
HAL Id: hal-01063854
https://hal.science/hal-01063854v1

Submitted on 24 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptation Patterns for Service-Based
Inter-Organizational Workflows

Saida Boukhedouma, Mourad Chabane Oussalah, Zaia Alimazighi, Dalila
Tamzalit

To cite this version:
Saida Boukhedouma, Mourad Chabane Oussalah, Zaia Alimazighi, Dalila Tamzalit. Adaptation Pat-
terns for Service-Based Inter-Organizational Workflows. 7th IEEE Conference on Research Challenges
in Information Science, May 2013, Paris, France. pp.567-576. �hal-01063854�

https://hal.science/hal-01063854v1
https://hal.archives-ouvertes.fr

Adaptation Patterns for Service Based Inter-
Organizational Workflows

Saida Boukhedouma(1,2), Mourad Oussalah(2)
(1) USTHB University – Department of Computer science

Algiers, Algeria
{sboukhedouma, zalimazighi}@usthb.dz

Zaia Alimazighi(1), Dalila Tamzalit(2)
(2) University of Nantes

Nantes, France
{mourad.oussalah, dalila.tamzalit}@univ-nantes.fr

Abstract— The SOA (Service Oriented Architecture)
paradigm provides important advantages like interoperability,
reusability and flexibility required in the area of business
applications. In our research works, we focus on the use of SOA
to implement inter-organizational workflows (IOWF). Our goal
is to obtain IOWF models flexible enough in order to ease their
adaptation at build-time and at runtime, because services are
loosely coupled components, easily invoked and interoperable.
This paper focuses on specific and well common IOWF-
architectures defined in the literature; it deals with adaptation of
IOWF process models obeying to these architectures. First, we
define the concept of Service-Based Cooperation Pattern (SBCP)
that supports service-based IOWF models meeting one of the
specific architectures considered. Then, we state a set of
recurrent operations of adaptation (attached to process and
interaction aspects) that can be applied on service-based IOWF
models, and we illustrate their implementation for IOWF models
specified with BPEL.

Keywords—IOWF, SOA, Service-Based Cooperation pattern,
Orchestration Function, Adaptation Pattern.

I. INTRODUCTION

The concept of B2B (Business to Business) has been
promoted with the use of business oriented technologies such
as workflow [1] and web services [2] supported by service
oriented architectures (SOA) [3]. Since the year 2000, many
works deal with the combination of WF and web services to
build collaborative business applications suitable to ad-hoc
cooperation or structured cooperation. Ad-hoc cooperation
means that the schema of the business process is defined on
the fly at runtime and process instances don’t necessarily
follow the same process model. In structured cooperation, the
steps of the business process and interactions in the system are
well defined resulting in an IOWF model clearly defined; so
all process instances should follow the IOWF model
implemented.

In our research works, we are interested in structured
cooperation supported by the concept of inter-organizational
workflow (IOWF). In [4] [5], generic architectures of IOWF
have been defined to support structured cooperation. These
architectures are the capacity sharing, the chained execution,
the subcontracting, the case transfer, the extended case
transfer and the loosely coupled WF; we consider them as
basis of cooperation models between businesses because they
cover a wide range of existing business processes since they
express the different ways in which businesses can cooperate

together. However in their initial form, these architectures
were subject to criticisms because of their rigidity and the
difficulty to adapt business processes to support changes [6].

Due to internal and external events and new market
constraints, businesses should continually or occasionally
adapt their business processes. So, the final objective of our
research works is to propose mechanisms providing flexibility
of IOWF process models suitable to structured cooperation.
We define flexibility around three main axes which are
adaptability, evolutivity and reusability.

But before we get to deal with flexibility, we should have
process models which are flexible enough to support
adaptation, evolution and reuse. For that, we use a SOA-based
approach to define Service-Based Cooperation Patterns
(SBCP) corresponding to the basic architectures defined in [4]
[5].

The main issue of the current work is to deal with the first
aspect of flexibility which is the adaptability of IOWF process
models. Then, we describe our framework of adaptation
composed by a set of adaptation patterns that we have
implemented for IOWF models specified with BPEL. We
focus on process (functional and behavioral) and interactional
perspectives.

However, in order to ease the comprehension of the paper
and to make it self-containing, we introduce in a generic
manner, the concept of SBCP. So, we propose a generic meta-
model for SBCP in order to exhibit the main concepts for
IOWF definition using SOA-based approach. We state that the
basic IOWF-architectures considered can be implemented
through global orchestration of services in case of centralized
or hierarchized control or distributed local orchestrations of
services in case of decentralized control, according to
constraints relative to each architecture. The main questions
that we had to answer are: how to structure workflows implied
in cooperation into services in order to meet a specific IOWF-
architecture? What is the appropriate type of control? How to
define interactions between services provided by different
partners?

The rest of the paper is structured as follows: Section II
explains the motivations of our research. Section III presents
some related works attached on one hand, to IOWF approaches
and on the other hand, to patterns-based approaches. Section
IV synthesizes the necessary background to understand the
paper such IOWF process definition concepts and aspects of

flexibility of IOWF models. Section V lays the basis of our
approach for WF interconnection using services; here, we
explain the concepts of SBCP and orchestration function.
Section VI describes the basic adaptation patterns proposed.
Section VII gives some implementation details and section VIII
summarizes the paper and talks about future works.

