximation of Te. It

corresponds to a translation of the graph of function f .

6. Comparison between some simulated trajectories and

experimental data

For illustration, we show in Figure 6 an example of trajec-

tories obtained by simulation of model (16-20), after identifi-

cation of parameters he and χ from experimental data. Their

identified values are given here after:

he = 3.106 103 [W.m−2.K−1], χ = 3.117 10−3 [−]. (35)

For the considered experiment (denoted experiment A in the

sequel), the mass flow rate mfr and the scraper rotation speed

Nscrap were constant and respectively equal to 50 kg.h−1 and

750 rpm. The profile of Te is the one given in Figure 7. The

simulated saturation temperature is compared to the whole set

of experimental data, including the data used for the identifica-

tion of he and χ, and the ones saved for the cross validation. We

have:

K∑

k=1

∣
∣
∣
∣
∣

T
(16−20)
sat (tk,i) − T

k,i
sat,m

T
k,i
sat,m

∣
∣
∣
∣
∣

(
tk,i − tk−1,i

)
= 1.342 10−2, (36)

where T
(16−20)
sat (tk,i) is the value of the saturation temperature at

time tk,i obtained by simulation of model (16-20).

Remark 2. The results obtained with another experimental

data set (denoted experiment B in the sequel) are given in Fig-

ure 10. For this data set, the quantity defined in (36) is equal to

3.559 10−3.

In Figure 7, the model of the compressor (30), with the iden-

tified value (31) of τc and the identified expression (34,33) of

Gc, is compared with one experimental data set which has not

been used for the identification process of τc and Gc (cross val-

idation). These data correspond to the experiment A (presented

in Figure 6). The adjustment parameter θi is taken to be equal

to 0.3012 ◦C. It has been estimated from the first 2/3 of the data

set by means of the State Variable Filter (SVF) method. As we

can see, the value of Te obtained by simulation of the model

is close to the experimental data values on the whole data set

(identification and cross validation parts).

7. Model reduction

As shown in the previous sections of the paper, the model

(16-20) well describes the input-output behavior of the crystal-

lizer. However, when looking at the simulated trajectories of

the model (see Figure 6), we observe that the dynamics of the
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Figure 6: Parameters identification of the freezer model: simulated trajectories of the state variables of the identified model, and comparison of the simulated

saturation temperature with experimental data (experiment A: mfr = 50 kg.h−1 and Nscrap = 750 rpm).

moments M0, M1, M2 and M3 are close to each other, which

suggests that the model could be simplified.

In the control problem point of view, the most important vari-

able of the model is the third moment M3 on which the vari-

able to be controlled (that is the saturation temperature Tsat)

depends. The equation of M3 only depends explicitly on M3,

M2, T and the inputs mfr and Te. The link with the other state

variables M0 and M1 is only made through the variable M2. As

a consequence, if we can find a relation between M2 and M3,

then we will get a reduced order model only composed of the

equations of M3 and T .

7.1. Mean crystal size and approximation of M1 and M2

Assuming crystals of spherical shape, the mean crystal size,

denoted Lmean in the sequel, can be expressed as the quotient of

M1, that is the sum of crystals lengths, by M0, that is the total

number of crystals:

Lmean =
M1

M0

. (37)

The moment M3 represents the sum of the volumes of the crys-

tals. By dividing M3 by Lmean, we get a quantity which is rep-

resentative of the sum of the areas of the crystals. As a con-

sequence, it can be compared to the moment M2 which also

quantify the total area of ice crystals.

Let us first compare the quantities M2 and M0

M1
M3 in terms of

their dynamic equations. We have:

d
dt

(
M0

M1
M3

)

=
dM3

dt
M0

M1
+

M3

M2
1

(
dM0

dt
M1 − M0

dM1

dt

)

= −D M0

M1
M3 +G

(

3 M0

M1
M2 −

M2
0

M2
1

M3

)

+ N

(
M0

M1
L3

c +
M3

M1
− M0 M3

M2
1

Lc

)

+ B

(

1 − c1
M2 M0

M2
1

)

M3.

