N
N

N

HAL

open science

Flexible Loosely Coupled Inter-Organizational
Workflows using SOA

Saida Boukhedouma, Mourad Chabane Oussalah, Zaia Alimazighi, Dalila

Tamzalit

» To cite this version:

Saida Boukhedouma, Mourad Chabane Oussalah, Zaia Alimazighi, Dalila Tamzalit. Flexible Loosely
Coupled Inter-Organizational Workflows using SOA. 2013 ACS Conference on Computer Systems and

Applications (AICCSA’2013), May 2013, Fes, Morocco. pp.1-8. hal-01063849

HAL Id: hal-01063849
https://hal.science/hal-01063849

Submitted on 24 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01063849
https://hal.archives-ouvertes.fr

Flexible Loosely Coupled Inter-Organizational
Workflows Using SOA

Saida Boukhedouni&?, Mourad Oussala®?
USTHB University — Department of Computer
science Algiers, Algeria
{sboukhedouma, zalimazighi}@usthb.dz

(€}

Abstract— Service Oriented Architecture (SOA) is a
paradigm that provides important properties for the
development of business applications like flexibtly and loose
coupling. In our research work, we focus on the @sof SOA to
implement specific architectures of inter-organizaibnal
workflows (IOWF). The current paper deals with the “Loosely
Coupled Workflow” specifying an IOWF-architecture that
connects two or more workflows -attached to a setfdusiness
partners- communicating in an asynchronous manner ecording
to a public communication protocol conjointly defired by all
partners. The first issue of this work is to definea service based
cooperation pattern called LC-IOWF pattern suitable to the
architecture considered in order to obtain IOWF mocels flexible
enough to ease their adaptation. The proposed LC-IOWIpattern
is based on three main dimensions: services, controf execution
and interactions. Then, we define three categoriesf adaptation
patterns corresponding to the three dimensions exbited.
Particularly, the third category of these patterns called
“Interaction adaptation patterns” concerns adaptations affecting
the communication protocol and constitutes a spedd type of
adaptation compared with other IOWF-architectures. For
implementation, we consider IOWF models specified ith BPEL.

Keywords —L C-1OWF, Service, Cooperation pattern, Adaptation
pattern, Asynchronous communication.

. INTRODUCTION

In the business area, the B2B cooperation wasaltyiti
supported by concepts and tools witer-organizational

Zaia Alimazighi®, Dalila Tamzali®

@ University of Nantes
Nantes, France
{mourad.oussalah, dalila.tamzalit}@univ-nantes.fr

form, these architectures were subject to critisisracause of
their rigidity and the difficulty to support chargygs].

Also, business processes evolve in a dynamic asthbie
environment wherdlexibility is an important property that
must be satisfied by process models and the systhats
implement them. Consequently, we set two objectofesur
research works: the first one is to define flexib@WF
models easily adaptable based on existing and fainnmon
IOWF-architectures and the second one is to provide
mechanisms to support changes on the novel mdéeighat,
using a SOA-based approach, we propasevice based
cooperation patternsuitable to the basic architectures defined
in [4], [5]. We state that an IOWF process canrbplemented
throughglobal orchestratiorof services in case of centralized
or hierarchized control adistributed local orchestrationsf
services in case of decentralized control, accgrdio
constraints relative to each IOWF-architecture [&],

This paper focuses on théoosely coupled IOWF-
architecture defining a model of cooperation tlatrects two
or more WFs (attached to several partners) inteigqtbgether
in an asynchronous manner according to a public
communication protocol, in order to reach a comrosiness
goal.

The first issue of this paper is to define a coafien
pattern based on services called-IOWF pattern;this last is
defined through three main dimensions: servicentroband
interactions. So, we obtain service-based IOWF rsottet
remain flexible enough to support changes. We defime
flexibility of process models according to threepexds:

workflow (IOWF) [1] that implies a set of business partnersyqaptability, evolutivity and reusability. Howevet,this stage

providing common services to customers. With themgance

of our work, we focus on the first aspect which tie

of service oriented architecturg$OA) [2] and web services adaptability of process models, this constitutes second

standards [3], many research works have been edectisg e of the paper; we describe the set of adaptaiatterns

development of collaborative business applications.

In our research work, we are interested in strectur
cooperation supported by the concept of IOWF. Ij [4],
generic architectures of IOWF have been definesicépacity
sharing the chained executignthe subcontracting the case
transfer, the extended case transfend theloosely coupled
WF. We consider these architectures as basis ofeagarch
work because they cover a wide range of existinginass
processes since they express the different waysvhith
businesses can cooperate together. However in ihidial

dimensions defining the LC-IOWF pattern. Let's oetithat
we have implemented a framework of adaptation coimig
the set of adaptation patterns for IOWF procespesified
with BPEL.

In the following, Section Il presents some relateorks
and explains the motivation of our work. Sectiorl I
synthesizes the necessary background to undergtarmhper.
Section IV describes theooperation patternsuitable to the
loosely coupledarchitecture and illustrates the concept of
orchestration functionSection V describes the three categories
of adaptation patterns. Section VI gives some imglatation

details. Section VIl concludes the paper and talksut future
works.

