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Abstract. In many applications, data are often imperfect, incomplete or more
generally uncertain. This imperfection has to be integrated into the learning pro-
cess as an information in itself. The E2M decision trees is a methodology that
provides predictions from uncertain data modelled by belief functions. In this
paper, the problem of rubber quality prediction is presented with a belief func-
tion modelling of some data uncertainties. Some resulting E2M decision trees are
presented in order to improve the interpretation of the tree compared to standard
decision trees.
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1 Introduction

Learning a classifier from uncertain data necessitates an adequate modelling of this
uncertainty, however learning with uncertain data is rarely straightforward. As data un-
certainty is of epistemic nature, the standard probabilistic framework is not necessarily
the best framework to deal with it. More general frameworks have therefore been pro-
posed [1–3] that provide more adequate model for this type of uncertainty. Different
classifier learning techniques [4–6] using these models have then been developed.

In this paper, our goal is to learn a model from agronomic data. More precisely,
we want to predict natural rubber quality from data concerning latex culture and natu-
ral rubber maturation. Generally speaking, uncertain measurements and expert assess-
ments are common in agronomy and life science, mainly due to field and economy
constraints. They are therefore domains where data uncertainty happens a lot. We re-
tain the belief-function theory [2, 7], as it is flexible enough to model a large variety of
data uncertainties. The chosen classifier is the E2M decision tree [8], for it is usually
efficient and interpretable (an essential feature for agronomic experts).

After a short overview on the necessary background in Section 2, we detail in Sec-
tion 3 the application context as well as the uncertainty models we used. We conclude
Section 3 by comparing the results of the obtained E2M decision trees with classical
ones.
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2 Background

We briefly recall the elements needed in the application.

2.1 Formalism

As in any classification problem, the aim is to predict a class label Y from a set of
attributes (or features) X . The classifier is learnt on a learning dataset LD containing
samples of (X ,Y ). The classifier is then evaluated by measuring its accuracy on a test
dataset T D, comparing the predicted class labels with the real ones.

The attributes X = (X1, . . . ,XJ) take their values on ΩX =ΩX1×·· ·×ΩXJ , the class
Y on ΩY = {ω1, . . . ,ωK}. That is, K different classes are predicted using J different
attributes (either categorical or real-valued).

A precise dataset containing N samples is a set of observations of (X ,Y ) and is
denoted by

D =

 x1,y1
...

xN ,yN

=

 x1
1, . . . ,x

J
1,y1

...
x1

N , . . . ,x
J
N ,yN

 .

Samples are here assumed to be i.i.d (independant and identically distributed).

2.2 Belief-function theory

The theory of belief functions (T BF), also called evidence theory or Dempster-Shafer
theory was first presented by Dempster [2] in a statistical approach. The very basis of
the T BF is here presented, with a special focus on the evidential likelihood proposed
by Denoeux [9].

Generalities Assume we have an uncertain observation of a variable W defined on a
finite space ΩW . We model this observation by a belief mass mW : 2ΩW → [0,1] verifying
∑B∈2ΩW mW (B) = 1. We assume here that mW ( /0) = 0. A focal element A ∈ 2ΩW is a set
such that mW (A) > 0. From this mass, the belief and plausibility functions are defined
by:

BelW (A) = ∑
B⊆A

mW (B), PlW (A) = ∑
B∩A6= /0

mW (B)

BelW (A) measures the amount of information that implies W ∈ A, and is a measure of
certainty, while PlW (A) measures the amount of information that does not conflict with
W ∈ A, and is a measure of plausibility. We naturally have BelW (A)≤ PlW (A) with the
two being equal in the specific case of probabilities.
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The particular cases of precise data, imprecise data, missing data, probabilities and
possibilities can all be modelled by belief functions:

precise data : mW ({w}) = 1
imprecise data : mW (A) = 1

missing data : mW (ΩW ) = 1 (complete ignorance)

probabilities : mW (A)> 0 if |A|= 1
consonnant mass functions : mW (A)> 0 and mW (B)> 0 only if A⊂ B or B⊂ A

In our classification context, an evidential dataset ED will be of the form

ED = mX ,Y =

mX ,Y
1
...

mX ,Y
N

=

mX1

1 · · · mXJ

1 mY
1

...
. . .

