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Abstract

In some applications and in order to address real-world situations better, data
may be more complex than simple numerical vectors. In some examples, data
can be known only through their pairwise dissimilarities or through multiple
dissimilarities, each of them describing a particular feature of the data set.
Several variants of the Self Organizing Map (SOM) algorithm were intro-
duced to generalize the original algorithm to the framework of dissimilarity
data. Whereas median SOM is based on a rough representation of the proto-
types, relational SOM allows representing these prototypes by a virtual linear
combination of all elements in the data set, referring to a pseudo-euclidean
framework. In the present article, an on-line version of relational SOM is in-
troduced and studied. Similarly to the situation in the Euclidean framework,
this on-line algorithm provides a better organization and is much less sen-
sible to prototype initialization than standard (batch) relational SOM. In a
more general case, this stochastic version allows us to integrate an additional
stochastic gradient descent step in the algorithm which can tune the respec-
tive weights of several dissimilarities in an optimal way: the resulting multiple
relational SOM thus has the ability to integrate several sources of data of dif-
ferent types, or to make a consensus between several dissimilarities describing
the same data. The algorithms introduced in this manuscript are tested on
several data sets, including categorical data and graphs. On-line relational
SOM is currently available in the R package SOMbrero that can be down-
loaded at http://sombrero.r-forge.r-project.org/ or directly tested on
its Web User Interface at http://shiny.nathalievilla.org/sombrero.

Keywords: Self-Organizing Map, Dissimilarity, Kernel, On-line, Multiple

Email addresses: madalina.olteanu@univ-paris1.fr (Madalina Olteanu),
nathalie.villa@toulouse.inra.fr (Nathalie Villa-Vialaneix)

Preprint submitted to Neurocomputing September 13, 2014

http://sombrero.r-forge.r-project.org/
http://shiny.nathalievilla.org/sombrero
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1. Introduction

In many real-world applications, data can not always be described by a
fixed set of numerical attributes. This is the case, for instance, when data
are described by categorical variables or by relations between objects (i.e.,
persons involved in a social network). This issue can be even trickier when the
data are composed of several sources of non homogeneous information (e.g., a
social network together with attributes on the nodes as in [1, 2]). A common
solution to address this kind of issue is to use a measure of resemblance (i.e.,
a similarity or a dissimilarity) that can handle categorical variables, graphs
or focus on specific aspects of the data, designed by expertise knowledge
[3]. Many standard methods for data mining have been generalized to non
vectorial data, recently including prototype-based clustering, even though,
in some cases, the choice of the most relevant dissimilarity remains an open
issue (see [4, 5] for a discussion on this topic in the field of social science).
The recent paper [6] provides an overview of several methods that have been
proposed to tackle complex data with neural networks.

In particular, several extensions of the Self-Organizing Map (SOM) algo-
rithm have been proposed. One approach consists in extending SOM to cate-
gorical data by using a method similar to Multiple Correspondence Analysis,
[7]. Another approach uses the median principle which consists in replac-
ing the standard computation of the prototypes by an approximation in the
original data set. This principle was used to extend SOM to dissimilarity
data in [8]. One of the main drawbacks of this approach is that forcing the
prototypes to be chosen among the data set is very restrictive; in order to
increase the flexibility of the representation, [9] proposes to represent a class
by several prototypes, all chosen among the original data set. However this
method increases the computational time, while prototypes remain restricted
to the original data set and may generate possible sampling or sparsity issues.

An alternative to median-based algorithms relies on a method that is
close to the standard algorithm used in the Euclidean case. This method is
based on the idea that prototypes may be expressed as linear combinations
of the original input data. In kernel SOM framework, this setting is made
natural by the use of the kernel, which maps the original data into a (large
dimensional) Euclidean space (see [10, 11, 12] for on-line versions and [13]
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for the batch version). Several kernels may then be used to handle complex
data such as strings, nodes in a graph or graphs themselves [14]. In some
cases, the data are solely described by a dissimilarity matrix. [15, 16, 17]
give necessary and sufficient conditions for a symmetric matrix to be a dis-
tance matrix in an Euclidean space but, as pointed out by [3], the class of
similarity/dissimilarity that can be embedded in a Euclidean space is rather
limited and does not accommodate on a number of useful measures already
developed in the literature. In this case, [18, 19, 20, 21] propose to introduce
an implicit “convex combination” of the original data in order to extend the
classical batch versions of SOM to dissimilarity data: this approach implic-
itly uses the embedding of the original data in a pseudo-euclidean space, as
defined in [22].

However, batch versions of the SOM algorithm are known, at least for the
standard numerical SOM [23], to present several drawbacks such as poor orga-
nization and strong dependency on the prototype initialization. This problem
may be partially countered using PCA or MDS initializations, but when no
good initialization is available, a stochastic (also called on-line) version of the
algorithm can be very beneficial. The purpose of the present paper is to intro-
duce and justify the on-line version of relational SOM, as already proposed in
[24]. Such an approach leads to a better organization of the map. Addition-
ally, taking advantage of the stochastic scheme, relational SOM is extended to
integrate several sources of non homogeneous information by using an adap-
tive convex combination of dissimilarities. The weights of each dissimilarity
are updated during the SOM learning process by an additional stochastic gra-
dient descent step. In the remaining of this manuscript, Section 2 describes
the on-line extension of the relational SOM algorithm, already studied in
[24], while Section 3 describes how this approach can be used to integrate
multiple information coming either from different data sets or from different
dissimilarity measures. Finally, Section 4 illustrates the approach on simu-
lated and real-world data sets and compares it with previous literature. Note
that the on-line relational SOM is available in the R [25] package SOMbrero,
which can be downloaded on R-Forge [26]1 or tested on its shiny [27] Web
User Interface at http://shiny.nathalievilla.org/sombrero.

