
HAL Id: hal-01063849
https://hal.science/hal-01063849

Submitted on 24 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible Loosely Coupled Inter-Organizational
Workflows using SOA

Saida Boukhedouma, Mourad Chabane Oussalah, Zaia Alimazighi, Dalila
Tamzalit

To cite this version:
Saida Boukhedouma, Mourad Chabane Oussalah, Zaia Alimazighi, Dalila Tamzalit. Flexible Loosely
Coupled Inter-Organizational Workflows using SOA. 2013 ACS Conference on Computer Systems and
Applications (AICCSA’2013), May 2013, Fes, Morocco. pp.1-8. �hal-01063849�

https://hal.science/hal-01063849
https://hal.archives-ouvertes.fr

Flexible Loosely Coupled Inter-Organizational
Workflows Using SOA

Saida Boukhedouma (1,2), Mourad Oussalah (2)
(1) USTHB University – Department of Computer

science Algiers, Algeria
{sboukhedouma, zalimazighi}@usthb.dz

Zaia Alimazighi (1), Dalila Tamzalit(2)
(2) University of Nantes

Nantes, France
{mourad.oussalah, dalila.tamzalit}@univ-nantes.fr

Abstract— Service Oriented Architecture (SOA) is a
paradigm that provides important properties for the
development of business applications like flexibility and loose
coupling. In our research work, we focus on the use of SOA to
implement specific architectures of inter-organizational
workflows (IOWF). The current paper deals with the “Loosely
Coupled Workflow” specifying an IOWF-architecture t hat
connects two or more workflows -attached to a set of business
partners- communicating in an asynchronous manner according
to a public communication protocol conjointly defined by all
partners. The first issue of this work is to define a service based
cooperation pattern called LC-IOWF pattern suitable to the
architecture considered in order to obtain IOWF models flexible
enough to ease their adaptation. The proposed LC-IOWF pattern
is based on three main dimensions: services, control of execution
and interactions. Then, we define three categories of adaptation
patterns corresponding to the three dimensions exhibited.
Particularly, the third category of these patterns called
“Interaction adaptation patterns” concerns adaptations affecting
the communication protocol and constitutes a specific type of
adaptation compared with other IOWF-architectures. For
implementation, we consider IOWF models specified with BPEL.

Keywords — LC-IOWF, Service, Cooperation pattern, Adaptation
pattern, Asynchronous communication.

I. INTRODUCTION

In the business area, the B2B cooperation was initially
supported by concepts and tools of inter-organizational
workflow (IOWF) [1] that implies a set of business partners
providing common services to customers. With the emergence
of service oriented architectures (SOA) [2] and web services
standards [3], many research works have been directed
towards the combination of workflow and SOA for the
development of collaborative business applications.

In our research work, we are interested in structured
cooperation supported by the concept of IOWF. In [4], [5],
generic architectures of IOWF have been defined: the capacity
sharing, the chained execution, the subcontracting, the case
transfer, the extended case transfer and the loosely coupled
WF. We consider these architectures as basis of our research
work because they cover a wide range of existing business
processes since they express the different ways in which
businesses can cooperate together. However in their initial

form, these architectures were subject to criticisms because of
their rigidity and the difficulty to support changes [6].

Also, business processes evolve in a dynamic and unstable
environment where flexibility is an important property that
must be satisfied by process models and the systems that
implement them. Consequently, we set two objectives of our
research works: the first one is to define flexible IOWF
models easily adaptable based on existing and fairly common
IOWF-architectures and the second one is to provide
mechanisms to support changes on the novel models. For that,
using a SOA-based approach, we propose service based
cooperation patterns suitable to the basic architectures defined
in [4], [5]. We state that an IOWF process can be implemented
through global orchestration of services in case of centralized
or hierarchized control or distributed local orchestrations of
services in case of decentralized control, according to
constraints relative to each IOWF-architecture [7], [8].

This paper focuses on the loosely coupled IOWF-
architecture defining a model of cooperation that connects two
or more WFs (attached to several partners) interacting together
in an asynchronous manner according to a public
communication protocol, in order to reach a common business
goal.