...
...

mX1

N · · · mXJ

N mY
N


where mX ,Y

i describes the ith sample with its uncertainty.

Evidential Likelihood Assume now we want to fit a parametric model with param-
eter θ to the data. Likelihood maximisation often provides a good estimator θ̂ of the
unknown parameter θ . When data are uncertain, the likelihood can be re-written in the
following way:

precise likelihood: L(θ ;w) = Pθ (W = w)

imprecise likelihood: L(θ ;A) = ∑
w∈A

L(θ ;w) (1)

evidential likelihood: L(θ ;mW ) = ∑
A⊆ΩW

mW (Ai)L(θ ;Ai)

As shown in [9], this evidential likelihood can be maximised by the adaptation of the
EM algorithm to belief functions: the E2M algorithm. This algorithm is quite similar to
the EM and is guaranteed to converge towards a local maximum. The main difference
is at the Expectation step (E), where the measure used to compute the expectation is the
conjunctive combination of Pθ and mW .

2.3 Decision trees

Decision trees are basic classifiers widely used in many areas such as machine learning,
statistics, data mining etc. They are usually built from precise datasets by partitioning
the attribute space in a set of leaves, each leave being thus attached to some conditions
on the attribute values and to a predicted class.

As each leave is characterized by the proportion of the population ”falling” into it as
well as the frequencies of the class within this population, a decision tree can be viewed
as a multinomial mixture whose parameters are the leaves probabilities (corresponding
to the mixture coefficients) and the class probabilities inside the leaves (multinomial).
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Example 1. Let us consider a data set with N = 12 data items, J = 2 attributes and
K = 3 classes. Spaces are described as follows:

ΩX1 = [1,10], ΩX2 = [13,150], ΩY = {a,b,c}.

X1

y = a

X1 < 3

X2

y = b

X2 < 45

y = c

X2 ≥ 45

X1 ≥ 3

t1

t2 t3

Fig. 1: Decision tree illustration

X2

X1

3

45

a b a

a a c

a

b b

c

c c

t1

t2 t3

Fig. 2: Partitioned attribute space

Figures 1 and 2 respectively represent a possible decision tree and its corresponding
partition of the attribute space with the learning dataset represented in it. To leaf t2 are
associated the values A1

2×A2
2 = [3,10]× [13,45[, its estimated probability is 3/12 and

the class estimated probabilities are (1/3, 2/3, 0), and the prediction for any test data item
in t2 (for example, x1 = 6 and x2 = 30) will be y = b.

The growing of a decision tree is recursive, and aims at separating classes inside
leaves. This separation is usually measured by an impurity measure i computed from
the leaves probabilities and the class distributions inside leaves. From a root node con-
taining all the samples of the learning dataset, all possible splits (on all attributes and for
all values) are explored, and the one with the highest purity gain (i.e., highest impurity
reduction) is chosen. Then, for each newly created leave and the sample ”falling” into
it, the process is iterated until some stopping criteria is reached.

2.4 The E2M decision trees

To learn decision trees from uncertain data (where potentially both attributes and classes
can be uncertain), we proposed [8] to learn the multinomial mixture of the tree through
the E2M algorithm. Périnel [10] proposed a similar idea, yet only dealt with uncertain
attributes and probabilistic data. We refer to [8] for technical details about the learning
process of E2M decision trees, as well as for some experiments on benchmark data
comparing E2M and CART decision trees and showing the potential interest of E2M
decision trees in terms of accuracy in noisy environments.