1 http://sombrero.r-forge.r-project.org/
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2. On-line dissimilarity SOM

Let us recall that the Self-Organizing Map (SOM) algorithm aims at
mapping n input data x1, . . . , xn into a low dimensional grid composed
of U units. A prototype pu, valued in the same space as the input data, is
associated to each unit u ∈ {1, . . . , U} of the grid. The grid induces a natural
distance d on the map: for every pair of neurons (u, u′), d (u, u′) is usually
defined as the length of the shortest path between u and u′ (although other
topologies are sometimes used, including the standard Euclidean distance on
the grid). The algorithm aims at clustering together similar observations and
also at preserving the original topology of the data set on the map (i.e., close
observations are clustered into close units on the map, distant observations
are clustered into distant units on the map). In order to do so, an iterative
process is performed by alternating two steps. The original algorithm for
numerical vectors may be resumed as follows:

• an assignment step where one observation (on-line version) or all ob-
servations (batch version) is/are affected to the closest prototype (in
the sense of the Euclidean distance):

f(xi) = arg min
u=1,...,U

‖xi − pu‖,

• a representation step where all prototypes are updated according to the
new assignment. For the on-line version of the algorithm, this step is
performed by mimicking a stochastic gradient descent scheme:

pnew
u = pold

u + µH (d (f(xi), u))
(
xi − pold

u

)
, (1)

where H is the neighborhood function verifying the assumptions H :
R

+ → R
+, H(0) = 1 and limx→+∞H(x) = 0, and µ is a training

parameter. Generally, H and µ are supposed to be decreasing with the
number of iterations during the training procedure.

The original SOM algorithm described above does not posses a cost func-
tion and is not exactly a gradient descent, at least not in the continuous
case. However, when the size of the neighborhood is fixed and with a modi-
fied assignment step, [28] proved that SOM is minimizing the following energy
function:

4



E ((pu)u) =

U∑

u=1

∫
δu,f(x)

U∑

l=1

H(d(l, u))‖x− pl‖
2P (dx) ,

where δu,f(x) =

{
1, if f(x) = u
0, otherwise

.

2.1. SOM for dissimilarity data

In the case where the input data take values in an arbitrary input space G,
a natural Euclidean structure is not necessarily associated with G. Instead,
the dissemblance between the observations can be described by a dissimilarity
measure ∆ = (δij)i,j=1,...,n such that ∆ is non negative (δij ≥ 0), symmetric
(δij = δji) and null on the diagonal (δii = 0). In this case however, the
assignment step cannot be carried out straightforwardly since the distances
between the input data and the prototypes are not be directly computable.

Several extensions of the SOM algorithm have been proposed in this con-
text: [8] proposes the “median SOM” where the prototypes are chosen among
the input data (xi)i in a batch framework. The assignment step is then similar
to the Euclidean framework, with the dissimilarity replacing the Euclidean
norm. The representation step simply finds the prototypes that minimize
the energy of the map by an exhaustive search among the input data. [9, 29]
extend this work by using several observations instead of a unique one for
each prototype and by proposing a fast implementation of the algorithm.
Nevertheless, choosing the prototypes among the input data is very restric-
tive and using several observations for each prototype strongly increases the
computational time needed to train the map.

To overcome this difficulty, the solution proposed by [18, 19, 20, 21] is to
rely on the pseudo-euclidean framework: indeed, [22] pointed out that any
data described by a symmetric dissimilarity matrix can be embedded in a
space consisting of the orthogonal direct sum of two Euclidean spaces, for
which the inner product operation is definite positive on the first space and
definite negative on the second. Relying on this framework, and similarly
to the kernel SOM approach [19], the prototypes are supposed to be sym-
bolic convex combinations of the original data (actually, convex combinations
of their implicit embedding in the pseudo-euclidean space): pu ∼

∑
i βuixi
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with
∑

i βui = 1 and βui ≥ 02. If βu denotes the vector (βu1, . . . , βun), the
“distance” in the assignment step can be written in terms of ∆ and βu only:

δ(xi, pu) ≡∆iβu −
1

2
βT
u∆βu. (2)

where ∆i is the i-th row of ∆ (the formula is justified and proved in
Appendix A). This algorithm, called relational SOM, was proposed in the
batch framework where the representation step consists in updating the con-
vex combination by a mean calculation:

βui =
H(d(f(xi), u))∑
i′ H(d(f(xi′), u))

.