II. MOTIVATIONS

The need of flexibility in IOWF processes comes from
business constraints like new market demands, strategic
changes of organizations, the need of additional resources and
competencies and from technical constraints due to
technological evolutions. These constraints and others force
businesses to review their processes in order to make the
necessary adjustments using the adaptation mechanisms
offered.

Globally in our research works, we set two main objectives:
the first one is to propose a set of generic cooperation patterns
supporting flexible inter-organizational process models. These
models correspond to fairly common IOWF-architectures
defined in the literature [4], [5] covering a large number of
existing processes. The cooperation patterns that we propose
are based on SOA paradigm and called Service-Based
Cooperation Patterns (SBCP); a service which is the central
concept of SOA correspond to a loosely coupled and platform
independent component. The second objective of our research
works is to implement frameworks of adaptation, evolution
and composition (for reuse) patterns that can be applied on the
IOWF obeying to the SBCP proposed.

The idea of using services to build collaborative business
applications is not new. The motivations behind this come
from three main points: (1) the relevance of service
orientation, (2) the benefits of service orientation for the
information system and (3) the benefits of service orientation
for the cooperation. For the first point, the concept of service
(particularly web services) provides credible answers to
constraints and problems attached to the information system
like the luck of flexibility, the reluctance to openness and
those attached to the cooperation like the need to preserve the
autonomy and the confidentiality [7]. For the second point, the
service-based approach provides a certain degree of flexibility
to the information system by easing the participation in new
business opportunities and meeting new market demands. For
the third point, the cooperation between business partners is
realized by service composition [7]. Then, businesses provide
their services with a certain degree of abstraction by
publishing them through their interfaces; this allows
preservation of autonomy and confidentiality.

Also, for adaptation, we use a pattern-based approach in
order to enumerate the adaptations that can occur repeatedly in
IOWF processes. This allows modular and reusable
implementation of the proposed patterns starting with
elementary patterns and going to more complex ones by reuse
of the first ones.

III. RELATED WORKS

With the emergence of SOA and web services standards,
many research works deal with orchestration and
choreography of web services [8], [9], especially based on
BPEL4WS [10] in order to build business processes by service
composition.

Other research works such as [11], [12] show the interest of
combining BPM (business process management), workflow
and SOA for the re-use of services to construct dynamic
business processes. This had a great impact in promoting B2B
relationships since several approaches and platforms have
been developed to support the B2B cooperation using WF and
SOA. In structured cooperation for example, we can cite some
approaches like CoopFlow [6], CrossFlow [13], CrossWork
[14], Pyros [15] and e-Flow [16].

Also, flexibility is an important property to be satisfied by
business processes and their systems allowing them to support
changes. Even if some approaches like CoopFlow, Pyros and
e-Flow provide internal adaptation of workflows without
compromising the coherence of the global process, a large
number of the proposed solutions are not flexible enough
because they are closely coupled with the platforms. So for
any changes, they impose to re-adapt the interfaces and to
newly build the structure of interaction. Moreover, WF
flexibility is perceived at two complementary levels: (1) at the
system level, the flexibility defines the ability of a WFMS (WF
management system) to face unexpected and erroneous
situations [17], [18]. (2) at the level of process models that
defines the ability of a process model to be adaptable,
evolvable and reusable; many research works have been
proposed describing different techniques such as adaptation
patterns [19], [20], [21], rule-based adaptation patterns [22],
[23] and constraint-based modeling [24] to support flexibility
of process models. For example, in [21], the authors identify
the most important process change patterns and change
features for PAIS (process aware information systems). In
[25], a framework was described using adaptation patterns and
aspect–programming in order to support process adaptation for
BPEL engines.

The concept of pattern was initially used in software
engineering as the abstraction from a concrete form which
keeps recurring in specific non-arbitrary context. In the
workflow area, this concept has been usually used for business
process modeling [26], business process improvement or
changes [21], [25] or exception handling [27].

In this paper, we describe our framework of adaptation
composed by a set of adaptation patterns that can be applied
on IOWF process models specified with BPEL. Thanks to its
modularity, our framework of adaptation is easily
maintainable and extensible. The process models considered
obey to specific IOWF-architectures which are in turn
implemented according to a set of service-based cooperation
patterns (SBCP). A SBCP is a concept that we define using
three main dimensions: service, orchestration function and
interaction.

IV. BASIC DEFINITIONS AND CONCEPTS

A. IOWF Definition

An IOWF can be defined as a manager of activities
involving two or more workflows autonomous, possibly
heterogeneous and interoperable in order to achieve a common
business goal [4].

B. IOWF Architectures

In [4][5], generic architectures of IOWF have been defined
in order to support structured cooperation which must obey,
depending on the needs of partners, to a schema clearly
defined. These architectures are the capacity sharing, the
chained execution, the subcontracting, the case transfer, the
extended case transfer and the loosely coupled WF. These
architectures have been characterized according to two main
dimensions: the partitioning of the process and the control of
execution. Regarding to the first dimension, two types of
partitioning are distinguished: process schema partitioning
and instance partitioning. Process schema partitioning means
that the IOWF process model is implemented as fragments at
the partner’s sites. Instance partitioning means that the
execution of a process instance is distributed among the
different sites in a disjoint manner (at each moment, an
instance is located at one site).