Assume now that M2 is proportional to M0

M1
M3, and M1 is pro-

portional to M0

M1
M2 and denote η2 and η1 the proportionality co-

efficients:

M2 ≃ η2
M0

M1
M3, and M1 ≃ η1

M0

M1
M2. (38)

We then have η2
M0

M1
M2 ≃ η2

η1
M1 and η2

M2
0

M2
1

M3 ≃ M0

M1
M2 ≃ 1

η1
M1,

so that :

3η2
M0

M1
M2 − η2

M2
0

M2
1

M3 ≃ 3η2−1

η1
M1. (39)

In the same way, we get:

η2

(

1 − c1
M2 M0

M2
1

)

≃ η2(η1−c1)

η1
, (40)

and:

η2

(
M0

M1
L3

c +
M3

M1
− M0 M3

M2
1

Lc

)

≃ η2
L3

c

Lmean
+ 1
η1

L2
mean − 1

η1
LmeanLc.

(41)

Let us denote L̃2
c the positive quantity η2

L3
c

Lmean
+ 1
η1

L2
mean −
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Figure 7: Model of the compressor - cross validation. Top: compressor ro-

tation speed Vcomp. Bottom: evaporation temperature Te, comparison between

experimental data and simulated values. (experiment A: mfr = 50 kg.h−1 and

Nscrap = 750 rpm)

1
η1

LmeanLc.

We finally get:

d

dt

(

η2
M0

M1
M3

)

≃ −DM2+
3η2−1

η1
GM1+NL̃2

c+
η2(η1−c1)

η1
BM3, (42)

whereas
dM2

dt
= −DM2+ 2GM1+NL2

c+ c2BM3. (43)

As we can see, both Eqs. (42) and (43) have the same struc-

ture. The differences between the two equations can be ex-

pressed as variations of the values of the parameters β, ǫ and

Lc. Indeed, Eq. (42) can be written exactly with the same ex-

pression than Eq. (43), but with:

• β̃ :=
3η2−1

2η1
β in place of β,

• ǫ̃ :=
η2(η1−c1)

c2η1
ǫ in place of ǫ,

• L̃c in place of Lc.

According to the sensitivity analysis performed in paragraph

4.1 (see Figure 3), it clearly appears that the parameters β and

ǫ do not influence the value of M2 a lot. As a consequence, if

β̃ and ǫ̃ are respectively close to β and ǫ, then the difference

between the growth and breakage terms of the two equations

will be negligible.

The parameter L̃c is not constant because it depends on

Lmean := M1

M0
. By simple computations, we can show that, if

1 > η1η2, the function Lmean 7→ η2
L3

c

Lmean
+ 1
η1

L2
mean − 1

η1
LmeanLc

is increasing9 on the interval [Lc,+∞). Moreover, some experi-

mental studies performed on the process (Arellano et al., 2012)

have shown that, in the range of admissible input controls val-

ues (see Table 1), and for the same commercial mix than the

one considered in this work, the mean crystal size Lmean at the

outlet of the freezer ranged from 5µm = Lc to 9 µm < 2Lc.

Under the hypothesis that Lc < Lmean < 2Lc, we then conclude

that:

η2L2
c < η2

L3
c

Lmean
+ 1
η1

L2
mean − 1

η1
LmeanLc

︸                                   ︷︷                                   ︸

L̃c
2

<
η1η2+4

2η1
L2

c . (44)

As a consequence, if
√
η2 and

√
η1η2+4

2η1
are close to 1, then the

difference between Lc and L̃c will always remain small, which,

according to the sensitivity analysis performed in Section 4.1

(see Figure 3), will lead to only small differences between the

corresponding values of M2.

Finally, if 1 > η1η2,
3η2−1

2η1
,
η2(η1−c1)

c2η1
,
√
η2 and

√
η1η2+4

2η1
are

close to 1, then the approximation:

M2 ≃ η2

M0

M1

M3 (45)

can be justified.

Let us check this approximation on some simulations of the

model identified from experiment A data (see Figure 6). In Fig-

ure 8, are given the plots of M0

M1
M3 versus M2, and M0

M1
M2 versus

M1 of 2 simulations: the one presented in Figure 6 for com-

parison with the experimental data (simulated data 1), and the

simulated response to a random series of steps10 of Vcomp (sim-

ulated data 2). Both plots exhibit a proportional relationship

between the two variables, which, in that case, validates the as-

sumption (38).

The estimated values11 of η1 and η2 are given here after:

η1 = 0.8627 and η2 = 0.7262, (46)

which leads to:

3η2 − 1

2η1

= 0.6832,
η2 (η1 − c1)

c2η1

= 0.8916,

√
η2 = 0.8522, and

√

η1η2 + 4

2η1

= 1.638.