This approach is very similar to the batch kernel SOM described in [12,
13]. In kernel SOM, the Euclidean framework is justified by the definition
of a kernel K : G × G → R that implicitly maps the data into a Hilbert
space where the inner product is directly available via the kernel. Actually,
batch kernel SOM and batch relational SOM are equivalent for a dissimilarity
defined from the kernel by:

δ(xi, xj) := K(xi, xi) +K(xj , xj)− 2K(xi, xj). (3)

Reciprocally, if the dissimilarity matrix ∆ can be embedded in a Euclidean
space (i.e., if it fulfills the condition given in [15, 16, 17] which is that the
matrix with elements sij = (δ(xi, xn)

2 + δ(xj , xn)
2 − δ(xi, xj)

2) /2 is positive,
or, similarly, if the matrix with elements

s(i, j) = −
1

2

(
δ2(xi, xj)−

1

n

n∑

k=1

δ2(xi, xk)−
1

n

n∑

k=1

δ2(xk, xj) +
1

n2

n∑

k,k′=1

δ2(xk, xk′)

)

as proposed in [30], is positive), then relational SOM is equivalent to kernel
SOM used with the matrix (sij)ij, which, in this case, is a kernel. However,
as explained in [3], some useful dissimilarities (e.g., shortest path lengths in
graphs or optimal matching dissimilarities for sequences of events, [31, 32])

2Note that this sum has no real meaning, most of the times, as G is not necessarily
equipped with a + operation neither with a multiplication by a scalar. It simply implicitly
refers to the + operation in the underlying pseudo-euclidean space: the formal definition
of pu is given in Appendix A.
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do not fulfill the required conditions allowing them to be embedded in a
Euclidean space. In these cases, the dissimilarity can be turned into a kernel
using various pre-processings, as described in [33] but then, relational SOM
and kernel SOM are no longer identical.

2.2. On-line relational SOM

As explained in [23], although batch SOM possesses the nice properties of
being deterministic and of usually converging in a few iterations, it has several
drawbacks such as organizing the map rather poorly, producing unbalanced
classes and being strongly dependent on the initialization. Hence, using
the same ideas as [18, 20], we introduce the on-line relational SOM, which
generalizes the on-line SOM to the case of dissimilarity data. The proposed
method is described in Algorithm 1. In this algorithm, only one observation,

Algorithm 1 On-line relational SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui such that β0

ui ≥ 0 and∑n

i β
0
ui = 1.

2: for t=1,. . . ,T do

3: Randomly choose an input xi

4: Assignment step: find the unit of the closest prototype

f t(xi)← arg min
u=1,...,U

((
βt−1
u ∆

)
i
−

1

2
(βt−1

u )T∆βt−1
u

)

5: Representation step: ∀ u = 1, . . . , U ,

βt
u ← βt−1

u + µ(t)H t(d(f t(xi), u))
(
1i − βt−1

u

)

where 1i is a vector with a single non null coefficient at the ith position,
equal to one.

6: end for

randomly chosen, is assigned to a unit of the map at each iteration step. The
representation step is drawn from Equation (1) by using a similar approach
to update the prototypes’ coordinates (βui)ui. Note that the constraints on
(βui)ui are preserved since:

•
∑

i β
t
ui = 1 (as demonstrated in Appendix B);
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• βt
ui ≥ 0 for any u and i as long as µ(t) is small enough (µ(t)H t must

simply be smaller than 1).

This latter condition is easy enough to handle. In our experiments, the
parameters of the algorithm are chosen according to [34]: the neighborhood
H t decreases in a piecewise linear way, starting from a neighborhood which
corresponds to the whole grid up to a neighborhood restricted to the neuron
itself; µ(t) vanishes at the rate of 1/t.

2.3. Discussion on the algorithm: relations to previous algorithms, complex-
ity and convergence

If the dissimilarity matrix is a Euclidean distance, then the on-line rela-
tional SOM is exactly identical to the standard numerical SOM as long as the
prototypes of the original SOM are initialized in the convex hull of the origi-
nal data (i.e., the initial prototypes can be written p0u =

∑
i β

0
uixi). Similarly,

the on-line relational SOM is identical to on-line kernel SOM as described in
[10, 11, 12] for a dissimilarity defined from a kernel K by Equation (3) or if
the dissimilarity fulfills one of the conditions in [15, 16, 17].

Moreover, if one wants to generalize dissimilarities to non-symmetric re-
lations (such as, for example, graph-based comparisons of protein fingerprint
graphs), a dissimilarity matrix computed as the half-sum of pairwise relations
may be considered as the input for the algorithm.

In order to illustrate the performances of the on-line relational SOM com-
pared to the batch implementation, 500 points are considered, sampled ran-
domly from the uniform distribution in [0, 1]2. The dissimilarity is computed
as the length of the shortest path in the graph induced by the Delaunay
triangulation (this graph is displayed in Figure 1). Note that this dissim-
ilarity is not exactly equivalent to the Euclidean R

2-metric, since it is not
even Euclidean. The batch version of relational SOM and the on-line version
of relational SOM were trained on identical 10 × 10 grid structures. The
algorithms were trained either with identical initializations, or with a PCA
initialization3 for the batch SOM, which is the standard initialization used to
alleviate the initialization dependency of this algorithm. Results are available
in Figure 1 and clearly show a much better organization of the prototypes
in the final grid provided by the on-line version of the algorithm. When the