The first issue of this paper is to define a cooperation
pattern based on services called LC-IOWF pattern; this last is
defined through three main dimensions: services, control and
interactions. So, we obtain service-based IOWF models that
remain flexible enough to support changes. We define the
flexibility of process models according to three aspects:
adaptability, evolutivity and reusability. However, at this stage
of our work, we focus on the first aspect which is the
adaptability of process models, this constitutes the second
issue of the paper; we describe the set of adaptation patterns
classified in three categories conformably to the three
dimensions defining the LC-IOWF pattern. Let’s notice that
we have implemented a framework of adaptation containing
the set of adaptation patterns for IOWF processes specified
with BPEL.

In the following, Section II presents some related works
and explains the motivation of our work. Section III
synthesizes the necessary background to understand the paper.
Section IV describes the cooperation pattern suitable to the
loosely coupled architecture and illustrates the concept of
orchestration function. Section V describes the three categories
of adaptation patterns. Section VI gives some implementation

details. Section VII concludes the paper and talks about future
works.

II. RELATED WORKS AND MOTIVATIONS

The idea of using services to build collaborative business
applications is not new. The motivations behind this come
from three main points: the relevance of service orientation,
the benefits of service orientation for the information system
and the benefits of service orientation for the cooperation. For
the first point, the concept of service provides credible
answers to constraints and problems attached to the
information system like the luck of flexibility, the reluctance
to openness and those attached to the cooperation like the need
to preserve the autonomy and the confidentiality.

With the emergence of SOA and web services standards,
many research works deal with orchestration and
choreography of web services [9], [10], especially based on
BPEL4WS.

Other research works such as [11], [12] show the interest
of combining BPM (business process management), workflow
and SOA for the re-use of services to construct dynamic
business processes. This had a great impact in promoting B2B
relationships since several approaches and platforms have
been developed to support the B2B cooperation using WF and
SOA. In structured cooperation for example, we can cite some
approaches like CoopFlow [6], CrossFlow [13], CrossWork
[14], Pyros [15] and e-Flow [16].

Also, flexibility is an important propriety to be satisfied by
business processes and their systems allowing them to support
changes. Even if some approaches like CoopFlow, Pyros and
e-Flow provide internal adaptation of workflows without
compromising the coherence of the global process, a large
number of the proposed solutions are not flexible enough
because they are closely coupled with the platforms. So for
any changes, they impose to re-adapt the interfaces and to
newly build the structure of interaction. Moreover, WF
flexibility is perceived at two complementary levels: (1) at the
system level, the flexibility defines the ability of a WFMS (WF
management system) to face unexpected and erroneous
situations [17], [18]. (2) at the level of process models that
defines the ability of a process model to be adaptable,
evolvable and reusable; many research works have been
proposed describing different techniques such as adaptation
patterns [19], [20], [21], rule-based adaptation patterns [22],
[23] and constraint-based modeling [24] to support flexibility
of process models. For example, in [21], the authors identify
the most important process change patterns and change
features for PAIS (process aware information systems). In
[25], a framework was described using adaptation patterns and
aspect–programming in order to support process adaptation for
BPEL engines.

The concept of pattern was initially used in software
engineering as the abstraction from a concrete form which
keeps recurring in specific non-arbitrary context. In the
workflow area, this concept has been usually used for business
process modeling [26], business process improvement or
changes [21], [25] or exception handling [27].

In this paper, we describe our framework of adaptation
composed by a set of adaptation patterns that can be applied
on IOWF process models specified with BPEL and obeying to
the LC-IOWF pattern.

Conceptually, a pattern-based approach allows the
enumeration of all recurrent and structurally well defined
situations that can occur repeatedly to adapt IOWF
processes. From the implementation perspective, the
pattern-based approach allows modular and reusable
implementation of the proposed patterns starting with
elementary patterns and going to more complex ones by
reuse of the first ones.

III. BASIC DEFINITIONS AND CONCEPTS

A. IOWF Definition

An IOWF can be defined as a manager of activities
involving two or more workflows autonomous, possibly
heterogeneous and interoperable in order to achieve a common
business goal.