For the simulated trajectories presented in Figure 6 (experiment

9The derivative of the function is given by f ′(Lmean) =
1

η1L2
mean

(

−η1η2L3
c + 2L3

mean − LcL2
mean

)

and is such that f ′(Lmean) >

0, ∀Lmean > Lc, if 1 > η1η2.
10The input Vcomp is composed of 40 successive steps, the values of which

have been randomly chosen in the set {200 × k, k = 1 : 13}. Each step lasts

300 s, so that the global simulation is 12 000 s long. With such an input, the

range of simulated M3 values is maximal.
11These values have been estimated from the simulated response to the Vcomp

steps input (simulated data 2) by use of the least squares method.
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Figure 8: Approximation of moments M2 and M1: plots of M2 versus
M0
M1

M3,

and M1 versus
M0
M1

M2. The proportionality coefficients η1 and η2 are re-

spectively equal to 0.8627 and 0.7262. (experiment A: mfr = 50 kg.h−1 and

Nscrap = 750 rpm)

A), we have:

eM1
:=

1

T

∫ t0+T

t0

∣
∣
∣
∣
∣

M1(t) − η1
M0(t)
M1(t)

M2(t)

M1(t)

∣
∣
∣
∣
∣
dt = 4.651 10−3,

eM2
:=

1

T

∫ t0+T

t0

∣
∣
∣
∣
∣

M2(t) − η2
M0(t)
M1(t)

M3(t)

M2(t)

∣
∣
∣
∣
∣

dt = 8.690 10−3.

The results obtained with the experiment B are given in Fig-

ure 10. For this data set we obtain the following values:

η1 = 0.8943, η2 = 0.7765, eM1
= 7.565 10−3, eM2

= 1.876 10−2.

(47)

The values of η1 and η2 have been computed for each of the

12 experiments. The standard deviation and the minimal, max-

imal and mean values of η1 and η2 (on the set of the 12 experi-

ments) are given in Table 9. We note that the standard deviation

is not very large, which means that the values of η1 and η2 do

not vary a lot from one experiment to the other.

Standard

Parameter Min Max Mean deviation

η1 0.8529 0.9207 0.8918 0.02101

η2 0.7077 0.8287 0.7757 0.03692

b1 6.001 104 1.177 105 8.713 104 2.069 104

b2 9.911 103 4.484 104 2.890 104 1.113 104

Table 9: Identification of parameters for the reduced order model: iden-

tified values of η1, η2, b1 and b2. The standard deviation and the minimal,

maximal and mean values are computed on the set of the 12 experiments.

7.2. Reduced order model

The mean crystal size Lmean is a quantity that can be mea-

sured (Arellano et al., 2012). If this measurement is available

on-line, it can be viewed as an input of the following system

composed of only two equations:

dM3

dt
= − DM3 + 3G

η2

Lmean

M3 + NL3
c (48)

dT

dt
=D (T0 − T ) + K2 (Te − T )

+ N2
scrapK3µ + K1

(

3G
η2

Lmean

M3 + NL3
c

)

. (49)

In the case where the measurement of Lmean is not available (as

it is the case for the data sets considered in this paper), an esti-

mation of Lmean has to be considered.

In Arellano et al. (2012), it is shown that when the evaporation

temperature decreases, the mean crystal size Lmean decreases,

whereas the ice mass fraction φi increases. In other words, the

greater the ice mass fraction, the smaller the mean crystal size.

As the ice mass fraction φi is proportional to the moment M3

(see (12)), we can therefore express Lmean as a decreasing func-

tion of the moment M3 (except in the neighborhood of M3 = 0

where the mean crystal size has to be equal to 0). According to

the results presented in Arellano et al. (2012), this function does

not depend significantly on the dasher rotation speed Nscrap, but

can vary with the mass flow rate mfr. We so have:

Lmean = Lmean(mfr,M3), (50)

and so, from (45):

M2 ≃ η2

1

Lmean(mfr,M3)
M3 := M2(mfr,M3), (51)

where M3 7→ M2(mfr,M3) is a positive function which is in-

creasing when M3 7→ Lmean(mfr,M3) is decreasing12. This fi-

nally leads to the following reduced order model:

dM3

dt
= − DM3 + 3GM2(mfr,M3) + NL3

c (52)

dT

dt
=D (T0 − T ) + K2 (Te − T )

+ N2
scrapK3µ + K1

(
3GM2(mfr,M3) + NL3

c

)
. (53)

The determination of the expression of Lmean(mfr,M3) can be

made from experimental measurements of the mean crystal

size, as the ones presented in Arellano et al. (2012). However,

in our case, recall that the objective is to get a model which

accurately describes the time evolution of the saturation tem-

perature, in an input-output point of view. As a consequence,

the identification of Lmean(mfr,M3) (and of M2(mfr,M3)) will be

made directly from the numerical simulations.