3Dissimilarity PCA was used and then properly re-scaled to satisfy the condition∑
i
βui = 1.
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Figure 1: 500 points sampled from the uniform distribution in [0, 1]2 and their Delaunay
graph (top left) and map organizations obtained by relational on-line SOM (top right)
and relational batch SOM (bottom left) with random initialization and by relational batch
SOM with dissimilarity-PCA initialization (bottom right).

prototypes are initialized with a PCA, the organization of the map produced
by the batch kernel SOM is much better but still slightly worse than the one
obtained with the on-line version and a random initialization. This visual
effect is confirmed when calculating the topographic error [35]: this error
quantifies the continuity of the map with respect to the input space metric
by counting the number of times the second best matching unit of a given
observation belongs to the direct neighborhood of the best matching unit for
this observation. A topographic error equal to 0 means that all second best
matching units are in the direct neighborhood of the winner neurons and
thus that the original topology of the data is well preserved on the map. In
this simple example, it is equal to 0.01 for the on-line relational SOM, to
0.176 for the batch relational SOM with PCA initialization and to 0.264 for
the batch relational SOM with random initialization. Hence, the classical
initialization dependency of the batch version of the algorithm, as already
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shown in [23] also holds for the relational approach. In particular, when
no good initialization is present (i.e., when PCA or MDS are bad initializa-
tion strategies), the on-line version can then be very beneficial. Finally, the
complexity of the on-line and batch versions are similar (of order O(Un2))
with usually a smaller number of iterations needed to stabilize the batch ver-
sion: the convergence of the batch version is attained with quadratic speed
while the on-line version converges with a linear speed. However, the better
organization of the map compensates for this small loss in computational
time. Finally, let us remark that formally speaking, in the pseudo-Euclidean
setting, the convergence of both algorithms (on-line and batch) is even not
guaranteed (saddle points can be present instead of local optima, as pointed
out in [21]) but, in practical applications, divergence was never observed.

3. Integrating multiple dissimilarities

In some specific applications, the user is interested in simultaneously an-
alyzing several sources of information: a graph together with additional in-
formation known on its nodes, numerical variables measured on individuals
together with factors describing these individuals... This situation is often
referred to as “multiple view” data and such data are quite common in a
number of fields: gene clustering from expression profiles and ontology infor-
mation [36] in biology, node clustering in a social network taking into account
attributes that describe the nodes [37, 1] in social sciences, and molecules
clustering from fingerprints and spatial structures [38] in chemistry. In other
specific applications, the data set can be described by several dissimilarities,
each encoding specific features of the data but none of them being acknowl-
edged as more informative than the others: in social sciences for instance,
the choice of a good dissimilarity to describe the resemblance between two
event time series is still an open issue [4, 5].

The combination of all sources of information or of several dissimilarities is
a challenging problem that aims at increasing the relevance of the clustering.
In clustering, this issue has already been tackled by different approaches:
some rely on clustering ensembles, combining together the clusterings ob-
tained from each view or from each dissimilarity into a consensus clustering
[39]. A more complex strategy, described in [40], iteratively updates the dif-
ferent clusterings using a global log-likelihood approach until they converge
to a consensus. Other authors propose to concatenate all data/views prior
to the clustering. If kernels are available, this method is known as multi-
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ple kernel clustering: the different kernels are combined by using a convex
combination and the coefficients of the convex combination are optimized to-
gether with the clustering [41, 42]. In a similar way, if the data are described
by numerical variables belonging to different feature groups, [43] proposes
to weight each group and to optimize simultaneously the clustering and the
weights of the groups.

For the SOM algorithm as well, a few articles tackle related issues: in
particular, [44] combines numeric and binary variables to produce a single
map by optimizing two quantization energies in parallel and [1, 2] use a
multiple kernel framework to integrate various information.

In the present section, we use a similar approach by combining different
dissimilarities in a convex combination. We propose an algorithm which
learns an optimal combination on-line, by minimizing the energy function.

3.1. Computing a multiple dissimilarity

Suppose now that the observations x1, . . . , xn are not described by a
single dissimilarity matrix ∆, but by D dissimilarity matrices ∆

1, . . . , ∆D,
where ∆d =

(
δd(xi, xj)

)
ij
. The dissimilarities can be either different dissimi-

larities computed on the same data or dissimilarities computed from different
variables measured on the same individuals (e.g., a dissimilarity that mea-
sures proximities between nodes in a graph and a dissimilarity that measures
proximities between the node labels, see Section 4.3 for an example).

Similarly to the multiple kernel approach described in [45] or in [1] (for
multiple kernel SOM), we propose to combine all the dissimilarities into a
single one, defined as a convex combination:

δαij =

D∑

d=1

αdδ
d
ij (4)

where αd ≥ 0 and
∑D

d=1 αd = 1. In the Euclidean framework, this approach is
strictly equivalent to the multiple kernel SOM approach because ‖xi−xj‖

2
d =

〈xi − xj , xi − xj〉d (multiple kernel is a convex combination of dot products
whereas Equation (4) is based on a convex combination of squared distances).
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3.2. On-line multiple relational SOM

If the (αd) are given, relational SOM based on the dissimilarity introduced
in Equation (4) aims at minimizing (over (βu)u) the following energy function