Since IOWF are distributed systems, the control of instance
execution can be centralized, decentralized or hierarchized.
The control is centralized if the execution of process instances
is delegated to one system that also manages all interactions
between the systems of partners; this is suitable for the
capacity sharing. The control is decentralized if the execution
of instances is distributed among the systems of all partners
and each system manages itself its interactions with the other
systems, this is appropriate for the chained execution, the
loosely coupled and for the (extended)case transfer
architectures. We say that a control is hierarchized if each
system manages its own WF and there is one principal system
that controls interactions with one or more secondary systems,
this is suitable for the subcontracting architecture.

In the following, we exhibit the main concepts of IOWF
process definition and we introduce the concept of cooperation
pattern that we define using three main dimensions:
partitioning, control and interaction.

C. IOWF Meta-model

Fig. 1 bellow shows a meta-model of IOWF process
definition, we can see that an IOWF process model is defined
by a set of WFs (fragments of the global IOWF) and a
cooperation pattern. Each WF is attached to a partner,
manipulates data and is submitted to condition of invocation.
A given cooperation pattern is attached to a specific
architecture of IOWF; it links two or more workflows and is
defined around three main dimensions: the partitioning of the
process, the control of execution and the structure of
interaction. This last is defined by a set of interaction points
between WF fragments. Intuitively a cooperation pattern
defines the manner in which WF fragments are distributed
among the partner’s sites, how the execution of instances is
managed and how WF fragments interact together.

Fig. 1. Meta-model of IOWF Process Definition

D. Flexibility of IOWF Models

As already evoked in the introduction, the environment of
businesses and the business processes describing their
behavior are naturally dynamic, because they are continually
submitted to new market constraints and unexpected events.
Indeed, a business process is perpetually subject to changes
calling into question its structure and its validity. So, a
business process should be flexible enough in order to support
these changes.

 Through the concepts exhibited on the meta-model (see
Fig. 1.), we can see that an IOWF model covers four main
axes: process (concepts of IOWF, WF, condition, cooperation
pattern, partitioning type and control mode), organization
(concept of partner), data and interaction (concepts of
interaction structure and interaction point). Consequently, we
can affirm that the constraints of flexibility in IOWF models
are not limited to one axis, but cover the four axes.

Also, we perceive the flexibility of process models through
three main perspectives: adaptability, evolutivity and
reusability that we define as follows:

The adaptability of an IOWF process model defines its
capacity to easily support changes while maintaining the
coherence of the process after changes, the overall
functionality and the cooperation (the set of partners). Hence,
an IOWF model is adaptable if one or more of the entities
(WF, condition, data, interaction points) composing it can be
modified without affecting the global functionality of the
process and the cooperation.

The evolutivity (called evolutive adaptability) of an IOWF
process model is its capacity to accept expansion of its global
functionality and/or expansion of cooperation inducing
additional business partners and so additional WF fragments
where maintaining the coherence of the process, we say that
the IOWF model is evolvable.

The reusability of a model defines its capacity to be easily

integrated with another model in order to build more and more
complex models. Then, an IOWF model is reusable if it can
be manipulated as a separate entity (IOWF) and to be
integrated to other models in order to build more complex
IOWF processes which cover more functionalities and
services.

Let’s notice that in our work, we focus on flexibility
reflected at process and interaction axes (although it involves
and also draws on other levels – data and organization).

In order to make the paper self-containing, we introduce
the following section to explain the basis of our approach of
WF interconnection using the SOA concepts.

V. BASIS OF OUR APPROACH

In our previous works [28] [29] [30], we have considered
each basic IOWF-architecture and we have defined a
corresponding SBCP in order to deal with IOWF models
flexible enough to ease their adaptation. The main idea of our
approach is to encapsulate each WF fragment into a single
(composite) service or a set of services depending on the
IOWF-architecture to meet.

A. Encapsulation of a WF Process into Services

The encapsulation of a WF process (or a sub-process) into
a service is possible due to conceptual and technical
similarities between the concept of WF and the concept of
service. Fig. 2 exhibits these conceptual similarities.

• Conceptual Aspects
A WF process is attached to a business partner, as a

business service. A service is eventually composed by other
services (components), in the same manner a WF process is
eventually composed by sub-processes having the same
structure as the global WF. At the lower level of
decomposition, a WF process is hierachized into activities; an
activity uses/produces data, it is submitted to a transition
condition and can invoke external applications. Also, a service
is hierarchized into operations (activities); each operation
uses/produces data, it is submitted to a pre-condition (analog
to transition condition) and can invoke external services
(applications).

Fig. 2. Correspondence of Concepts – WF vs Service

In addition, a WF process covers a global business
functionality that can be decomposed into sub-functionalities
performed by sub-processes. Service in turn, has a global
business functionality that can be decomposed into sub-
functionalities performed by the service components.
Therefore, we can say that a WF process is conceptually
similar to a business oriented service.

• Technical Aspects

Technically, a service has an interface and a description
allowing its invocation in accordance with syntactic, semantic
and QoS constraints. Similarly, a WF has a description and an
interface (set of API) for its invocation from another WF
through the interface 4 of the reference model proposed by the
WFMC coalition. Thus a WF process (or sub-process) can be
considered as a business service performing a well defined
functionality and that should be invoked through an interface,
under some constraints. Hence the idea of encapsulating a WF
process in a service which is a loosely coupled, interoperable
and platform independent component.