Consider the model identified from experiment A data (Fig-

ure 6), for which mfr = 50 kg.h−1. The plots of M2 versus

M3, and M1

M0
(= Lmean) versus M3 are given in Figure 9 for the

simulated data 1 (simulated trajectories of experiment A) and

2 (simulated response to the Vcomp steps input). The plot of

M2 versus M3 shows a relationship between the two variables

12The derivative of function f : M3 7→ M2(mfr,M3) is given by f ′(M3) =
1

Lmean(mfr ,M3)2

(

η2Lmean(mfr,M3) − η2∂M3
[Lmean(mfr,M3)] M3

)

.
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close to a line. However, to be physically realistic, the function

M3 7→ M2(mfr,M3) has to be such that M2(mfr, 0) = 0. As a

consequence, we have considered a function of the form:

M2(mfr,M3) = Mλ3 [b1(mfr)M3 + b2(mfr)] , λ > 0. (54)

To obtain a good estimation of Lmean, we also need to have

Lmean(mfr, 0) = 0 (see the plot of M1

M0
versus M3), which leads

to the constraint λ < 1 (because from (51), Lmean(mfr,M3) =

η2M1−λ
3 / [b1(mfr)M3 + b2(mfr)]). Several values of λ have been

tested. The functions identified with the least squares method

from the simulated data 2 are plotted in Figure 9. The identified

functions M3 7→ Lmean(50,M3) and M3 7→ M2(50,M3) obtained

with λ = 3/4 are the ones which fit the simulated data at best.

The corresponding identified values of b1(50) and b2(50) are

given here after :

b1(50) = 6.001 104, b2(50) = 3.731 104. (55)

Some experimental data taken from the paper of Arellano
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Figure 9: Reduced order model: plots of M2 versus M3, and M1/M0(= Lmean)

versus M3 for identification of the functions M3 7→ M2(mfr,M3) and M3 7→
Lmean(mfr,M3). (experiment A: mfr = 50 kg.h−1 and Nscrap = 750 rpm)

et al. (2012) have also been considered for comparison with

the identification function Lmean(50,M3). Among the 15 exper-

iments presented in Arellano et al. (2012), 3 have been per-

formed13 with the same values of the mass flow rate and the

dasher rotation speed than the ones used for the numerical simu-

lation of Figure 9, that is mfr = 50 kg.h−1 and Nscrap = 750 rpm.

The 3 experiments are presented in Table 10 in which the evap-

oration temperature, and the mean values of both the ice mass

13The 3 experiments we are talking about are the runs number 10, 13 and 14

of Table 1 in Arellano et al. (2012).

fraction and the mean chord length are given. The 3 experi-

Te [◦C] mean chord length [µm] φi [%]

−15.3 ± 0.1 6.5 ± 0.2 28

−19.8 ± 0.1 6 ± 0.2 37

−10.6 ± 0.1 8.1 ± 0.1 14

Table 10: Experimental data from the paper Arellano et al. (2012): evapo-

ration temperature, mean chord length and ice fraction values measured during

a crystallization performed with mfr = 50kg.h−1 and Nscrap = 750 rpm.

mental data points represented in Figure 9 correspond to these

3 experiments. The plotted values have been deduced from the

values given in Table 10 in the following way:

• the value of M3 is deduced from φi by the relation (12).

• the value of Lmean is not directly equal to the Mean Chord

Length (MCL). Indeed, as explained in Wynn (2003), the

MCL of a sphere is π/4 ≃ 0.785 times smaller than its

diameter. This value is nevertheless theoretical; the values

of Lmean in Figure 9 are obtained by dividing the MCL by

0.725.

The identified function Lmean(50,M3), and the quantity M1

M0
, give

a good estimation of the mean crystal size for the largest values

of M3. For small values of M3, the estimation is less good, but

the qualitative behavior remains consistent.