B. The Loosely Coupled Architecture

The loosely coupled IOWF (LC-IOWF) is defined by a set of
WFs which are distributed among the partner’s sites and that
interact together using a public protocol based on message
exchanges. The communication mechanism used for
interaction is asynchronous. WF processes operate essentially
independently, but have to interact at certain points to
exchange data and to ensure the correct execution of the
overall business process. The loosely coupled architecture is
based on a process schema partitioning (disjoint WF
fragments are distributed among the partner’s sites) and obeys
to decentralized control of process instances because each
partner manages the execution of the WF fragment that he
implements and controls the interactions with other WF
fragments.

Fig. 1 shows a generic meta-model of LC-IOWF process
definition using the UML notation. We can see that a LC-
IOWF process model is defined by a set of WFs and a
cooperation pattern. The cooperation pattern links two or
more WF through a set of messages attached to the interaction
points in the IOWF. Each WF is attached to a partner,
manipulates data and is submitted to condition of invocation.
A cooperation pattern is then defined around three
dimensions: the partitioning of the process, the control of
execution and the set of messages expressing the structure of
interaction.
Fig. 1. Meta-model of LC-IOWF Process Definition

Fig. 2 bellow shows UML activity diagram describing an
example of a LC-IOWF process. The process implies three
partners: a customer, a supplier and a producer. It consists of
managing customer’s orders for a given type of products. The
customer sends its order to a supplier who checks the
availability of products to satisfy the customer’s order. If the
quantity of products is sufficient, then the customer is notified
by a message “Preparing order” else he is notified by a
message “Waiting for production” after the supplier has sent
the order of production to the producer. When the supplier
order is received, the producer starts production and notifies
the supplier with a message “Start production”. When the
production is finished, the producer sends delivery to the
supplier who sends them in turn to the customer with a
corresponding invoice and sends simultaneously a return
receipt of delivery to the producer. The customer does the
payment and sends the payment receipt to the supplier. The set
of messages exchanged between the three partners are
schematized with dotted arrows.

Fig. 2. Example of LC-IOWF process “Managing Customer’s Orders”

C. Flexibility of IOWF Models

Through the concepts exhibited on the meta-model of Fig.
1, we can see that an IOWF model covers four main axes:
process (concepts of IOWF, WF, condition and cooperation
pattern), organization (concept of partner), data and
interaction (concepts of message and interaction point).
Consequently, we can affirm that the constraints of flexibility
in IOWF models are not limited to one axis, but cover the four
axes. Also, we perceive the flexibility of process models
through three main perspectives: adaptability, evolutivity and
reusability that we define as follows:

The adaptability of an IOWF process model defines its
capacity to easily support changes while maintaining the
coherence of the process after changes, the overall
functionality and the cooperation (the set of partners). Hence,
an IOWF model is adaptable if one or more of the entities

(WF, condition, data, interaction points) composing it can be
modified without affecting the global functionality of the
process and the cooperation.

The evolutivity (called evolutive adaptability) of an IOWF
process model is its capacity to accept expansion of its global
functionality and/or expansion of cooperation inducing
additional business partners and so additional WF fragments
where maintaining the coherence of the process, we say that
the IOWF model is evolvable.

The reusability of a model defines its capacity to be easily
integrated with another model in order to build more and more
complex models. Then, an IOWF model is reusable if it can
be manipulated as a separate entity (IOWF) and to be
integrated to other models in order to build more complex
IOWF processes which cover more functionalities and
services.

Let’s notice that in our work, we focus on flexibility
reflected at process and interaction axes (although it involves
and also draws on other levels – data and organization) and in
the current paper, we are interested by the first aspect of
flexibility which is the adaptability of IOWF models. In the
next section, we describe the service-based LC-IOWF pattern
suitable to the loosely coupled architecture in order to obtain
IOWF models easily adaptable.

IV. THE LC-IOWF PATTERN BASED ON SERVICES

Globally, the main idea of our approach is to encapsulate
each WF fragment into a single (composite) service or a set of
services depending on the IOWF-architecture to meet. Then,
in order to define a service-based cooperation pattern suitable
to a specific IOWF-architecture, the question is to decide
which parts of the WF process should be encapsulated within
services in order to abstract them and to invoke them from
outside. Specifically, it is to encapsulate a WF process, a sub-
process or an activity in a service.