The idea of using services to build collaborativesibess
applications is not new. The motivations behinds thome
from three main points: the relevance of servidentation,
the benefits of service orientation for the infotima system
and the benefits of service orientation for thepmyation. For
the first point, the concept of service providesdible
answers to constraints and problems attached to
information system like the luck of flexibility, ¢hreluctance
to openness and those attached to the cooperiiotiné need
to preserve the autonomy and the confidentiality.

RELATED WORKS AND MOTIVATIONS

With the emergence of SOA and web services stasdard
andh. IOWF Definition

many research works deal with orchestration
choreography of web services [9], [10], especidfsed on
BPEL4WS.

Other research works such as [11], [12] show therést
of combining BPM (business process managementkfloor
and SOA for the re-use of services to constructadyin
business processes. This had a great impact inqtirogrB2B
relationships since several approaches and platfanave
been developed to support the B2B cooperation UAlRgand

In this paper, we describe our framework of adamtat
composed by a set of adaptation patterns that eaapplied
on IOWF process models specified with BPEL and ofzgeto
the LC-IOWF pattern.

Conceptually, a pattern-based approach allows the
enumeration of all recurrent and structurally vesdfined
situations that can occur repeatedly to adapt IOWF
processes. From the implementation perspective, the
pattern-based approach allows modular and reusable
tH@plementation of the proposed patterns startingh wi
elementary patterns and going to more complex bges
reuse of the first ones.

Ill. BASIC DEFINITIONS AND CONCEPTS

An IOWF can be defined as a manager of activities
involving two or more workflowsautonomous possibly
heterogeneouandinteroperablein order to achieve a common
business goal.

B. The Loosely Coupled Architecture

The loosely coupled IOWF (LC-IOWF) is defined bget of
WFs which are distributed among the partner’'s sited that

SOA. Instructuredcooperation for example, we can cite SOMejnteract together using a pub||c protoc0| basednmsage

approaches like CoopFlow [6], CrossFlow [13], Ckissk
[14], Pyros [15] and e-Flow [16].

Also, flexibility is an important propriety to batssfied by
business processes and their systems allowing thesumpport
changes. Even if some approaches like CoopFlowgs$Pgnd
e-Flow provide internal adaptationof workflows without
compromising the coherence of the global proceswrge
number of the proposed solutions are not flexibh®ugh
because they are closely coupled with the platforr8s for
any changes, they impose to re-adapt the interfaoesto
newly build the structure of interaction. MoreovelWF
flexibility is perceived at two complementary lese(1) at the

exchanges. The communication mechanism used for
interaction isasynchronousWF processes operate essentially
independently, but have to interact at certain {soito
exchange data and to ensure the correct execufiotneo
overall business process. The loosely coupled taathre is
based on aprocess schema partitioning (disjoint WF
fragments are distributed among the partner’'s)séted obeys

to decentralizedcontrol of process instances because each
partner manages the execution of the WF fragmedtt ltle
implements and controls the interactions with OthW¥F
fragments.

Fig. 1 shows a generic meta-model of LC-IOWF preces

system Ieve[he ﬂeXIbI'Ity defines the ablllty of a WFMS (WF definition using the UML notation. We can see that C-
management system) to face unexpected and erroneolWF process model is defined by a set WFs and a

situations [17], [18]. (2) at théevel of process modethat
defines the ability of a process model to be addpta

cooperation pattern The cooperation pattern links two or
more WF through a set aiessageattached to thenteraction

evolvable and reusablenmany research works have beenpoints in the IOWFE Each WF is attached to partner,

proposed describing different techniques such aptation
patterns [19], [20], [21], rule-based adaptatiottgras [22],
[23] and constraint-based modeling [24] to supfilestibility
of process models. For example, in [21], the asthdentify

manipulategata and is submitted toondition of invocation.
A cooperation pattern is then defined around three
dimensions: thepartitioning of the processthe control of
executionand the set of messages expressingsthecture of

the most important process change patterns andgehanjpteraction

features for PAIS (process aware information sysjerin
[25], a framework was described using adaptatidtepss and
aspect—programming in order to support processtatiap for
BPEL engines.

The concept of pattern was initially used in sofeva
engineering as the abstraction from a concrete famch
keeps recurring in specific non-arbitrary contekt. the
workflow area, this concept has been usually usethdisiness
process modeling [26], business process improvenoent
changes [21], [25] or exception handling [27].

Fig. 1. Meta-model of LC-IOWF Process Definition

LC-IOWF
Is submitted to
2.