E((βu)u, (αd)d) =

U∑

u=1

n∑

i=1

H (d (f(xi), u)) δ
α (xi, pu(βu)) ,

where δα (xi, pu(βu)) is defined as in Equation (2) by

δα (xi, pu(βu)) ≡∆
α
i βu −

1

2
βT
u∆

αβu (5)

with ∆
α =

∑
d αd∆

d

When there is no a-priori on the (αd)d, we propose to include the opti-
mization of the convex combination within the on-line algorithm which trains
the map. This idea is similar to the one proposed in [46] for optimizing a ker-
nel parameter in vector quantization algorithms. More precisely, a stochastic
gradient descent step is added to the original on-line relational SOM algo-
rithm to optimize the energy E((βui)ui, (αd)d), over both (βui)ji and (αd)d.
To perform the stochastic gradient descent step on the (αd), the computation
of the derivative of

E|xi
=

U∑

u=1

H (d (f(xi), u)) δ
α (xi, pu(βu))

(the contribution of the randomly chosen observation (xi)i to the energy)
with respect to α is needed. Since

∂

∂αd

[δα(xi, pu)] = δd(xi, pu),

we have

Did =
∂E|xi

∂αd

=

U∑

u=1

H (d (f(xi), u))

(
∆

d
i βu −

1

2
βT
u∆

dβu

)
.

Following an idea similar to that of [45], the SOM is trained by perform-
ing, alternatively, the standard steps of the SOM algorithm (i.e., assignment
and representation steps) and a gradient descent step for the (αi)i. The
methodology is described in Algorithm 2.
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Algorithm 2 On-line multiple dissimilarity SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui such that β0

ui ≥ 0 and∑n

i=1 β
0
ui = 1.

2: For all d = 1, . . . , D, initialize α0
d ∈ [0, 1] st

∑
d α

0
d = 1. return δα,0 ←∑

d α
0
dδ

d.
3: for t=1,. . . ,T do

4: Randomly choose an input xi

5: Assignment step: find the unit of the closest prototype

f t(xi)← arg min
u=1,...,U

δα,t−1 (xi, pu(βu))

where δα,t−1 (xi, pu(βu)) is defined as in Equation (5).
6: Representation step: update all prototypes according to the new as-

signment: ∀ u = 1, . . . , U ,

βt
u ← βt−1

u + µ(t)H (d (f(xi), u))
(
1i − βt−1

u

)

7: Gradient descent step: update the convex combination parameters:
∀ d = 1, . . . , D,

αt
d ← αt−1

d + ν(t)Dt
d

where Dt
d is the descent direction and update δα,t

δα,t ←
∑

d

αt
dδ

d.

8: end for

To ensure that the gradient step respects the constraints on α (αd ≥ 0
and

∑
d αd = 1), the following strategy is used: similarly to [47, 48, 45], the

gradient
(

∂Et−1|xi
∂αd

)

d
is reduced and projected such that the non-negativity of

α is ensured. The following modified descent step is thus used:

D̃d =





0 if αd = 0 and Dd −Dd0 > 0
−Dd +Dd0 if αd > 0 and d 6= d0∑

d6=d0, αd>0 (Dd −Dd0) otherwise

The descent step ν(t) is decreased with the standard rate of ν0/t with an
initial ν0 small enough to ensure the positivity constraint on (αd)d.
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4. Applications

In this section, several applications, on simulated or real-life data sets,
illustrate the performances of the proposed methods. Section 4.1 compares
on-line and batch relational SOM on a DNA barcoding data set, Section 4.2
compares the use of dissimilarities and kernels for mapping two political
graphs into a grid, Section 4.3 illustrates the efficiency of the use of a multiple
dissimilarity approach on a simulated data set and, finally, Section 4.4 applies
the multiple relational SOM to a large data set of categorical time series and
shows that the multiple relational SOM approach can be used to interpret
which dissimilarities produce the most relevant clusters.

4.1. Comparison between on-line and batch relational SOM on a genetic data
set

This first experiment aims at providing a comparison between on-line
and batch relational SOM. It is performed on a data set that contains 465
input data issued from ten unbalanced sampled species of Amazonian butter-
flies. This data set was previously used by [49] to demonstrate the synergy
between DNA barcoding and morphological-diversity studies. The notion
of DNA barcoding comprises a wide family of molecular and bioinformatics
methods aimed at identifying biological specimens and assigning them to a
species. According to the vast literature published during the past years on
the topic, two separate tasks emerge for DNA barcoding: on the one hand,
assign unknown observations to known species and, on the other hand, dis-
cover undescribed species, [50]. The second task is usually approached with
the Neighbor Joining algorithm [51] which constructs a tree similar to a
dendrogram. When the sample size is large, the trees become rapidly un-
readable. Moreover, they are quite sensitive to the order in which the input
data are presented. Unsupervised learning and visualization methods are
used to a very limited extent by the DNA barcoding community, although
the information they bring may be quite useful. Self-organizing maps provide
a visualization of the data while bringing out clusters or groups of clusters
that may correspond to yet unknown species.