3 Application: the rubber quality problem

We first present the application and two uncertainty models we used on the data, before
showing some interesting results. Note that the uncertainty models could be re-used in
similar situations.
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3.1 Problem description

Natural rubber is the result of a milky fluid transformation: the latex that is extracted
from the hevea tree. Compared to synthetic rubber, natural rubber presents some unique
physical properties but suffers from a pretty high variability in terms of quality, that
experts are not fully able to explain and to control.

In order to better control this quality, one of the biggest rubber company has put
some effort to study this variability in one of its plantations by collecting cultural data.
This plantation is located in a part of Brazil where the climate has the particularity to
be more variable than in the rest of Brazil (the natural origin of the hevea tree is in
the Brazilian forests). However, due to the size of the plantation (approximatively 70
hectars) and various factors (e.g., untracked delay of collection/process due to weather
conditions, tanks mixing productions of many parcels), some variables are subject to
high uncertainties.

Data are constituted of many variables summarised in Table 1 (no Unit means a
dimensionless variable). Meteorological data may influence the latex during three dif-
ferent periods: the latex fabrication by the tree (one week before tapping), the tapping
day during which latex is collected, and the latex maturation in tanks (five days). For
the temperature and the relative humidity, the minimum, median and maximum values
are computed for each day.

The data set contains 3053 examples described by 106 attributes. The quality is mea-
sured by the P30 index which is an elasticity index. In order to use the E2M decision
trees methodology, the P30 was discretised into 5 equiprobable classes. This discretisa-
tion is presented in Table 2.

3.2 Data uncertainty modelling

Two types of uncertainty were modelled in this application: one relative to the rainfall,
and one due to parcel mixture in tanks.

Rainfall uncertainty The rain is a phenomenon that is geographically very variable,
especially in tropical areas. In the plantation, all the rain data come from a single mete-
orological station located inside the plantation. Since the plantation area is very large,
it is sensible to make the hypothesis that the farther is located a parcel in the plantation
from the meteorological station, the more uncertain is its rainfall data. This uncertainty
is non-probabilistic and progressive, so we chose to model it with a consonant mass
function. Moreover, as more rainfall implies more uncertainty, it is logical to assume
that imprecision of focal elements increases multiplicatively (i.e. more rainfall mea-
sured by the station implies wider focal elements).

To keep the complexity of the uncertainty reasonable, we limited the mass to five
focal elements of the form: [w(1− δ ),w(1+ δ )] where w is the original precise rain-
fall data and where δ ∈ ∆ = {0,0.25,0.5,0.75,1}. The proposed model is easy to ex-
pand to more than five focal elements and can therefore accommodate various levels
of complexity (depending on the available computational power and on possible time
constraints).
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variable type category unit
period categorical agronomical
season categorical climatic
weight numerical agronomical kg

X (latitude) numerical geographical km
Y (longitude) numerical geographical km

clone categorical agronomical
panel categorical agronomical

tapping system categorical agronomical
surface numerical agronomical hectar

planting year numerical agronomical year
first tapping year numerical agronomical year

tapping age numerical agronomical year
annual number of tapped trees numerical agronomical

tapped tree per hectar numerical agronomical
temperature numerical climatic celcius degrees

relative humidity numerical climatic
sun hours numerical climatic hours
rainfall numerical climatic mm

P30 numerical agronomical

Table 1: variables characteristics

class labels P30 range
very bad [1.87 ; 14.7[

bad [14.7 ; 21.6[
medium [21.6 ; 27.4[

good [27.4 ; 32.9[
very good [32.9 ; 49.5[

Table 2: P30 discretisation

We define a function g : [0,dmax]× ∆ → [0,1] (dmax being the maximal distance
between a location of interest and the measurement station) such that the rainfall w of
a parcel located at a distance d from the meteorological is characterized by g(d,δ ) =
mW ([w(1−δ ),w(1+δ )]) for all δ ∈ ∆ .