WF

Is attached to

Interacts Manipulates

1 Is attached to
1
3 N Interaction
Send Receive |
Point

Cooperation
pattern

!—&L‘\

Process
Partitioning

Fig. 2 bellow shows UML activity diagram describing
example of a LC-IOWF process. The process impligset
partners: a customer, a supplier and a producenonisists of
managing customer’s orders for a given type of pct&l The
customer sends its order to a supplier who chetles t
availability of products to satisfy the customeoigler. If the
quantity of products is sufficient, then the custors notified
by a message “Preparing order’ else he is notifigda
message “Waiting for production” after the supplias sent
the order of production to the producer. When thppser
order is received, the producer starts productioth rotifies
the supplier with a message “Start production”. Whhe
production is finished, the producer sends delivarythe
supplier who sends them in turn to the customer veit
corresponding invoice and sends simultaneously tarme
receipt of delivery to the producer. The customeeddthe
payment and sends the payment receipt to the supphe set
of messages exchanged between the three partners
schematized with dotted arrows.

Fig. 2. Example of LC-IOWFprocessManaging Customer’s Orders”

Customer

Sand Ordar -

Raceive
Notificstion |4 -

Supplier

Producer

]

Do Piement and
Sand Raceipt

C. Flexibility of IOWF Models

Through the concepts exhibited on the meta-modé&ligf
1, we can see that an IOWF model covers four maes:a
process(concepts of IOWF, WF, conditioand cooperation
pattern), organization (concept of partner), data and
interaction (concepts of message and interaction point
Consequently, we can affirm that the constraintfiexibility
in IOWF models are not limited to one axis, butewothe four
axes. Also, we perceive the flexibility of procesmdels
through three main perspectives: adaptability, atixty and
reusability that we define as follows:

The adaptability of an IOWF process modelefines its
capacity to easily support changes while maintginthe
coherence of the process after changes,
functionality and the cooperation (the set of parsh Hence,
an IOWF model isadaptableif one or more of the entities

(WF, condition, data, interaction points) composingan be
modified without affecting the global functionalitgf the
process and the cooperation.

The evolutivity €alledevolutive adaptabilitypf an IOWF
process model is its capacity to acceppansiorof its global
functionality and/or expansion ofcooperation inducing
additional business partners and so additional Ydgnfients
where maintaining the coherence of the processsayethat
the IOWF model igvolvable.

The reusability of a model defines its capacity to be easily
integrated with another model in order to build enand more
complex models. Then, an IOWF modelréisableif it can
be manipulated as a separate entitQWF) and to be
integrated to other models in order to build mocenplex
IOWF processes which cover more functionalities and
services.
ar

Let's notice that in our work, we focus on flexibjl
reflected at process and interaction axes (althaugtvolves
and also draws on other levels — data and orgamiaand in
the current paper, we are interested by the fisgieet of
flexibility which is the adaptability of IOWF models. In the
next section, we describe teervice-based C-IOWF pattern
suitable to the loosely coupled architecture ineord obtain
IOWF models easily adaptable.

IV. THELC-IOWF PATTERN BASED ONSERVICES

Globally, the main idea of our approach is to esciade
each WF fragment into a single (composite) sergica set of
services depending on the IOWF-architecture to niBletn,
in order to define a service-based cooperatiorepatuitable
to a specific IOWF-architecture, the question isdecide
which parts of the WF process should be encapsllaitnin
services in order to abstract them and to involemtHrom
outside. Specificallyit is to encapsulate a WF process, a sub-
process or an activity in a service.

A. Structuring of the WF Process Into Services

The structuring of the IOWF process into servicgedane
by taking as reference, theteraction pointsin the process
model. As shown, on the meta-model of Fig.1, aarattion
point is attached to a message and then to anaatien
activity (send or receive) in the process. Then, psepose
first to isolate theinteraction activitiesin the WF process;
after that, we structure the WF process of eacinpainto a
set of sub-processes to be encapsulated each ohwiib a
service, by applying the rules set out bellow.

Rule R1: isolate each interaction activity “invoke” or
“receive” in the process.
For the cutting of the process into sub-processeglefine the
rules R2 and R3.

Rule R2: in a sequential branch (see Fig. 3)
A sub-process in a WF process is delimited: by tip

the overatiteraction activities or (ii) by the start-poinf the process

and the first interaction activity or (iii) by tHast interaction
activity and the end-point of the process.

Rule R3: in an alternative (or parallel) bloc (see Fig. 4)
Two possibilities are envisaged:
(1) If the bloc doesn’t contain any interaction actyiit

Regarding to the first dimension which is tthistribution
of serviceswe consider that each service encapsulates part o
the WF process and is implemented at the partrsiésthat

is considered as a single activity. provides it. This dimension corresponds to the disien

(2) If the bloc contains at least one interaction aigtiv Process partitioningwhich is defined for the initial IOWF-

- Insert fictive interaction points at the OP-Split architecture. From the perspective of a given garta service
and the corresponding OP-Join in the procesgan be implemented locally (local service) or pded by an
and cut the process at these two points. external partner (external service).

- Apply the rule R1 on each edge containing The second dimension which is tbentrol of executioris
interaction activities. expressed through the conceptoo€hestration functiorthat

Rule R4: Encapsulate each sub-process within an internabstracts the structure of the process in ternwoofrol flow
service. and interactions between services composing the HOW
process. Hence, in case of decentralized conhretgtis a set
of local orchestration functions, each of which lempented at
one partner site and allows the control of the rfragt
implemented locally. The concept of orchestrationction is
defined and illustrated in section B bellow.