DNA barcoding data are composed of sequences of nucleotides, i.e. se-
quences of “a”, “c”, “g”, “t” letters in high dimension (hundreds or thousands of
sites). Hence, since the data are not Euclidean, dissimilarity-based methods
appear to be more appropriate. Specific distances and dissimilarities such as
the Kimura-2P [52] are usually computed. Recently, batch median SOM was
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tested in [53] on several data sets, amongst which the Amazonian butterflies.
Although median SOM provided encouraging results, two main drawbacks
emerged. First, since the algorithm was run in batch, the organization of the
map was generally poor and highly depending on the initialization. Second,
since the algorithm calculates a prototype for each cluster among the data
set, it does not allow for empty clusters. Thus, the existence of species or
groups of species was difficult to acknowledge. The use of on-line relational
SOM overcomes these two issues. Figure 2 contains the maps obtained with
median SOM and relational SOM with PCA initialization, both trained in
batch versions4 and Figure 3 illustrates the mapping produced with the on-
line relational SOM. The three algorithms were run with identical fixed seeds
for the random generators. The clustering quality of median SOM is poor,
since several clusters mix together several species. On the contrary, relational
SOM allows for empty clusters and thus produces a better mapping, from
a clustering point of view: the only mixing class corresponds to a labeling
error. Moreover, the empty cells help separating the main groups of species.
Clustering may thus be useful in addressing misidentification issues.

Topographic errors were computed for the three mappings in order to
assess the quality of the projection. For the online algorithm, the error is
0.0022, for relational SOM with PCA initialization we obtained 0.3682, while
the error of median SOM is 0.3094. Hence, the stochasticity of the on-line
algorithm allowed for a better organization of the map, compared with batch
algorithms.

In Figure 3b, distances with respect to the nearest neighbors were com-
puted for each node. The distance between two nodes/cells is computed as
the mean dissimilarity between the observations within each class. A polygon
is drawn within each cell with vertices proportional to the distances to its
neighbors. If two neighbor prototypes are very close, then the corresponding
vertices are very close to the edges of the two cells. If the distance between
neighbor prototypes is very large, then the corresponding vertices are far
apart, close to the center of the cells.

4relational batch SOM with random initialization was also tested but, since the results
were worse than the ones obtained with PCA initialization, they are not shown in this
article.
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(a) (b)

Figure 2: Species diversity distribution by cluster (radius proportional to the size of the
cluster): Median batch SOM (a) and Relational batch SOM with PCA initialization (b).

(a) (b)

Figure 3: On-line relational SOM results for Amazonian butterflies: (a) Species diversity
distribution by cluster (radius is proportional to the cluster size. (b) Distances between
prototypes.

4.2. On-line relational SOM and on-line kernel SOM to decipher the struc-
ture of political networks

This present section’s purpose is to give a comparison of the performances
obtained with relational SOM when used with various metrics. More pre-
cisely, we will show that for structural data such as graphs, a kernel is not
always the most relevant way to extract information from the graph structure,
compared to, i.e., the simple similarity based on the length of the shortest
path between two nodes.

The data used in this section come from two famous data sets pertaining
to the US politics. The first data set is a graph where the nodes are 105
American political books, all published around the presidential election of
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2004 and sold by Amazon.com. The edges of this graph encode the fact that
two books were co-purchased by a common buyer5. All nodes are labeled
according to their political affiliation (conservative, liberal or neutral), and
this information will be used to validate the results a posteriori.

The second data set is a graph representing the US politics blogosphere,
recorded in 2004, for the same presidential election as the previous one, by
Adamic and Glance [54]. This data set contains 1 222 nodes which are po-
litical blogs and 16 714 edges that represent a hyperlink between two blogs6.
Again, additional information pertaining the political preference of the blog is
also provided (here only conservative or liberal). Both graphs are represented
in Figure 4 by a Fruchterman and Reingold [55] force directed placement al-
gorithm and nodes are colored according to the political affiliation of the
book or of the blog.

Figure 4: Political books (left) and blogs (right) networks. Nodes are labeled according
to the political orientation of the book or of the blog: pink is for conservative, blue for
liberal and green for neutral.

Relational SOM was performed to project the nodes of the two graphs
on a square grid having dimension 5× 5 (books) and 10× 10 (blogs). Three
different dissimilarities were used to perform this task:

5This graph was built by Valdis Krebs and is available for downloading at
http://www-personal.umich.edu/~mejn/netdata/polbooks.zip.

6The original graph was directed but we only used undirected edges to perform our
analysis.
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• the length of the shortest path between two nodes. Note that, in gen-
eral, the length of the shortest path is not a Euclidean distance: for
the two graphs described in this section, the condition of [16] is not
satisfied;

• a dissimilarity defined as the square of the distance induced by the
heat kernel (K = e−γL where L is the Laplacian, [56]), with parameters
γ = 0.1 and 1. In this case, relational SOM is equivalent to kernel SOM
as described in [18, 20];

• a dissimilarity defined as the square of the distance induced by the
commute time kernel [57].

The performances of the tested methods were assessed using three criteria:
the modularity of the obtained partition, the neurons’ purity (compared to
the political labels) and the topographic error of the map. The modularity
[58] is a measure of quality of a partition of the nodes in a graph:

Q =
U∑

u=1

∑

i,j: f(xi)=f(xj)=u

(
Eij −

didj
2m

)

where Eij = 1 iff there is an edge between nodes xi and xj , di is the degree
of node xi and m is the number of edges in the graph. The best partition
corresponds to the largest modularity. The neurons’ purity is a measure
of the consistency of the clustering with respect to the political labels: it
counts the frequency of the political labels of the nodes that are equal to
the majority political label of the node’s cluster. The closer to 1 the purity
is, the better the clustering is. The last quality criterium, the topographic
error of the map [35], quantifies the continuity of the map, with respect to
the input-space metric as already explained in Section 2.3. Notice that, as it
computes the second best matching unit, the topographic error depends on
the metric of the input space itself and tells us if this metric is well preserved
on the map.