We distinguish two types of focal elements, the most precise ones (δ < 0.5), and the
most imprecise ones (δ ≥ 0.5). In the first case (precise ones), we assume that the farther
was the parcel from the meteorological station (d increasing), the smaller had to be the
masses assigned to those focal elements. In the second, we want to assign bigger masses
to the farther parcels. Such assumptions can be translated in the following constraints:

{
δ < 0.5→ ∂g

∂d < 0
δ ≥ 0.5→ ∂g

∂d > 0
(2)
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that merely translate the assumption into derivative behaviors. As function g is used to
define mass functions, we must add the following constraints

∀(d,δ ) ∈ [0,dmax]×∆ , g(d,δ )≥ 0 (3)

∀d ∈ [0,dmax], ∑
δ∈∆

g(d,δ ) = 1 (4)

that simply ensure one that the obtained mass functions will be well-defined, i.e. that it
will be positive (constraint (3)) and will sum up to one (constraint (4)).

One simple solution of this problem is to use two linear functions, one increasing
for the most precise focal elements (δ < 0.5) and one decreasing for the most imprecise
ones (δ ≥ 0.5), and to use a convex sum of those two functions. We obtain:

g(d,δ ) = δ (
2d

5dmax
)+(1−δ )(

2
5
− 2d

5dmax
) (5)

Example 2. Consider three rainfall measurements w1 = 0, w2 = 10 and w3 = 30 from
the station, and for each of these measurements some corresponding parcels of interest
respectively distant of 20km, 50km and 2km from the station. Assuming that dmax = 80,
we obtain mw1({0}) = 1, given the multiplicative uncertainty, and

mw2({10}) = 0.15
mw2([7.5,12.5]) = 0.175

mw2([5,15]) = 0.200
mw2([2.5,17.5]) = 0.225

mw2([0,20]) = 0.250


mw3({30}) = 0.39

mw3([22.5,37.5]) = 0.295
mw3([15,45]) = 0.2

mw3([7.5,52.5]) = 0.105
mw3([0,60]) = 0.01.

The absence of rain is thus considered certain (mw1 ) whereas positive rainfall data
masses are concentrated on imprecise focal elements when coming from distant parcels
(mw2 ) and on more precise ones when coming from parcels close from the meteorolog-
ical station (mw3 ).

Parcelar mixtures uncertainty During the harvest, the latex coming from many parcels
is usually mixed in some tank. All the parcel variables (i.e., most agronomical variables
of Table 1) we have are therefore subject to uncertainty as the amount of latex coming
from each parcel in tanks is not tracked. During a pre-treatment of the data, we there-
fore split all those parcel variables into rough and uncertain proportions (due to latex
production high variability) computed from the weight of latex produced annually by
each parcel (shifting from 18 original attributes to 106, with all the split ones being in
range [0,1]).

For example, if 25% of a tank content comes from clone A parcels and 75% from
clone B parcels, the actual amount of clones A and B latex in the tank may be quite
different, as each clone has variable production capacities (that may depend differently
on the weather, soil conditions, etc.). We model this uncertainty such that the more
balanced are the parcel proportions in a tank, the more uncertain become those propor-
tions: proportions of a tank with latex from only one pure parcel should remain certain,
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while proportions of a tank with equal amounts of latex coming from different parcels
should be maximally uncertain.

To do that we used simple intervals around computed crisp proportions, with the in-
terval width increasing as proportions become uniform. To measure this uniformity we
simply used the Shannon entropy denoted ent computed on the set of parcel proportions
of the tanks. The obtained model is the following: for each parcel variable X j having r
modalities with the positive proportions {p1, . . . , pr},

m j1([max(p1− ent(p1,...,pr)
r ,0),min(p1 +

ent(p1,...,pr)
r ,1)]) = 1

...
m jr([max(pr− ent(p1,...,pr)

r ,0),min(pr +
ent(p1,...,pr)

r ,1)]) = 1

(6)

with m ji modelling the uncertainty about the jith proportion.