The third dimension defines the interactions betwee
services of several partners involved in the IOWBCpsS.

Fig. 3. Transformation of a sequential process schema

Start

Rules RI+ R2+R4
Sub-processl

Interaction Activity 1

N] This dimension is expressed via interactional oinsing
Interaction Activiyy 2| interactional activities (in BPEL, this is realizég activities
o : invoke/receivdor asynchronous communication)
Sub-process2 !
""""" ® B. Orchestration Function and Control Flow

Like shown on the meta-model of Fig. 5, the conazfpt
orchestration functiondescribes the control flow between
services composing the IOWF using basic controlwflo
operators. In Table I, we introduce these basicaipes and
we express them using a general notation indepéydeom
any language or platform.

Remark.To describe multi-choice — respectively multi-
parallel - (more than two edges), we can decomposseveral
simple choices — respectively several simple palrddlocs.
For exampleAlt (S1, S2, S3) is expressedAds (Alt (S1, S2),
S3) orAlt (S1,Alt (S2, S3)).

Start.

Sub-process1 | Rules R1 + R2+ R3+R4

"\ Interaction Activity 1

1 Interaction Activity2

| Sub-process3

TABLE I. BAsIC CONTROL FLOW OPERATORS

In addition to the cutting of the WF process inéovices, Operatar Schema o Doripton | Orchestraion fnction
we should decide about the appropriate mode ofrabiof e = followad by 52 s 5152
execution at runtime and the structure of intecactietween T
services. This leads us to three main questionsH(iw to P——

. . SMALITHESUS EXECUTIN
structurethe WF process into services? (2) Hovetmtrol the Par afflmd 52 Par(51,52)
execution of instances? (3) How tdefine interactions
between services provided by different partners@sé&hthree N
questions exhibit three main dimensions on whidbaised the e ,

. Alt Air (51,53
LC-IOWF pattern as shown on Fig. 5.
Fig. 5. Meta-model of the LC-IOWF Pattern
D_ei-_:rﬂ:es_\an ex»:_l\n; e
Exl choice of 31 and 52 B4 (EL,52)

Implements

1

LC-IOWF
X

1.*| Interaction point

‘ Orchestration Function

Invoke ‘ | Receive ‘

Synchrangus merge of
51 and 52 after
parallism

Exprassad using Far
and Seg oparatars

Seg (Par (51,52), 53)

2 y N Isprovided by
Service L = Partner

! Is submitted to

Manipulates
* 1

Internal Service External Service Condition

Sfmple merge of 1 and
52 after inclusive choice
Exprassad using 4ir and
Seg operators

Seg (Al (51,52, 53)

Exprassed using Exf and
Seg operators

Seg (Exi (S1,52),53)

Fig. 6 bellow illustrates the concept of orchestra
function; we give an example of a process obeyinth¢ LC-

expressing sequential, parallel or alternative eties. An
adaptation of a service usually induces modificatan the

IOWF pattern The process schema describes an IOWrrchestration functionusing it or a modification of closely

implying two partners, partner 1 and partner 2 anmnting

their WFs as orchestration of services. PartneroViges his

WF composed byinternal services S1land S13 and
interactional activitiesS12, S14and S15 and partner 2
provides his WF composed by internal servie@8 and S25
and interactional activitieS21, S22andS24

Fig. 6. lllustration of orchestration functions a schema obeying to a LC-
IOWF pattern

Partmerl Partner2

Receive
Invoke

Invoke

And-Split Receve -7

And-Join -
Ivoke .-

Seq(Seq(Seq(S11, S12), Par(S13, 514), S15)
=Seq(Seq(B11,B12),515) with
Bl1=Seq(S11,812) B12=Par(S13,514)

Seq(Seq(Seq(Seq(S21, 522), 523), §24), 525)
=Seq(B21, 825) with B21 = Seq(B22,524)
B22 =Seq(B23,523) B23 = Seq (521,522)

Interaction activities correspond to amvioke” activity
from one partner and a€ceive” activity by the other partner;
For example, activity S12 of partner 1 correspotmisan
activity invoke service S2lof partner 2 that receives
invocation data needed at partner 2 to perfornréise of the
process. For more readability and less complexitythe
orchestration function, we can structure the predesgments
into blocsBij of sequential, parallel or alternative services. |
hierarchical manner, a bloc can be expressed usthgr
blocs.

In the next section, we focus on the issue of adalitly of
IOWF models. So, we describe a set of adaptatidtenna
covering the three dimensions on which the LC-IOp@Rern
is defined.

V. ADAPTATION PATTERNS

According to the meta-model of Fig. 5, adaptatiofisan
IOWF process model turn to modifications of theiterg
composing it that meanservices, orchestration functions

and/orinteractions Then, we classify our adaptation patterns

into three main categoriesService adaptation patterns,
Control Flow adaptation patterns ardteraction adaptation
patterns.