B. Service Based Cooperation Pattern (SBCP)

With our vision, interactions between WF fragments turn
to invocation of services provided by several partners. For
that, our approach focuses on three main questions: (1) How to
structure the WF process into services? (2) How to control the
execution of instances? (3) How to define interactions
between services provided by different partners? These three
questions exhibit three main dimensions that we use to define
the concept of SBCP. Here, we define a SBCP in a generic
manner (covering all the IOWF-architectures considered) in
order to exhibit the main concepts for service-based IOWF
definition.

A SBCP is defined by three main dimensions: the
distribution of services on the partner’s sites, the control of
execution and the set of interactions like shown on Fig. 3.

Fig. 3. Meta-model of SBCP Definition

Regarding to the first dimension which is the distribution
of services, we consider that each service encapsulates part or
all of the WF process and is implemented at the partner’s site
that provides it. This dimension corresponds to the dimension
Process partitioning which is defined for the initial IOWF-
architectures. From the perspective of a given partner, a
service can be implemented locally (local service) or provided
by an external partner (external service).

The second dimension which is the control of execution
(centralized, decentralized or hierarchized) is expressed
through the concept of orchestration function that abstracts the
structure of the process in terms of control flow and
interactions between services composing the IOWF process.
Hence, in case of centralized control, there is one global
orchestration function implemented at the site of one partner
that controls the execution of the whole IOWF. By contrast, in
case of decentralized control, there is a set of local

orchestration functions. Each orchestration function is
implemented at one partner site and allows the control of the
fragment implemented at the same partner site. In case of
hierarchized control, there is one global orchestration function
that controls the invocation of internal and external services
and a set of local orchestration functions that control the
execution of secondary workflows implied in the
“subcontracting” cooperation. The concept of orchestration
function is defined and illustrated in section C bellow.

The third dimension defines the interactions between
services of several partners implied in the IOWF process. This
dimension is expressed via interactional activities
(invoke/receive for asynchronous communication and
invoke/reply for synchronous communication).

C. Orchestration Function and Control Flow

Like shown on the meta-model of Fig. 3, the concept of
orchestration function describes the control flow between
services composing the IOWF using basic control flow
operators.

TABLE I. BASIC CONTROL FLOW OPERATORS

In Table I, we introduce these basic operators and we

express them using a general notation independently from any
language or platform.

Remark. To describe multi-choice – respectively multi-
parallel - (more than two edges), we can decompose on several
simple choices – respectively several simple parallel blocks.
For example, Alt (S1, S2, S3) is expressed as Alt (Alt (S1, S2),
S3) or Alt (S1, Alt (S2, S3)).

Fig. 4 bellow illustrates the concept of orchestration
function using our notation; we give an example of IOWF
obeying to the “chained execution” pattern. The process
schema describes an IOWF implying two partners, partner 1
and partner 2 implementing their WFs as services S1 and S2
respectively. Partner 1 provides his WF composed by internal
services S11, S12, S13, S14, S15 and partner 2 provides his
WF composed by internal services S21, S22 and S23. For
more readability and less complexity of the orchestration
function, we can structure the process fragments into blocks
Bij of sequential, parallel or alternative services. In a
hierarchical manner, a block can be expressed using other
blocks. The orchestration function can be represented by a
binary tree with two types of nodes: operators and services.

Fig. 4. Example of orchestration functions

Figure 5. Illustration of orchestration function

VI. ADAPTATION PATTERNS

According to the meta-model of Fig. 3, adaptations of an
IOWF process model obeying to a SBCP turn to modifications
of the entities composing it that means services, orchestration
functions and/or interactions. Then, we classify our adaptation
patterns into three main categories: Service adaptation
patterns, Control Flow adaptation patterns and Interaction
adaptation patterns.

A. Service Adaptation Patterns

These patterns concern the modifications that can be
applied on the services composing the IOWF process; these
modifications are typically adding, removing, replacing,
merging of two services (sequential, parallel or alternative)
and decomposing a service into a block of two services
expressing sequential, parallel or alternative execution. An
adaptation of a service usually induces modification on the
orchestration function using it or a modification of closely
attached attributes like condition or data (see Fig. 3).

• Adding, Removing and Substituting Services

Adding a service is done in order to insert an additional
step in the process. The reverse operation of adding is the
removing of services. For adding or removing of services, it is
to distinguish adding or removing of a service on one edge
composed by sequential services or in a block composed by
two edges expressing parallel or alternative execution. Table II
describes the basic patterns of adding services illustrated by
generic process schemas and the corresponding orchestration
functions. We can see that there are elementary patterns
named AP1.1, AP1.2, respectively for adding a new service
before or after a service in the process, and there are more

elaborated patterns like AP1.3, AP1.4 and AP1.5 which are
implemented using elementary patterns AP1.1 or AP1.2,
depending on the location of the service to add. Adding a
service in an alternative or a parallel block requires the
generation of the appropriate condition using a wizard which
is provided to the user of our application.