Example 3. Let us consider a tank containing 75% of clone A and 25% of clone B. The
entropy on those proportions is equal to 0.8113. The obtained masses are therefore{

mclone A([34.43%,100%]) = 1
mclone B([0%,65.57%]) = 1

3.3 Experiments

In order to see the consequences of integrating data uncertainty the way we described in
Section 3.2, we perform some experiments comparing standard CART trees and E2M
trees on the original precise dataset and its corresponding evidential dataset obtained
with our uncertainty models, respectively.

For both methodologies, the stopping criteria is a maximum of 5 leaves (to preserve
a high interpretability) and a relative purity gain of 0.05.The error rates were computed
as the proportion of misclassified examples in the test dataset. Their means were com-
puted from ten 3-fold cross validations. It is noticeable that we used standard (precise
error rates) even for the E2M decision trees for comparison purposes. Given the small
tree size, no pruning is done.

methodology mean error rates 95% confidence interval
CART 0.6607 [0.6314 ; 0.6900]
E2M 0.6560 [0.6266 ; 0.6854]

Table 3: Results

As shown in Table 3, the accuracies of the two methodologies are quite similar, even
if the E2M accuracy is slightly better. Let us now shift to the main interesting part for
the experts (and hence for the application goal): the interpretation of the trees.
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3.4 Interpretation

In a pure knowledge discovery concern, we learnt CART and E2M decision trees on
the whole dataset in order to compare the informations they provide about the natural
rubber quality explanation. Within such a goal, it should also be noted that integrating
data uncertainty makes the result somehow more faithful to our actual information (and
therefore more reliable for the experts). The learning parameters were exactly the same
as in Section 3.3.

Month

very good

Sept to Febr

clone PR255

very bad

< 80%

UR min matur

Temp med tapping

good

< 20.4

medium

≥ 20.4

< 36.9

very good

≥ 36.9

≥ 80%

Mar to Aug

Fig. 3: CART decision tree

Month

very good

Sept to Febr

# tapped trees per Ha

Temp min matur

clone PR255

very bad

< 45%

good

≥ 45%

< 16.2

good

≥ 16.2

< 415

very bad

≥ 415

Mar to Aug

Fig. 4: E2M decision tree

In Figures 3 and 4 that show the learning results, UR min matur is the minimum of
relative humidity during the maturation of the latex in buckets, Temp med (resp. min)
tapping is the medium (resp. minimum) temperature during the tapping day, # of tapped
tree per Ha is the number of tapped trees per hectare.

As shown in those figures, integrating data uncertainty makes the number of tapped
trees per hectare appear in the tree. Not only the E2M decision tree suggests a high re-
lation between quality and productivity, but it also provides a density acceptable bound
inside the plantation. According to the experts, this issue points out the potential need
to investigate further this path. We can also notice that this data uncertainty lessen the
role of clone PR255 proportion in the rubber quality explanation.

4 Discussion

In the rubber application, the prediction results from CART and E2M decision trees do
not seem very different in term of accuracy (even if E2M has a slight advantage), but the
interpretation of the trees can be quite different; this latter interpretation being as im-
portant as accuracy in many applications. Indeed, we observe that some variables may
play a significant role in rubber quality explanation once their uncertainty is modelled
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(here by belief functions). Modelling uncertainty also provides more trustful results for
the experts.

Perspectives concerning the application include the modelling of additional uncer-
tainties (in particular with respect to the tapping day) as well as additional studies in-
volving more variables (e.g., tree diseases, soil conditions) or other prediction goal (e.g.,
quantity of production, which is also important from an economical viewpoint).

Finally, as the uncertainty models we have introduced may be useful in other areas
(particularly the distance-based model of rainfall), we plan to generalize them and study
in more details their properties.
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