A. Service Adaptation Patterns

These patterns concern the modifications that can b

applied on the services composing the IOWF prociese
modifications are typically adding, removing, repfey,
merging of two services (sequential, parallel deralative)
and decomposing a service into a bloc of two sesvic

attached attributes likeondition or data (see Fig. 3). Let's
notice that these patterns are applied locallydnhepartner in
order to apply a modification on internal serviceghe
modifications affecting the structure of interaaotiare more
complex and are explained in section C.

e Adding, Removing and Substituting Services

Adding a service is done in order to insert an tolol
step in the process. The reverse operation of gddirthe
removingof services. Foaddingor removingof services, it is
to distinguish adding or removing of a service @re edge
composed by sequential services or in a bloc coatbbgtwo
edgesexpressing parallel or alternative execution. &abl
describes the basic patternsaafding services illustrated by
generic process schemas and the correspormloigestration
functions We can see that there are elementary patterns
named AP1.1, AP1.2, respectively for adding a newise
before or after a service in the process, and thezemore
elaborated patterns like AP1.3, AP1.4 and AP1.5ciwvtare
implemented using elementary patterns AP1.1 or AP1.
depending on the location of the service to add.

Table Ill shows typical operations of removing ef\dces
(serviceS2for example). Let's notice that two configurations
are possible when removing a servi#&éom a bloc with two
edges: (1) servic& is in sequence with other services, (2)
serviceS is alone on the edge; this results on two differen
scenarios for adaptation. These two configuraticare
represented only for inclusive choice, but they aleo
considered for exclusive choice and parallel exenut

TABLE Il DESCRIPTION OF' SERVICEADDING” PATTERNS
AP1: “Adding Service” Patterns
Pattern Pattern Before adaptation After adaptation Patterns used
Reference| Description
APL1 Addinto = = _
e | @ (=) e
ics Seg(S1. 52 Seq (Seq(S" > 3
& sarvics 5eq(S51,52) 5eg (S24(57,51),52) pattemn)
AP12 Addinto None
:Eqﬂenfem!fa Seqlsl52) Seq (Saq(S1. S, 87) (Elementary
servics eq(S1, 5T g (Seg(.52 pattem)
AP13 APLL
Add on oneedgs APL2
of inclucive
choice
APl 4 d
2
Add ononeedge |
of exclusive s
choics
APL1S APLL
Add on oneedzs APL2
of parallsi
EXECUTION
Seg (Seq(S1, Par(52,53)),54) 5eq (Seq(S1, Par(Seq(52,57), 83)), 34)
TABLE III. DESCRIPTION OF SERVICEREMOVING” PATTERNS

AP2: “Service Removing” Patterns
Pattern | Pattern Before adaptation After adaptation Patterns
Reference | Description used
ap21 |Remevsiom None
seguence (Elementary
Ssq (S2q(81,82), 83 Ssq(51, 83 -
Seg (Seq 1.83) Seq(81.83) pattem)
AP2.1
AP22
choise Seq (Seq(S1, Alr(Seq(S2,53), $4)), 85) Seq (SeqlS1, Alr(S3, 847), 85)
AP23 AP2.1
sinels = of
inglusive choice
Seq (S9(81,83), 84)
APZ4 | ddeneze |(< AP21
2dez of paralld
exscution
Seq (Seq(S1, Par{Seq(82,57), 837}, 84) Seq (Seq(S1, Par(S2,83)), 84)

For the removing patterns, we can see that AP24nis
elementary pattern and AP2.2, AP2.3, AP2.4, AP2.5are
implemented using AP2.1.

Another basic operation of adaptation concerns the

substitution ¥eplacing) of services. This is typically a
removingof the service to replace followed by adding of
the new service. Then, the patteAP3 (called “Service
Substitution” Pattern)s implemented using patterns PAL.x
and PA2.x for respectively adding and removing, eshefing
on the location in the process schema (in sequgrcallel or
alternative) of the service to be replaced.

* Fusion and Decomposition of Services

The operation ofusioncan concern two services linked by
a sequence, an inclusive choice, an exclusive ehoit a
parallel execution, in order to simplify the prosesodel and
to abstract several services into one. Table [Viohel
describes these basic operations and the corresgond
orchestration functions modified after each operatifor
mergingS2, S3n a single servic&'. We can state that since
services to merge are in the same bloc, they beeasier to
remove and to replace, because the bkt (S2,S3),Par
(S2,S3)or Exl (S2, S3)is considered as a sing®mposite
serviceto be replaced. More elaborated operations of fusio
concern configurations such as services to memgaatrin the

same bloc. For example in a model described by the

orchestration functionSeq(Se@l, Par(S2,S3)), S4) the
operation of merging1andS2cannot be done directly since
we must know if we maintain the parallelism or wend
maintain it; this information should be providedadditional
parameter. In both cases, this must be decompasied i
elementary operations of removing and adding ofglein
services or blocs.

Then, the fusion patterns are implemented usingdlkng
and the removing patterns AP2.5 and AP2.6 whichrmie
represented on Table lll, correspond to removingeevice
from one edge with a single service of parallelceti®n and
of exclusive choice respectively.