A. Structuring of the WF Process Into Services

The structuring of the IOWF process into services is done
by taking as reference, the interaction points in the process
model. As shown, on the meta-model of Fig.1, an interaction
point is attached to a message and then to an interaction
activity (send or receive) in the process. Then, we propose
first to isolate the interaction activities in the WF process;
after that, we structure the WF process of each partner into a
set of sub-processes to be encapsulated each of which into a
service, by applying the rules set out bellow.

Rule R1: isolate each interaction activity “invoke” or
“receive” in the process.
For the cutting of the process into sub-processes, we define the
rules R2 and R3.

Rule R2: in a sequential branch (see Fig. 3)
A sub-process in a WF process is delimited: by (i) two
interaction activities or (ii) by the start-point of the process
and the first interaction activity or (iii) by the last interaction
activity and the end-point of the process.

Rule R3: in an alternative (or parallel) bloc (see Fig. 4)
Two possibilities are envisaged:

(1) If the bloc doesn’t contain any interaction activity, it
is considered as a single activity.

(2) If the bloc contains at least one interaction activity:
- Insert fictive interaction points at the OP-Split

and the corresponding OP-Join in the process
and cut the process at these two points.

- Apply the rule R1 on each edge containing
interaction activities.

Rule R4: Encapsulate each sub-process within an internal
service.

Fig. 3. Transformation of a sequential process schema

Fig. 4. Transformation of a schema containing parallel or alternative blocs

Fig. 4. Transformation of a schema containing parallel or alternative blocs

In addition to the cutting of the WF process into services,
we should decide about the appropriate mode of control of
execution at runtime and the structure of interaction between
services. This leads us to three main questions: (1) How to
structure the WF process into services? (2) How to control the
execution of instances? (3) How to define interactions
between services provided by different partners? These three
questions exhibit three main dimensions on which is based the
LC-IOWF pattern as shown on Fig. 5.

Fig. 5. Meta-model of the LC-IOWF Pattern

Regarding to the first dimension which is the distribution
of services, we consider that each service encapsulates part of
the WF process and is implemented at the partner’s site that
provides it. This dimension corresponds to the dimension
Process partitioning which is defined for the initial IOWF-
architecture. From the perspective of a given partner, a service
can be implemented locally (local service) or provided by an
external partner (external service).

The second dimension which is the control of execution is
expressed through the concept of orchestration function that
abstracts the structure of the process in terms of control flow
and interactions between services composing the IOWF
process. Hence, in case of decentralized control, there is a set
of local orchestration functions, each of which implemented at
one partner site and allows the control of the fragment
implemented locally. The concept of orchestration function is
defined and illustrated in section B bellow.

The third dimension defines the interactions between
services of several partners involved in the IOWF process.
This dimension is expressed via interactional points using
interactional activities (in BPEL, this is realized by activities
invoke/receive for asynchronous communication)

B. Orchestration Function and Control Flow

Like shown on the meta-model of Fig. 5, the concept of
orchestration function describes the control flow between
services composing the IOWF using basic control flow
operators. In Table I, we introduce these basic operators and
we express them using a general notation independently from
any language or platform.

Remark. To describe multi-choice – respectively multi-
parallel - (more than two edges), we can decompose on several
simple choices – respectively several simple parallel blocs.
For example, Alt (S1, S2, S3) is expressed as Alt (Alt (S1, S2),
S3) or Alt (S1, Alt (S2, S3)).

TABLE I. BASIC CONTROL FLOW OPERATORS

 Fig. 6 bellow illustrates the concept of orchestration
function; we give an example of a process obeying to the LC-
IOWF pattern. The process schema describes an IOWF
implying two partners, partner 1 and partner 2 implementing
their WFs as orchestration of services. Partner 1 provides his
WF composed by internal services S11and S13 and
interactional activities S12, S14 and S15 and partner 2
provides his WF composed by internal services S23 and S25
and interactional activities S21, S22 and S24.