The values of b1(mfr) and b2(mfr) have been computed for

each of the 12 experiments considered in this paper. The stan-

dard deviation and the minimal, maximal and mean values of

b1(mfr) and b2(mfr) (on the set of the 12 experiments) are given

in Table 9. For all the 12 experiments, the approximation (54)

with λ = 3/4 leads to a good input-output approximation of the

system. The results obtained with the experiment B are given

in Figure 10. For this data set, we get the following identified

values:

b1(25) = 1.070 105, b2(25) = 9.911 103. (56)

8. Comparison between the reduced order model (52-54)

and the moments model (16-20)

To validate the reduced order model (52-54), the steady states

values of the model are first compared with the ones of the mo-

ments model (16-20). Unfortunately, due to the complexity of

these models and because it depends on the expressions of Tsat

and µ, neither the values nor the number of equilibrium points

can be analytically computed. However, these quantities can

be computed numerically for some given values of the model

parameters and several set of admissible physical values of the

input variables (see Casenave et al. (2012) for a steady-states

analysis of the moments model (16-20)).

In Figure 11, the computed steady-states values of both mod-

els (52-54) and (16-20) are given for different values of the

evaporation temperature Te and the dasher rotation speed Nscrap.

For the computation, the set of model parameters is the one used

for experiment B (see Figure 10). The mass flow rate is equal

to 25 kg.h−1 and the function M3 7→ M2(25,M3) is assumed to

13
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Figure 10: Parameters identification of the freezer model: Top: simulated trajectories of the saturation temperature and comparison with experimental data.

Bottom: plots of M2 versus
M0
M1

M3, M1 versus
M0
M1

M2, and M2 versus M3. (experiment B: mfr = 25 kg.h−1 and Nscrap = 750 rpm).

be of the form (54) with the values of b1(25) and b2(25) given

in (56) and with λ = 3/4. As we can see, the steady-states val-

ues of the two models are really close to each other, which is a

first validation of the reduced order model. Similar results are

obtained for other values of the mass flow rate mfr.
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Figure 11: Steady states comparison between the reduced order model (52-

54) and the moments model (16-20). (experiment B: mfr = 25 kg.h−1)

To go further in the validation of the reduced order model,

we also have compared the trajectory of the saturation temper-

ature Tsat obtained by the simulation of model (52-54) with the

one obtained by the simulation of the moments model (16-20).

Consider the data set of experiment A (see Figure 6). In that

case, the trajectories obtained by simulation of both models are

so close to each other that we cannot distinguish them when

they are plotted on the same figure. We indeed have :

1

T

∫ t0+T

t0

∣
∣
∣
∣
∣

T
(16−20)
sat (t) − T

(52−54)
sat (t)

T
(16−20)
sat (t)

∣
∣
∣
∣
∣

dt = 6.850 10−5, (57)

where T
(16−20)
sat (respectively T

(52−54)
sat ) is the trajectory obtained

by the simulation of model (16-20) (respectively model (52-

54)). For the experiment B (see Figure 10), this quantity is

equal to 8.587 10−5.

9. Conclusion

The present paper focuses on the identification and the re-

duction of a model of an ice cream crystallization process.

The model which is initially considered is a dynamic version

of the one presented in Arellano et al. (2013) and Gonzalez

et al. (2011). It is composed of 5 ordinary differential equa-

tions which describe the dynamics of the 4 first moments of the

CSD and of the ice temperature. The first part of the paper con-

sists in the identification of the model parameters whereas the

second part focuses on the model reduction. It is shown that,

to accurately describe the input-output behavior of the system

(the input and output variables being respectively the evapora-

tion temperature and the saturation temperature) whatever the

14



conditions are, it is sufficient to consider a reduced order model

composed of 2 ODEs (one for the third moment M3 and one

for the ice temperature T ) and to modify the values of only two

model parameters: the convective heat transfer coefficient he,

and the viscous dissipation coefficient χ. In a control point of

view, it has a real interest: adaptive control techniques can in-

deed be used to modify the values of he and χ in such a way

that the process is controlled in all conditions.

Coupling with a black box model (first order equation with a

nonlinear gain) for the modeling of the compressor, the reduced

order model of the crystallization process is finally written:

dM3

dt
= − DM3 + 3GM2 + NL3

c

dT

dt
=D (T0 − T ) + K2 (Te − T ) + N2

scrapK3µ + K1

(
3GM2 + NL3

c

)

dTe

dt
= − 1

τc

Te +
1

τc

Gc(Vcomp,mfr),

with µ = µ(M3,T,Nscrap, χ), G = G(M3,T ), N = N(M3,Te),

K2 = K2(he), K3 = K3(χ) and M2 = M2(mfr,M3) =

Mλ3 [b1(mfr)M3 + b2(mfr)].

The problem of the control of the ice cream viscosity will be

studied in a further paper, on the basis of this model.
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