The results are given in Table 1. In addition, Figures 5 (books) and 6
(blogs) display two of the maps obtained for each data set. First note that
the modularity obtained with the SOM algorithm should not be compared
with that of a standard node clustering algorithm: the number of clusters
used in such maps is often much larger than the optimal number of clusters for
the modularity (for instance, the optimal modularity found by the algorithm
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Dissimilarity Shortest path Heat kernel Heat kernel Commute time
length γ = 0.1 γ = 1 kernel

Political books
modularity 0.25 -0.05 0.08 0.27

purity 0.88 0.61 0.72 0.89

topo. error 0.048 0.133 0.038 0.038

Political blogs
modularity 0.08 0.02 0.00 0.00
purity 0.93 0.89 0.79 0.57
topo error 0.303 0.047 0.322 0.899

Table 1: Modularity, neurons’ purity and topographic error obtained for the data sets
“political books” and “political blogs” by relational and kernel SOM algorithms.

described in [59] gives only 10 clusters, that should be compared to the 100
clusters of the map). Nevertheless, this measure of the clustering quality is
still valid for comparing different dissimilarities.

For the political books data set, the best map is obtained by using the
on-line kernel SOM algorithm with the commute time kernel. The on-line
relational SOM with the shortest path dissimilarity obtains comparable per-
formance but the heat kernel gives poor results, whatever the value of γ.
For the political blogs, the on-line relational SOM gives good results and
manages to discriminate the two groups of blogs quite well, while its topo-
graphic error is rather large. On the other hand, the kernel SOM with the
heat kernel (γ = 0.1) has a much better topographic error, while it badly
discriminates the labels and produces a bad clustering of the nodes of the
graph on the map (as measured by the modularity): this can be explained
by the fact that, even though the map properly represents the topographic
organization of the input space, the metric used to represent the data may
not be the most accurate to emphasize some particular features of the data
that can be of a major interest for the user.

In a second step, a hierarchical clustering of the prototypes was per-
formed. Using the symbolic representation of the prototypes as pu ∼∑n

i=1 βuixi, the dissimilarity between two prototypes can be expressed as:

δ(pu, pu′) := −
1

2
(βu − βu′)T ∆(βu − βu′) (6)

and used as an input in the hierarchical clustering algorithm (see [20], The-
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Figure 5: Political books. Maps obtained by the on-line relational SOM algorithm with
the shortest path dissimilarity (left) and by the on-line kernel SOM with the commute
time kernel (right).

orem 1, for a justification of this formula). Only three and two clusters were
kept for, respectively, the political blogs and the political books data sets
in order to try to retrieve the original labels. The resulting clusters are dis-
played in Figures 7 and 8. Moreover, the classes’ purity and modularity are
given in Table 2.

Dissimilarity Shortest path Heat kernel Heat kernel Commute time
length γ = 0.1 γ = 1 kernel

Political books
modularity 0.50 -0.02 -0.00 0.41
classes’ purity 0.84 0.49 0.47 0.76

Political blogs
modularity 0.39 0.04 -0.00 0.00
classes’ purity 0.91 0.52 0.58 0.52

Table 2: Modularity and purity of the classes obtained by a hierarchical clustering of the
prototypes, for the data sets “political books” and “political blogs”.

As expected, hierarchical clustering tends to slightly decrease the classes’
purity (compared to the neurons’ purity) and to strongly increase the mod-
ularity. But it also affects which of the dissimilarities seems to represent the
data better: for both data sets, the shortest path dissimilarity overcomes
the dissimilarities based on kernels. This shows that the use of a kernel is
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Figure 6: Political blogs. Maps obtained by the on-line relational SOM algorithm with
the shortest path dissimilarity (left) and by the on-line kernel SOM with the heat kernel
γ = 0.1 (right).

not always the best possible choice for computing similarities/dissimilarities
between observations and that allowing the use of a larger family of dissimi-
larities can be useful in some cases.

4.3. Multiple relational SOM on simulated data

In this section, a simple example is used to test the algorithm and il-
lustrate its behavior in the presence of complementary information. 200
observations, divided into 8 groups (indexed from 1 to 8 in the following),
were generated using three different types of data:

• an unweighted graph, simulated similarly as the “planted 3-partition
graph” described in [60]. The nodes of the groups 1 to 4 and the nodes
of the groups 5 to 8 could not be distinguished in the graph structure:
the edges within these two sets of nodes were randomly generated with
a probability equal to 0.3. The edges between these two sets of nodes
were randomly generated with a probability equal to 0.01;

• numerical data that were two dimensional Gaussian vectors. The vari-
ables corresponding to observations of odd groups were simulated by
Gaussian vectors with mean (0, 0) and independent components having
a variance equal to 0.3 and the variables corresponding to observations
of even groups were simulated by Gaussian vectors with mean (1, 1)
and independent components having a variance equal to 0.3;
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Figure 7: Political books. Maps obtained by the on-line relational SOM algorithm with
the shortest path dissimilarity (left) and by the on-line kernel SOM with the commute
time kernel (right).