Fig. 6. Illustration of orchestration functions on a schema obeying to a LC-
IOWF pattern

Interaction activities correspond to an “invoke” activity

from one partner and a “receive” activity by the other partner;
For example, activity S12 of partner 1 corresponds to an
activity invoke service S21 of partner 2 that receives
invocation data needed at partner 2 to perform the rest of the
process. For more readability and less complexity of the
orchestration function, we can structure the process fragments
into blocs Bij of sequential, parallel or alternative services. In
hierarchical manner, a bloc can be expressed using other
blocs.

In the next section, we focus on the issue of adaptability of

IOWF models. So, we describe a set of adaptation patterns
covering the three dimensions on which the LC-IOWF pattern
is defined.

V. ADAPTATION PATTERNS

According to the meta-model of Fig. 5, adaptations of an
IOWF process model turn to modifications of the entities
composing it that means services, orchestration functions
and/or interactions. Then, we classify our adaptation patterns
into three main categories: Service adaptation patterns,
Control Flow adaptation patterns and Interaction adaptation
patterns.

A. Service Adaptation Patterns

These patterns concern the modifications that can be
applied on the services composing the IOWF process; these
modifications are typically adding, removing, replacing,
merging of two services (sequential, parallel or alternative)
and decomposing a service into a bloc of two services

expressing sequential, parallel or alternative execution. An
adaptation of a service usually induces modification on the
orchestration function using it or a modification of closely
attached attributes like condition or data (see Fig. 3). Let’s
notice that these patterns are applied locally by each partner in
order to apply a modification on internal services. The
modifications affecting the structure of interaction are more
complex and are explained in section C.

• Adding, Removing and Substituting Services

Adding a service is done in order to insert an additional
step in the process. The reverse operation of adding is the
removing of services. For adding or removing of services, it is
to distinguish adding or removing of a service on one edge
composed by sequential services or in a bloc composed by two
edges expressing parallel or alternative execution. Table II
describes the basic patterns of adding services illustrated by
generic process schemas and the corresponding orchestration
functions. We can see that there are elementary patterns
named AP1.1, AP1.2, respectively for adding a new service
before or after a service in the process, and there are more
elaborated patterns like AP1.3, AP1.4 and AP1.5 which are
implemented using elementary patterns AP1.1 or AP1.2,
depending on the location of the service to add.

Table III shows typical operations of removing of services
(service S2 for example). Let’s notice that two configurations
are possible when removing a service S from a bloc with two
edges: (1) service S is in sequence with other services, (2)
service S is alone on the edge; this results on two different
scenarios for adaptation. These two configurations are
represented only for inclusive choice, but they are also
considered for exclusive choice and parallel execution.

TABLE II. DESCRIPTION OF “SERVICE ADDING” PATTERNS

TABLE III. DESCRIPTION OF “SERVICE REMOVING” PATTERNS

For the removing patterns, we can see that AP2.1 is an
elementary pattern and AP2.2, AP2.3, AP2.4, AP2.5, … are
implemented using AP2.1.

Another basic operation of adaptation concerns the
substitution (replacing) of services. This is typically a
removing of the service to replace followed by an adding of
the new service. Then, the pattern AP3 (called “Service
Substitution” Pattern) is implemented using patterns PA1.x
and PA2.x for respectively adding and removing, depending
on the location in the process schema (in sequence, parallel or
alternative) of the service to be replaced.

• Fusion and Decomposition of Services

The operation of fusion can concern two services linked by
a sequence, an inclusive choice, an exclusive choice or a
parallel execution, in order to simplify the process model and
to abstract several services into one. Table IV bellow
describes these basic operations and the corresponding
orchestration functions modified after each operation for
merging S2, S3 in a single service S’. We can state that since
services to merge are in the same bloc, they become easier to
remove and to replace, because the bloc (Alt (S2,S3), Par
(S2,S3) or Exl (S2, S3)) is considered as a single composite
service to be replaced. More elaborated operations of fusion
concern configurations such as services to merge are not in the
same bloc. For example in a model described by the
orchestration function Seq(Seq(S1, Par(S2,S3)), S4), the
operation of merging S1 and S2 cannot be done directly since
we must know if we maintain the parallelism or we don’t
maintain it; this information should be provided as additional
parameter. In both cases, this must be decomposed into
elementary operations of removing and adding of single
services or blocs.