TABLE II. DESCRIPTION OF “SERVICE ADDING” PATTERNS

Table III shows typical operations of removing of services
(service S2 for example). Let’s notice that two configurations
are possible when removing a service S from a block with two
edges: (1) service S is in sequence with other services, (2)
service S is alone on the edge; this results on two different
scenarios for adaptation. These two configurations are
represented only for inclusive choice, but they are also
considered for exclusive choice and parallel execution. We
can see on Table III that AP2.1 is an elementary pattern and
AP2.2, AP2.3, AP2.4, AP2.5, … are implemented using
AP2.1.

Another basic operation of adaptation concerns the
substitution (replacing) of services. This is typically a
removing of the service to replace followed by an adding of
the new service. Then, the pattern AP3 (called “Service
Substitution” Pattern) is implemented using patterns AP1.x
and PA2.x for respectively adding and removing, depending
on the location in the process schema (in sequence, parallel or
alternative) of the service to be replaced. Updating the data
flow dependencies between services is done after each
operation of adding/removing of services.

• Fusion and Decomposition of Services

The operation of fusion can concern two services linked by
a sequence, an inclusive choice, an exclusive choice or a
parallel execution, in order to simplify the process model and
to abstract several services into one. Table IV bellow
describes these basic operations and the corresponding
orchestration functions modified after each operation for
merging S2, S3 in a single service S’. We can state that since
services to merge are in the same block, they become easier to

TABLE III. DESCRIPTION OF “SERVICE REMOVING” PATTERNS

remove and to replace, because the block (Alt (S2,S3), Par
(S2,S3) or Exl (S2, S3)) is considered as a single composite
service to be replaced. More elaborated operations of fusion
concern configurations such as services to merge are not in the
same block. For example in a model described by the
orchestration function Seq(Seq(S1, Par(S2,S3)), S4), the
operation of merging S1 and S2 cannot be done directly since
we must know if we maintain the parallelism or we don’t
maintain it; this information should be provided as additional
parameter. In both cases, this must be decomposed into
elementary operations of removing and adding of single
services or blocks.

TABLE IV. DESCRIPTION OF FUSION PATTERNS

Then, the fusion patterns are implemented using the adding
and the removing patterns AP2.5 and AP2.6 which are not
represented on Table III, correspond to removing a service
from one edge with a single service of parallel execution and
of exclusive choice respectively.

The reverse operation of fusion is the decomposition of a
service to obtain a block of two services that can be

sequential, parallel or alternative block. The decomposition of
services can be done to improve the parallelism in the process
(parallel decomposition) or to add condition (alternative
decomposition) due to new constraints or to have more control
on process execution (sequential decomposition).We can see
on Table V that the decomposition of a service consists to
remove a single service (S2 for example) and to add a block
composed by two services (S’ and S”) linked by a sequence,
an alternative or a parallel operator. This explains the use of
adding patterns AP1.x and removing Patterns AP2.x.

TABLE V. DESCRIPTION OF DECOMPOSITION PATTERNS

B. Control Flow Adaptation Patterns

This category of patterns concerns modification of the
control flow between services composing the IOWF process,
without affecting the services themselves. This is typically a
replacing of an operator of control flow by another; we can
replace for example a sequence operator (seq) by parallel
operator (par) (parallelization of services) to improve the
execution time of process instances, or vice versa
(sequentialization of services) if an execution of a service
becomes dependant from another service, or alternation of
services if an execution of a service depends from a given
condition.

Even if there is no modification on services implied in the
IOWF, the implementation of the control flow patterns uses
other patterns of adding and removing services (see Table VI)
because we have to update input and output data of services
and also the conditions of invocation.

C. Interaction Adaptation Patterns

This category of patterns concerns modification of the
interactions between services composing the IOWF process
and provided by different partners. Specifically, updating the
structure of interaction is done by adding, removing or
updating interactional points (see table VII).

TABLE VI. DESCRIPTION OF “CONTROL FLOW” ADAPTATION PATTERNS

TABLE VII. DESCRIPTION OF “I NTERACTION” ADAPTATION PATTERNS

On Table VII, we describe simple scenarios of adapting

interaction points. Then, for example, adding an interaction
point can be realized by adding an external service (provided
by an external partner) or by substituting a local service by an
external one in case of a new subcontracting for example. This
can be realized using AP1.x patterns (depending on the
structure of the process) for adding services or the AP3 pattern
for substituting services. The update of interaction point can
concern the modification of the data flow or the modification
of the interaction mode which can be done by substituting
external services containing “receive” and “reply” activities
for respectively asynchronous and synchronous interactions.

VII. SOME IMPLEMENTATION DETAILS

A. Implementation Tools

We have implemented a framework containing the set of
adaptation patterns previously described (and others patterns).
For the development of our application, we have considered
process models specified with BPEL and interpreted by the
WF engine OPEN ESB 2.2, we also used a plug-in SOA
Netbeans. We have developed our framework using the Java
language and the IDE Netbeans, the application server used is
GlassFish server version 2. To implement the adaptation
patterns, we have used the API jdom2 that eases the
modification on the code BPEL specifying the WF processes

since it is based on the XML language. For example, we
simply use the class Element implemented in the API jdom to
create a new XML tag.