The reverse operation of fusion is tthecompositiorof a
service to obtain a bloc of two services that carséquential,

parallel or alternative bloc. The decompositiorsefvices can
be done to improve the parallelism in the procgma(lel
decomposition) or to add condition (alternative
decomposition) due to new constraints or to haveerontrol
on process execution (sequential decomposition)cére see
on Table V that the decomposition of a service =®g0
removea single serviceS2 for example) and tadd a bloc
composed by two serviceS’(and S) linked by a sequence,
an alternative or a parallel operator. This exdime use of
adding patterns AP1.x and removing Patterns AP2.x.

TABLE IV. DESCRIPTION OFFUSION PATTERNS
AP4: Fusion Patterns
Pattern Pattern Description Before adaptation After adaptation Patterns used
Reference
api1 (P | (5) &) a1
Seg (Seg (Seq(S1, §2),53), $4) Seg (Seg(S1, 87, 54) g%f
Fusion of ichusive (5 {5] APL
choice 5
AP4.2 Sag (Seq(51,5%), 54) gé;
Fusion of exclusive ﬂ AP1.1
choice 5
AP43 Seq (Seq(81,5%), 54) g%a
AP4A Fusion of parallel [s1)}-{s] AP
axecution AP12
Seq (Seq(31,5%), 54) APZ%
Seq (Seq(S1, Par (82, 83)), 54)
TABLE V. DESCRIPTION OFDECOMPOSITIONPATTERNS
APS: Decomposition Patterns
Pattern Pattern Description Before adaptation After adaptation Patterns used
Reference
aps1 |y - At
sequence 5
Seg (Seg(S1, 52), 53) Seg (Seq (Seg(S1,§"),5™, §3) ﬁli
Decomposition into (s] AP21
inchusive choice
AP5.2 Sag (Sog(S1. 52). 53 AP13
Decomposition info AP2
exclusive choice
AP5.3 Seq (Seg(S1, 82), 53) AP
AP5.A Decompesition inte (5] AP21
perallel execution APLS
Seg (Seg(S1. §7). §3) :
Seq (Seq(31, Par(S’, 87)), 83)

B. Control Flow Adaptation Patterns

This category of patterns concerns modification thod
control flow between services composing the IOW6&cpss,
without affecting the services themselves. Thigycally a
replacing of an operator of control flow by anothee can
replace for example a sequence operaseq)(by parallel
operator far) (parallelization of servicesjo improve the
execution time of process instances, or vice versa
(sequentialization of services) if an execution aofservice

becomes dependant from another service, or altematf
services if an execution of a service depends feomgiven
condition.

TABLE VI. DESCRIPTION OFFCONTROL FLOW” ADAPTATION PATTERNS
AP6: “Control Flow” Adaptation Patterns
Pattern Pattern Description Before adaptation After adaptation Patterns used
Reference
AP6.1 Sequentialization of AP
services) APL2
Seq (Seq (Seq(51,57,5%), 83) APL3
Pasallelization of APZ1
. services APLs
Seq (Seq (Seq(51,57), 57), 53}
Ineclusiva Altenation | [~ = AP
ey |t () A
Seg (Seg (Seg(81,57),57), 83)
APG.4 Exclusiva AP21
Alternation of
sarvices APL4
Ssg (Seq (Seq(51,5"), 57), 83)
Ssg (Seg(S1, Exl(§*,57)), 583)

Even if there is no modification on services imglia the
IOWF, the implementation of the control flow patieruses
other patterns of adding and removing services Tsdxe VI)
because we have to update input and output daserefces
and also the conditions of invocation.

C. Interaction Adaptation Patterns

This category of patterns concerns modification thod
structure of interaction. Specifically, this is @by adding,
removing or updatinghteractionalpoints(see table VII).

TABLE VII. DESCRIPTION OF I NTERACTION" ADAPTATION PATTERNS

AP7: “Interaction™ Adaptation Patterns

Pattern Scenarios Patterns used

Reference

Pattern Description

APT.1 Add Interaction Point - Add an “invoke” activity in the process requester APlx
- Add a comresponding “receive” activity in the AP3
AP4x

AP5x

process requested.
- Restructure the process using mles R1, R2, R3
and R4

Remove Interaction Point | - Remove an “invoke” activity from the process| AP2x
requester AP3
AP4x

APSx

AP7.2

- Remove the comesponding “receive” activity from
the process requested.

- Ifthe interaction is two-way
Remove an ‘invoke/request” activities
comresponding to the response of the request
removed.