Then, the fusion patterns are implemented using the adding
and the removing patterns AP2.5 and AP2.6 which are not
represented on Table III, correspond to removing a service
from one edge with a single service of parallel execution and
of exclusive choice respectively.

The reverse operation of fusion is the decomposition of a
service to obtain a bloc of two services that can be sequential,

parallel or alternative bloc. The decomposition of services can
be done to improve the parallelism in the process (parallel
decomposition) or to add condition (alternative
decomposition) due to new constraints or to have more control
on process execution (sequential decomposition).We can see
on Table V that the decomposition of a service consists to
remove a single service (S2 for example) and to add a bloc
composed by two services (S’ and S”) linked by a sequence,
an alternative or a parallel operator. This explains the use of
adding patterns AP1.x and removing Patterns AP2.x.

TABLE IV. DESCRIPTION OF FUSION PATTERNS

TABLE V. DESCRIPTION OF DECOMPOSITION PATTERNS

B. Control Flow Adaptation Patterns

This category of patterns concerns modification of the
control flow between services composing the IOWF process,
without affecting the services themselves. This is typically a
replacing of an operator of control flow by another; we can
replace for example a sequence operator (seq) by parallel
operator (par) (parallelization of services) to improve the
execution time of process instances, or vice versa
(sequentialization of services) if an execution of a service

becomes dependant from another service, or alternation of
services if an execution of a service depends from a given
condition.

TABLE VI. DESCRIPTION OF “CONTROL FLOW” ADAPTATION PATTERNS

Even if there is no modification on services implied in the

IOWF, the implementation of the control flow patterns uses
other patterns of adding and removing services (see Table VI)
because we have to update input and output data of services
and also the conditions of invocation.

C. Interaction Adaptation Patterns

This category of patterns concerns modification of the
structure of interaction. Specifically, this is done by adding,
removing or updating interactional points (see table VII).

TABLE VII. DESCRIPTION OF “I NTERACTION” ADAPTATION PATTERNS

On Table VII, we describe generic scenarios of adapting

interaction points. Then, for example, adding an interaction
point can be realized by adding an “invoke” activity at the
process requester and a “receive” activity at the process
requested. If the interaction is two-way (asynchronous
request/response), this should be followed by adding of
“invoke/receive” activities for response in the reverse
direction. After adding the necessary interaction activities, the
process should be re-structured according to the rules R1, R2,

R3, R4 specified in section IV.A. The pattern AP7.1 is
implemented using AP1.x, AP3, AP4.x and/or AP5.x
depending on the structure of the process. For removing an
interaction point, it is to remove an “invoke” activity from the
process requester and a corresponding “receive” activity from
the process requested; then if there is a two-way interaction,
we should remove a corresponding “invoke/receive” activities
in the reverse direction. As for the AP7.1 pattern, the structure
of the process should be updated. The update of interaction
point can concern the modification of the data flow exchanged
or the modification of the interaction mode one-way/two-way;
then the AP7.3 pattern uses AP7.1 or AP7.2.

VI. SOME IMPLEMENTATION DETAILS

We have implemented a framework containing a set of
adaptation patterns previously described (and others patterns).
For the development of our application, we have considered
process models specified with BPEL and interpreted by the
WF engine OPEN ESB 2.2, we also used a plug-in SOA
Netbeans. We have developed our framework using the Java
language and the IDE Netbeans, the application server used is
GlassFish server version 2. To implement the adaptation
patterns, we have used the API jdom2 that eases the
modification of the code BPEL specifying the WF processes
since it is based on the XML language. For example, we
simply use the class Element implemented in the API jdom to
create a new XML tag.

Our framework of adaptation is as modular as possible
since we implement a separate class for each adaptation
pattern. Then, we create a class for adding a service after
another service in a sequential branch, another class for adding
a service before another service in a sequential branch, another
class for adding a service in an alternative bloc, etc. This eases
the reuse of existing classes to implement other ones; for
example the operations of substitution, fusion and
decomposition are implemented using elementary operations
of adding and removing of services (see Tables IV, V and VI).

For each operation of adaptation, a wizard interface is
provided allowing the setting of all parameters necessary to
perform the adaptation.