Our framework of adaptation is as modular as possible
since we implement a separate class for each adaptation
pattern. Then, we create a class for adding a service
another service in a sequential branch, another class for adding
a service before another service in a sequential branch, another
class for adding a service in an alternative bloc
eases the maintenance of the application and the
existing patterns to implement other ones; for example the
operations of substitution, fusion and decomposition are
implemented using elementary operations o
removing of services (see Tables IV, V and VI

B. Illustration of the AP1.2 Pattern

Fig. 5 bellow shows the interface related to implementation
of AP1.1 or AP1.2 patterns (add a service in sequence). The
designer of the WF process has to introduce some parameters
like the name of the service (for example “NewService”) to
add, the inputs and outputs, the location (before or after what
service). Fig. 6 shows the code java corresponding to the
implementation of the pattern AP1.2 “add in sequence

Fig. 5. Interface corresponding to “ Adding a service”

Fig. 6. Part of the java code corresponding to “ Adding a service”

since it is based on the XML language. For example, we
implemented in the API jdom to

Our framework of adaptation is as modular as possible
plement a separate class for each adaptation

pattern. Then, we create a class for adding a service after
another service in a sequential branch, another class for adding

another service in a sequential branch, another
rvice in an alternative block, etc. This

maintenance of the application and the reuse of
to implement other ones; for example the

operations of substitution, fusion and decomposition are
implemented using elementary operations of adding and

IV, V and VI).

bellow shows the interface related to implementation
of AP1.1 or AP1.2 patterns (add a service in sequence). The

duce some parameters
like the name of the service (for example “NewService”) to
add, the inputs and outputs, the location (before or after what

the code java corresponding to the
“add in sequence after…”

dding a service”

Fig. 7 bellow shows the specification BPEL of the process
adapted after adding “NewService” after Service S21.

Fig. 7. The specification BPEL adapted after adding “NewService”

C. Illustration of the AP4.4 Pattern

Here we illustrate the implementation of
corresponding to a fusion of two parallel services (see T
IV). Fig. 8 shows a schema of a BPEL process containing two
services in a parallel block.

Fig. 8. Schema and specification BPEL of a process
block

On Fig. 9, we show the interface of fusion and part of the code
java corresponding to the implementation of the pattern AP4.4
“Parallel Fusion of services”. Fig. 10 shows the schema of the
BPEL process after merging services Service1 and Service2
into one service “NewService”.

D. Update Variales and Conditions

In order to maintain the coherence of the process after
adaptation, our application provides an interface allowing the
update of the data flow (that means
the process. It is to select a service and all input/output
variables are displayed to the designer who selects the
appropriate input/output variables

Also, when the adaptation concerns alternative blocks, we
have to generate the correct conditions of choice, then our

bellow shows the specification BPEL of the process
adapted after adding “NewService” after Service S21.

The specification BPEL adapted after adding “NewService”

Pattern

strate the implementation of the AP4.4 pattern
of two parallel services (see Table

shows a schema of a BPEL process containing two

specification BPEL of a process containing a parallel

the interface of fusion and part of the code
java corresponding to the implementation of the pattern AP4.4
“Parallel Fusion of services”. Fig. 10 shows the schema of the

merging services Service1 and Service2
into one service “NewService”.

Update Variales and Conditions

In order to maintain the coherence of the process after
adaptation, our application provides an interface allowing the
update of the data flow (that means data flow dependencies) in

process. It is to select a service and all input/output
to the designer who selects the

appropriate input/output variables.

Also, when the adaptation concerns alternative blocks, we
e correct conditions of choice, then our

application provides a simple graphical wizard allowing the
generation of simple or composite conditions.

Fig. 9. Interface and part of the java code corresponding the implementation
of the AP4.4 pattern

Fig. 10. Schema and specification BPEL of a process after the the fusion of
“Service1” and “Service2” into “NewService”.

E. Dynamic Adaptation

The scenarios described in the previous section are suitable
to static adaptation that means the adaptation at build
requires the intervention of the designer to set the operation of
adaptation.

 Let’s notice that the adaptation patterns implemented can
also be applied at runtime combined with a technique
dynamic adaptation; this requires an automatic setting
needed parameters (service name/ input/ output/
etc.) to the operations of adaptation. At the current stage of our

application provides a simple graphical wizard allowing the
generation of simple or composite conditions.

Interface and part of the java code corresponding the implementation

specification BPEL of a process after the the fusion of

The scenarios described in the previous section are suitable
adaptation that means the adaptation at build-time that

requires the intervention of the designer to set the operation of

Let’s notice that the adaptation patterns implemented can
also be applied at runtime combined with a technique of

; this requires an automatic setting of the
output/ condition,

At the current stage of our

work, we have only simulated dynamic adaptation by
suspending process instances,
finally resuming the execution of the instances suspended. To
perform this simulation, we have used the API BPELMonitor
containing the methods that provide the manipulation of the
process instances in execution; these met

• getBPELInstances : returns the query of all instances
in course of the specified process in parameters.

• suspendInstance : suspends the instance specified in
parameters.

• terminateAllInstance
suspended for a specific
parameters.