- Re-structure the process using rules R1, R2, R3
and R4

AP71
AP72

- Update input/output data exchanged
- Update the interaction mode (one- way/ two-way)

Update Interaction Point
AP73

On Table VII, we describe generic scenarios of tidgp
interaction points. Then, for example, adding atergction
point can be realized by adding an “invoke” activitt the
process requester and a “receive” activity at tmecgss
requested. If the interaction is two-way (asyncbren
request/response), this should be followed by aydif
“invoke/receive” activities for response in the eese
direction. After adding the necessary interactiotivities, the
process should be re-structured according to tles R1, R2,

R3, R4 specified in section IV.A. The pattern AP7sl
implemented using AP1.x, AP3, AP4.x and/or AP5.x
depending on the structure of the process. For vamgoan
interaction point, it is to remove an “invoke” adty from the
process requester and a corresponding “receivé/itgcrom
the process requested; then if there is a two-wggraction,
we should remove a corresponding “invoke/receiwivdies
in the reverse direction. As for the AP7.1 pattéhe, structure
of the process should be updated. The update efaiction
point can concern the modification of the data flexehanged
or the modification of the interaction mode one-ftag-way;
then the AP7.3 pattern uses AP7.1 or AP7.2.

VI. SOME IMPLEMENTATION DETAILS

We have implemented a framework containing a set of
adaptation patterns previously described (and stpatterns).
For the development of our application, we haveswered
process models specified with BPEL and interprdigdthe
WF engine OPEN ESB 2.2, we also used a plug-in SOA
Netbeans. We have developed our framework usingldia
language and the IDE Netbeans, the applicatioresersed is
GlassFish server version 2. To implement the adapta
patterns, we have used the API jdom2 that eases the
modification of the code BPEL specifying the WF geeses
since it is based on the XML language. For example,
simply use the classlementimplemented in the API jdom to
create a new XML tag.

Our framework of adaptation is as modular as péssib
since we implement a separate class for each aitapta
pattern. Then, we create a class for adding a ceafter
another service in a sequential branch, anothes éta adding
a servicebeforeanother service in a sequential branch, another
class for adding a service in an alternative bétc, This eases
the reuse of existing classes to implement otherspror
example the operations of substitution, fusion
decomposition are implemented using elementary atipgis
of adding and removing of services (see Table3d/dnd VI).

and

For each operation of adaptation, a wizard interfée
provided allowing the setting of all parameters essary to
perform the adaptation.

Also, in order to maintain the coherence of thecpss
after adaptation, our application provides an fafe allowing
the update of the data flow in the process. ltoiss¢lect a
service and all input/output variables are dispiaye the
designer who selects the appropriate input/outptialbles.

Furthermore, when the adaptation concerns altemati
blocs, we have to generate the correct condititmsn our
application provides a simple graphical wizard &gy the
generation of simple or composite conditions.

After each operation of adaptation, we run the @sscin
order to check that the adaptation has been suattgsione.

Regarding to the LC-IOWF pattern, we have impleraént
an IOWF-process using the BPEL designer (manudily)
specifying two BPEL-Processes and message exchanges
between them, we used correlation sets in ordenamtain
the coherence of the communication protocol. We are

currently working on the implementation of the LOWF
pattern (a priori in a semi-automatic way) and we still
working on the implementation of “Interaction” adafion
patterns (AP7.x) which remain more complex from titleer
categories of patterns because they necessitataptiete of
the correlation sets.

VII. CONCLUSION ANDFUTURE WORKS

This paper deal with adaptability of IOWF modelsging
to the loosely coupledarchitecture defined in [4], [5].
contribution consists in two main issues; first, defined a
cooperation pattercalledLC-IOWF patternbased orservices
in order to deal with flexible IOWF models thanks $OA
advantages. In order to maintailecentralizeccontrol, each
partner
communication protocol is implemented througteractional
activities “invoke” and “receive”. For the seconskile, we
state the main adaptation patterns classified neethmain
categories basis on three dimensions: servicesratoand
interaction. Specifically, the “interaction” adapta patterns

concern the update of the communication protocoll an

requires more processing in order to keep the camation
protocol coherent and consistent.

Currently, we are working on the implementationtoé
LC-IOWF pattern (a priori in a semi-automatic wajd we
complete the implementation of the “interactionapthtion
patterns. As future works, we intend to define andlement
some operations of evolution (called evolutive ddtpn) that
we distinguish from other
perspectives the expansion of the glohalctionality of the
IOWF process and the expansion of tlweoperation
Furthermore, with the proposed approach, we cah wih
reusability (well supported by SOA) of IOWF processdels
which is another aspect of flexibility allowing tkembination
of several IOWF obeying to the same or differentMB
architectures, in order to build more complex besmn
processes based on existing ones.

REFERENCES

[1] W.V.D. Aalst, “Workflow Management: Models, Methodand
Systems”. The MIT Press. Cambridge, Massachuséttgidon,
England. 2002.

[2] Mike P. Papazoglou, Willem-Jan van den Heuvel, Vi®er Oriented

Architectures : approaches, technologies and relse&sues, the
VLDB Journal, vol.16, pp 389-415, 2007.

[3] G. Alonso, F. Casati & H. Kuno, “ Web services: cepts, architectures

and applications”, Heidelberg, Germany, Springerade 2004.
[4] W.V.D. Aalst, “Process oriented architectures for electronic cence

and interogranizational workflow”Journal of Information systems,

volume 24 issue 9, 1999.

[5] W.V.D Aalst , “Loosely Coupled Interorganizational Workfls :
modeling and analyzing workflows crossing organaret! boundaries”,

Journal of Information and Management Vol37, Pp: 67-75 Issyue 2

March 2000.