Also, in order to maintain the coherence of the process
after adaptation, our application provides an interface allowing
the update of the data flow in the process. It is to select a
service and all input/output variables are displayed to the
designer who selects the appropriate input/output variables.

Furthermore, when the adaptation concerns alternative
blocs, we have to generate the correct conditions, then our
application provides a simple graphical wizard allowing the
generation of simple or composite conditions.

After each operation of adaptation, we run the process in
order to check that the adaptation has been successfully done.

Regarding to the LC-IOWF pattern, we have implemented
an IOWF-process using the BPEL designer (manually) by
specifying two BPEL-Processes and message exchanges
between them, we used correlation sets in order to maintain
the coherence of the communication protocol. We are

currently working on the implementation of the LC-IOWF
pattern (a priori in a semi-automatic way) and we are still
working on the implementation of “Interaction” adaptation
patterns (AP7.x) which remain more complex from the other
categories of patterns because they necessitate the update of
the correlation sets.

VII. CONCLUSION AND FUTURE WORKS

This paper deal with adaptability of IOWF models obeying
to the loosely coupled architecture defined in [4], [5]. Our
contribution consists in two main issues; first, we defined a
cooperation pattern called LC-IOWF pattern based on services
in order to deal with flexible IOWF models thanks to SOA
advantages. In order to maintain a decentralized control, each
partner implements his orchestration function and the
communication protocol is implemented through interactional
activities “invoke” and “receive”. For the second issue, we
state the main adaptation patterns classified in three main
categories basis on three dimensions: services, control and
interaction. Specifically, the “interaction” adaptation patterns
concern the update of the communication protocol and
requires more processing in order to keep the communication
protocol coherent and consistent.

Currently, we are working on the implementation of the
LC-IOWF pattern (a priori in a semi-automatic way) and we
complete the implementation of the “interaction” adaptation
patterns. As future works, we intend to define and implement
some operations of evolution (called evolutive adaptation) that
we distinguish from other adaptations basis on two
perspectives the expansion of the global functionality of the
IOWF process and the expansion of the cooperation.
Furthermore, with the proposed approach, we can deal with
reusability (well supported by SOA) of IOWF process models
which is another aspect of flexibility allowing the combination
of several IOWF obeying to the same or different IOWF-
architectures, in order to build more complex business
processes based on existing ones.

REFERENCES

[1] W.V.D. Aalst, “Workflow Management: Models, Methods and

Systems”. The MIT Press. Cambridge, Massachusetts, London,
England. 2002.

[2] Mike P. Papazoglou, Willem-Jan van den Heuvel, “Service Oriented
Architectures : approaches, technologies and research issues” , the
VLDB Journal, vol.16, pp 389-415, 2007.

[3] G. Alonso, F. Casati & H. Kuno, “ Web services: concepts, architectures
and applications”, Heidelberg, Germany, Springer Verlag, 2004.

[4] W.V.D. Aalst, “Process oriented architectures for electronic commerce
and interogranizational workflow”, Journal of Information systems,
volume 24 issue 9, 1999.

[5] W.V.D Aalst , “Loosely Coupled Interorganizational Workflows :
modeling and analyzing workflows crossing organizational boundaries”,
Journal of Information and Management Vol37, Pp: 67-75 Issue 2,
March 2000.

[6] I. Chebbi, “CoopFlow : an approach for ascendant cooperation of
workflows in virtual enterprises” . Phd Thesis, National Institute of
Telecom, France, 2007.

[7] S. Boukhedouma, Z. Alimazighi, M. Oussalah, D. Tamzalit, “SOA
based approach for interconnecting workflows according to the

subcontracting architecture”. In proceedings of MCCSIS- IADIS
International Conference, CT’2011. Italy. Pp 3-12. ISBN:978-972-8939-
40-3, 2011.

[8] S. Boukhedouma, Z. Alimazighi, M. Oussalah, D. Tamzalit,
“Adaptability of service based workflow models : the chained execution
architecture”. In proceedings of BIS’2012, Lithuania, 21-23 may. W.
Abramowicz et al. (Eds.): BIS 2012, LNBIP 117, Springer-Verlag Berlin
Heidelberg 2012.