 To simulate dynamic adaptation, the user should specify
the composite application in which the BPEL process is
running in order to get the process
id, a specific process instance is stopped
adaptation. After that, the user should deploy the composite
application again to take into account the adaptation made.
Finally, the suspended instance is resumed
that the instance runs conformably to the adapted

VIII. CONCLUSION AND

This paper deal with adaptability of IOWF models in
context of structured cooperation.
consider process models obeying to
architectures defined in [4] [5]
two main issues: first, to make the paper self
introduced the concept of Service
(SBCP) in order obtain IOWF process models flexible enough
to ease their adaptation. A SBCP is defined around three main
dimensions: the structuring of the IOWF process into services,
the control of execution which is
local orchestration functions and the structure of interaction
with external services provided by other partners
the cooperation. The second (
paper is to describe our framework of
can be applied on IOWF models obeying to
We focused on functional, behavioral and inter
of the process. So, we have defined three categories of
adaptation patterns: “Service”
Flow” adaptation patterns and
patterns. We have illustrated
patterns on BPEL process models

The proposed patterns are applied on process models at the
design time. As already evoked, w
processing of dynamic adaptation (at runtime) and
to implement a tool to support
implemented by setting automatically all parameters needed to
apply a specific adaptation according to a specific situation
detected by the WF engine (like
a service or a service-interface change according to a given
situation). This requires the definition of a dynamic adaptation
technique such as a rule-based technique.

Another issue that we are
definition and the implementation of a set of evolution
patterns. We define operations of evolution (called evol
adaptation) basis on two perspectives

simulated dynamic adaptation by
nces, then applying adaptation and

resuming the execution of the instances suspended. To
perform this simulation, we have used the API BPELMonitor

provide the manipulation of the
process instances in execution; these methods are:

returns the query of all instances
in course of the specified process in parameters.

suspends the instance specified in

 : resumes all the instances
suspended for a specific process specified in

To simulate dynamic adaptation, the user should specify
the composite application in which the BPEL process is

get the process-id. Then, using the process-
a specific process instance is stopped to do the required

After that, the user should deploy the composite
to take into account the adaptation made.

pended instance is resumed in order to observe
conformably to the adapted model.

ONCLUSION AND FUTURE WORKS

This paper deal with adaptability of IOWF models in the
of structured cooperation. In our research works, we

process models obeying to generic IOWF-
[5]. Our contribution consists in

to make the paper self-containing, we
introduced the concept of Service-Based Cooperation Pattern

IOWF process models flexible enough
SBCP is defined around three main

: the structuring of the IOWF process into services,
which is expressed through global or

local orchestration functions and the structure of interaction
with external services provided by other partners involved in

(which is the main) issue of this
our framework of adaptation patterns that

can be applied on IOWF models obeying to a given SBCP.
focused on functional, behavioral and interactional aspects

o, we have defined three categories of
” adaptation patterns, “Control

adaptation patterns and “Interaction” adaptation
 some implementations of our

process models.

proposed patterns are applied on process models at the
As already evoked, we have only simulated the

of dynamic adaptation (at runtime) and we intend
to support it, using the patterns already

etting automatically all parameters needed to
apply a specific adaptation according to a specific situation

(like a failure, an unavailability for
interface change according to a given

requires the definition of a dynamic adaptation
based technique.

issue that we are currently developing is the
definition and the implementation of a set of evolution
patterns. We define operations of evolution (called evolutive

basis on two perspectives: the expansion of the

IOWF functionality and the expansion of the cooperation. The
expansion of the IOWF functionality is performed using
adaptation patterns already described that means “Service
adding” patterns and “Service Substituting” patterns; the only
difference is that the services newly injected provide
additional functionalities. Also, we state that the operations of
evolution, particularly the expansion of the cooperation,
depend on the IOWF-architecture, we have implemented some
evolution patterns suitable to the chained execution and the
subcontracting architectures.

Furthermore, with the proposed approach, we can deal
with reusability (well supported by SOA) of IOWF process
models which is another aspect of flexibility. Reusability
allows the combination of several IOWF obeying to the same
or different IOWF-architectures, in order to build more
complex business processes based on existing ones. For this
issue, we are working to define a set of composition patterns
for BPEL process models.

ACKNOWLEDGMENT

We would like to thank our students Djamel-Eddine
Khelladi and Younes Asma for their participation in the
implementation of the framework.

REFERENCES

[1] W.V.D. Aalst, “Workflow Management: Models, Methods and

Systems”. The MIT Press. Cambridge, Massachusetts, London,
England. 2002.

[2] G. Alonso, F. Casati & H. Kuno, “ Web services: concepts, architectures
and applications”, Heidelberg, Germany, Springer Verlag, 2004.

[3] Mike P. Papazoglou, Willem-Jan van den Heuvel, “Service Oriented
Architectures : approaches, technologies and research issues” , the
VLDB Journal, vol.16, pp 389-415, 2007.

[4] W.V.D. Aalst, “Process oriented architectures for electronic commerce
and interogranizational workflow”, Journal of Information systems,
volume 24 issue 9, 1999.

[5] W.V.D Aalst , “Loosely Coupled Interorganizational Workflows :
modeling and analyzing workflows crossing organizational boundaries”,
Journal of Information and Management Vol37, Pp: 67-75 Issue 2,
March 2000.

[6] I. Chebbi, “CoopFlow : an approach for ascendant cooperation of
workflows in virtual enterprises” . Phd Thesis, National Institute of
Telecom, France, 2007.

[7] P. Grefen, , N. Mehandjiev, G. Kouvas, , G. Weichhart, and R. Eshuis,
“Dynamic business network process management in instant virtual
enterprises”, Computers in Industry, 60(2), pp. 86–103. 2009

[8] C. Peltz, , “Web Services Orchestration and Choreography”, IEEE
Computer, Vol. 36, No. 10:46-52, 2003.