[6] I. Chebbi, “CoopFlow : an approach for ascendantpegation of
workflows in virtual enterprises” . Phd Thesis, iaal Institute of
Telecom, France, 2007.

[7] S. Boukhedouma, Z. Alimazighi, M. Oussalah, D. Talitz “SOA
based approach for interconnecting workflows adeogrdto the

Our

implements his orchestration function arte t

(8]

19

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

adaptations basis on two

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

subcontracting architecture”. In proceedings of MI®& IADIS
International Conference, CT'2011. Italy. Pp 3-IBBN:978-972-8939-
40-3, 2011.

S. Boukhedouma, Z. Alimazighi, M. Oussalah, D. Talitz
“Adaptability of service based workflow models etbhained execution
architecture”In proceedings of BIS’2012Lithuania, 21-23 may. W.
Abramowicz et al. (Eds.): BIS 2012, LNBIP 117, Sger-Verlag Berlin
Heidelberg 2012.

C. Peltz, , “Web Services Orchestration and Choeggy”, IEEE
Compute, Vol. 36, No. 10:46-52, 2003.

T. Amirereza,“Web Service Composition Based Interorganizational
Workflows”, Sudwestdeutscher Verlag fur Hochschulschrifteniagit
2009, ISBN 9783838106700.

F. Leymann, , D. Roller, and M.-T. Schmidt, “WebnSees and
Business Process ManagemelBM Systems, Jourhavol. 41, No. 2,
2002.

S. Gorton, C. Montangero, S. Reiff-Marganiec, L.8gm‘StPowla:
SOA, Policies and Workflows”, ICSOC 2007 workshopBICS 4907,
pp. 351-362, 2009.

P. Grefen, K. Aberer, Y. Hoffer, and H. Ludwig “Gs¥low : Cross-
organizational workflow management for service outsing in
dynamic virtual enterpriseslEEE Data Engineering Bulletjn24(1)
:52-57, 2001.

N. Mehandjiev, |. Stalker, K. Fessl, and G. Weidthélnteroperability
contributions of CrossWork’ln invited short paper to Proceedings of
INTEROP-ESA'05 ConferenceGGeneva, February 2005. Springer-
Verlag.

K. Belhajjame, G. Vargas-Solar, and C. Collet, ‘®3yf an environment
for building and orchestrating open services”. roceedings of the
2005 IEEE International Conference on Services Adimg, pages
155-164, Washington, DC, USA, 2005.

F. Casati and M. Shan, “Dynamic and adaptive coitippsof e-
services”Information System26(3):143-163, 2001.

S.W. Sadiq, M.E. Orlowska, “On capturing Exceptiansworkflow
process models”. In proceedings of ER’2001.

J. Meng, , S.Y.W Su, H. Lam, A. Helal, , J. Xiaf,Liu, and S. Yang,
“DynaFlow: a dynamic inter-organisational workflomanagement
system”,Int. J. Business Process Integration and Manageméuit 1,
No. 2, pp.101-115. 2006

Q. He, Y. Yan, H. Jin, “Adaptation of web serviaamposition based on
WEF patterns”In proceedings of Service Oriented Computif@SOC,
2008.

M. D6hring, B. Zimmermann, L. Karg, “Flexible Works at design-
and Runtime using BPMN2 Adaptation Patterns”. locgedings of
BIS'2011- Springer, 2011.

B. Weber, M. Reichert, S. Rinderle-M&hange patterns and change
support features- Enhancing flexibility in procesgare information
systems”. Journal of Data & Knowledge Engineerirddumne 66, pp
438-466, 2008.

R. Muller, U. Greiner, E. Rahm; AGENT-WORK: a workflow system
supporting rule-based workflow adaptation”. In joair of Data and
Knowledge Engineering , Data and Knowledge Engingesl (2) 223-
256, 2004

M. Déhring, B. ZimmermaSnn, E. Godehardt, “Extendedrkflow
flexibility using rule-based adapatation patternsithw eventing
semantics”. In proc. of INFORMATIK'10, pp. 216,228010.

M. Pesic, MH. Schonenberg, N. Sidorova, W. Van dgilst.
“Constraint-based workflow models: Change made ’easipn
Proceedings of the OTM Conference CooplS’'2007. ¢h 4803 of
Lecture Notes in Computer Science, pp 77-94.Sprivigdag, Berlin,
2007.

S. Tragatschnig, U. Zdun}; Runtime Process Adaptation for BPEL
Process Execution Engines”5th IEEE International Enterprise
Distributed Object Computing Conference Workshd3@QCW), 2011.
W.V.D. Aalst, W.M.P, ter Hofstede, A.H.M., Kiepuseski, B., Barros,
A.P.: Workflow Patterns. DAPD 14(1), pp. 5-51, 2003

N. Russell, W.V.D Aalst, W.M.P, A.H.M ter Hofsted&:xception
handling patterns in process-aware informationesgst. In: CAISE'06
(Luxembourg), pp. 288-302, 2006.