[9] C. Peltz, , “Web Services Orchestration and Choreography”, IEEE
Computer, Vol. 36, No. 10:46-52, 2003.

[10] T. Amirereza, “Web Service Composition Based Interorganizational
Workflows”, Sudwestdeutscher Verlag fur Hochschulschriften edition,
2009, ISBN 9783838106700.

[11] F. Leymann, , D. Roller, and M.-T. Schmidt, “Web Services and
Business Process Management” IBM Systems, Journal, Vol. 41, No. 2,
2002.

[12] S. Gorton, C. Montangero, S. Reiff-Marganiec, L.Semini, “StPowla:
SOA, Policies and Workflows”, ICSOC 2007 workshops, LNCS 4907,
pp. 351-362, 2009.

[13] P. Grefen, K. Aberer, Y. Hoffer, and H. Ludwig “CrossFlow : Cross-
organizational workflow management for service outsourcing in
dynamic virtual enterprises”. IEEE Data Engineering Bulletin, 24(1)
:52–57, 2001.

[14] N. Mehandjiev, I. Stalker, K. Fessl, and G. Weichhart., “Interoperability
contributions of CrossWork”. In invited short paper to Proceedings of
INTEROP-ESA’05 Conference, Geneva, February 2005. Springer-
Verlag.

[15] K. Belhajjame, G. Vargas-Solar, and C. Collet, “Pyros - an environment
for building and orchestrating open services”. In Proceedings of the
2005 IEEE International Conference on Services Computing, pages
155–164, Washington, DC, USA, 2005.

[16] F. Casati and M. Shan, “Dynamic and adaptive composition of e-
services”. Information Systems, 26(3):143–163, 2001.

[17] S.W. Sadiq, M.E. Orlowska, “On capturing Exceptions in workflow
process models”. In proceedings of ER’2001.

[18] J. Meng, , S.Y.W Su, H. Lam, A. Helal, , J. Xian, X. Liu, and S. Yang,
“DynaFlow: a dynamic inter-organisational workflow management
system”, Int. J. Business Process Integration and Management, Vol. 1,
No. 2, pp.101–115. 2006

[19] Q. He, Y. Yan, H. Jin, “Adaptation of web service composition based on
WF patterns” In proceedings of Service Oriented Computing, ICSOC,
2008.

[20] M. Döhring, B. Zimmermann, L. Karg, “Flexible Workows at design-
and Runtime using BPMN2 Adaptation Patterns”. In proceedings of
BIS’2011- Springer, 2011.

[21] B. Weber, M. Reichert, S. Rinderle-Ma, “Change patterns and change
support features- Enhancing flexibility in process-aware information
systems”. Journal of Data & Knowledge Engineering volume 66, pp
438-466, 2008.

[22] R. Muller, U. Greiner, E. Rahm, “ AGENT-WORK: a workflow system
supporting rule-based workflow adaptation”. In journal of Data and
Knowledge Engineering , Data and Knowledge Engineering 51 (2) 223-
256, 2004

[23] M. Döhring, B. ZimmermaSnn, E. Godehardt, “Extended workflow
flexibility using rule-based adapatation patterns with eventing
semantics”. In proc. of INFORMATIK’10, pp. 216,226- 2010.

[24] M. Pesic, MH. Schonenberg, N. Sidorova, W. Van der Aalst.
“Constraint-based workflow models: Change made easy”. In
Proceedings of the OTM Conference CoopIS’2007. In vol 4803 of
Lecture Notes in Computer Science, pp 77–94.Springer-Verlag, Berlin,
2007.

[25] S. Tragatschnig, U. Zdun, “ Runtime Process Adaptation for BPEL
Process Execution Engines”, 15th IEEE International Enterprise
Distributed Object Computing Conference Workshops (EDOCW), 2011.

[26] W.V.D. Aalst, W.M.P, ter Hofstede, A.H.M., Kiepuszewski, B., Barros,
A.P.: Workflow Patterns. DAPD 14(1), pp. 5-51, 2003.

[27] N. Russell, W.V.D Aalst, W.M.P, A.H.M ter Hofstede, “Exception
handling patterns in process-aware information systems”. In: CAiSE'06
(Luxembourg), pp. 288-302, 2006.