[9] T. Amirereza, “Web Service Composition Based Interorganizational
Workflows”, Sudwestdeutscher Verlag fur Hochschulschriften edition,
2009, ISBN 9783838106700.

[10] D. Jordan, J. Evdemon, “Web services business process execution
language V.2.0”, W3C. 2006.

[11] F. Leymann, , D. Roller, and M.-T. Schmidt, “Web Services and
Business Process Management” IBM Systems, Journal, Vol. 41, No. 2,
2002.

[12] S. Gorton, C. Montangero, S. Reiff-Marganiec, L.Semini, “StPowla:
SOA, Policies and Workflows”, ICSOC 2007 workshops, LNCS 4907,
pp. 351-362, 2009.

[13] P. Grefen, K. Aberer, Y. Hoffer, and H. Ludwig “CrossFlow : Cross-
organizational workflow management for service outsourcing in
dynamic virtual enterprises”. IEEE Data Engineering Bulletin, 24(1)
:52–57, 2001.

[14] N. Mehandjiev, I. Stalker, K. Fessl, and G. Weichhart., “Interoperability
contributions of CrossWork”. In invited short paper to Proceedings of
INTEROP-ESA’05 Conference, Geneva, February 2005. Springer-
Verlag.

[15] K. Belhajjame, G. Vargas-Solar, and C. Collet, “Pyros - an environment
for building and orchestrating open services”. In Proceedings of the
2005 IEEE International Conference on Services Computing, pages
155–164, Washington, DC, USA, 2005.

[16] F. Casati and M. Shan, “Dynamic and adaptive composition of e-
services”. Information Systems, 26(3):143–163, 2001.

[17] S.W. Sadiq, M.E. Orlowska, “On capturing Exceptions in workflow
process models”. In proceedings of ER’2001.

[18] J. Meng, , S.Y.W Su, H. Lam, A. Helal, , J. Xian, X. Liu, and S. Yang,
“DynaFlow: a dynamic inter-organisational workflow management
system”, Int. J. Business Process Integration and Management, Vol. 1,
No. 2, pp.101–115. 2006

[19] Q. He, Y. Yan, H. Jin, “Adaptation of web service composition based on
WF patterns” In proceedings of Service Oriented Computing, ICSOC,
2008.

[20] M. Döhring, B. Zimmermann, L. Karg, “Flexible Workows at design-
and Runtime using BPMN2 Adaptation Patterns”. In proceedings of
BIS’2011- Springer, 2011.

[21] B. Weber, M. Reichert, S. Rinderle-Ma, “Change patterns and change
support features- Enhancing flexibility in process-aware information
systems”. Journal of Data & Knowledge Engineering volume 66, pp
438-466, 2008.

[22] R. Muller, U. Greiner, E. Rahm, “ AGENT-WORK: a workflow system
supporting rule-based workflow adaptation”. In journal of Data and
Knowledge Engineering , Data and Knowledge Engineering 51 (2) 223-
256, 2004

[23] M. Döhring, B. ZimmermaSnn, E. Godehardt, “Extended workflow
flexibility using rule-based adapatation patterns with eventing
semantics”. In proc. of INFORMATIK’10, pp. 216,226- 2010.

[24] M. Pesic, MH. Schonenberg, N. Sidorova, W. Van der Aalst.
“Constraint-based workflow models: Change made easy”. In
Proceedings of the OTM Conference CoopIS’2007. In vol 4803 of
Lecture Notes in Computer Science, pp 77–94.Springer-Verlag, Berlin,
2007.

[25] S. Tragatschnig, U. Zdun, “ Runtime Process Adaptation for BPEL
Process Execution Engines”, 15th IEEE International Enterprise
Distributed Object Computing Conference Workshops (EDOCW), 2011.

[26] W.V.D. Aalst, W.M.P, ter Hofstede, A.H.M., Kiepuszewski, B., Barros,
A.P.: Workflow Patterns. DAPD 14(1), pp. 5-51, 2003.

[27] N. Russell, W.V.D Aalst, W.M.P, A.H.M ter Hofstede, “Exception
handling patterns in process-aware information systems”. In: CAiSE'06
(Luxembourg), pp. 288-302, 2006.

[28] S. Boukhedouma, Z. Alimazighi, M. Oussalah, D. Tamzalit, “SOA
based approach for interconnecting workflows according to the
subcontracting architecture”. In proceedings of MCCSIS- IADIS
International Conference, CT’2011. Italy. Pp 3-12. ISBN:978-972-8939-
40-3, 2011.

[29] S. Boukhedouma, Z. Alimazighi, M. Oussalah, D. Tamzalit,
“Adaptability of service based workflow models : the chained execution
architecture”. In proceedings of BIS’2012, Lithuania, 21-23 may. W.
Abramowicz et al. (Eds.): BIS 2012, LNBIP 117, Springer-Verlag Berlin
Heidelberg 2012.

[30] S. Boukhedouma, Z. Alimazighi, M. Oussalah, D. Tamzalit,
“Interconnecting workflows using services: an approach for case transfer
with centralized control”. In proceedings of ICISTM’2012, S. Dua et al.
(Eds.): CCIS 285, pp.396–401, Springer-Verlag Berlin Heidelberg,
2012.