• a factor with 2 levels. Observations of groups 1, 2, 5, and 7 were
affected to the first level and observations of the other groups to the
second level.

Hence, only the combined knowledge of the three data sets gave access
to the eight original groups. The multiple relational SOM algorithm was
applied to this problem with the shortest path distance for the graph, the
standard Euclidean distance for the numerical data and Dice’s distance for
the factor variable (equal to 0 if the factors are identical between the two
observations and to 1 if not). The algorithm was compared with

• a multiple kernel SOM approach as described in [2] where the kernels
used were the commute time kernel [57] for the graph and the Gaussian
kernel for both the other data sets (the factor was recoded as a numeric
variable using its disjunctive form). The parameter of the Gaussian
kernel was set as recommended in [61];

• a standard relational SOM approach using one of the three data sets
only. It was also compared to the dissimilarity SOM using numerical
and factor data or all the three data sets but used as if they were issued
from the same data set with a Euclidean distance (when the graph was
added to the numerical and factor data, it was under the form of its
adjacency matrix).
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Figure 8: Political blogs. Maps obtained by the on-line relational SOM algorithm with
the shortest path dissimilarity (left) and by the on-line kernel SOM with the heat kernel
γ = 0.1 (right).

The comparison was performed on 100 different data sets generated as pre-
viously described.

The performances of the different approaches were compared using the
normalized mutual information [62] with respect to the original classes, the
average node purity, taking again as a reference the original classes, and the
topographic error [35]. The first two quality measures quantify the adequa-
tion between the original classes and the clustering provided by the SOM.
The node purity has values between 0 and 1 and is equal to 1 when the two
partitions are identical. The last quality measure, the topographic error, does
not depend on the original class but it quantifies the continuity of the map,
with respect to the input space metric. The results are given in Figure 9,
which displays the distributions of the normalized mutual information, the
nodes’ purity and the topographic error, over the 100 data sets. Figure 10
provides examples of resulting maps.
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Figure 9: Normalized Mutual Information (top left), neurons’ purity (top right) and to-
pographic error (bottom) of multiple relational SOM, multiple kernel SOM and relational
SOM used with all or two data sets (num&fac) simply merged in a single data set or with
a single data set (graph, numeric or factor).

Taking into account the clustering quality (normalized mutual informa-
tion), the node purity and the topographic quality, the multiple relational
SOM outperforms the other methods. The difference between the use of the
shortest-path dissimilarity and a kernel for graph in a similar multiple setting
is small but still significant (with p-values smaller than 10−9 for Wilcoxon
paired tests).
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Note that the normalized mutual information gives here a pessimistic vi-
sion of the results because it penalizes the fact that the original clusters are
separated into several neurons on the grid. This explains the good perfor-
mance (despite their large variability), in term of normalized mutual informa-
tion, of the grid built from the numeric variables and the factor only because
this latter map contains much more empty clusters as shown in Figure 10.
On the contrary, the example of the map resulting from on-line multiple rela-
tional SOM in Figure 10 shows a good classification and a good organization
according to the three types of information: the eight groups are almost
perfectly distinguished by the algorithm.

Also note that the topographic error is not an optimal way to compare
the results obtained with data sets that do not contain the same amount of
information: indeed, the very good topographic error obtained by the map
trained from the numeric data only or the factor only simply means that
the topographic properties of these data is well preserved on the map but
this cannot be compared to the multiple relation SOM, the multiple kernel
SOM or the map trained with all data and a standard SOM: these maps are
supposed to preserve the topographic properties of all three sorts of data,
which is a harder task than preserving the topographic property of only one
sort (numeric, factor, graph) of data. In this case, merging all data in a single
data set which is then passed as an input to a numeric SOM leads to a very
bad topographic error (approximately 30 times larger than the one obtained
with multiple relational SOM or multiple kernel SOM).

The evolution of the α, shown in Figure 10 is also interesting: the Dice’s
distance, which is the only similarity measure based on a non noisy set of data
obtains larger weights than the other two dissimilarities. This is consistent
with the fact that these data are indeed the best of the three data sets to
distinguish between the original clusters: as shown in Figure 9, the map
based on the factor is better in terms of normalized mutual information than
the ones based on the numeric variables or on the graph only (its node purity
is very low because it perfectly distinguished the data into two clusters where
four original clusters are equally mixed).
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Graph Numerical variables

α evolution multiple rSOM

rSOM (simple) rSOM

with numeric variables and factor with all three data sets

Figure 10: Summary of the experiment: the original graph and the original distri-
bution of the numerical variables is given at the top of the figure; multiple rSOM results
(second row) with the evolution of the α and the resulting map (disks have an area pro-
portional to the number of observations and are colored according to the distribution of
the original classes in the corresponding neuron); bottom: maps obtained using numeric
variables and factor merged in a single data set and a simple Euclidean distance (left) and
using all three data sets but a simple Euclidean distance.
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4.4. Multiple relational SOM on real data

The last example illustrates multiple relational SOM on data related to
school-to-work transitions. We used the data in the survey “Generation 98”7.
According to the French National Institute of Statistics (INSEE), 22.7% of
young people under 25 were unemployed at the end of the first semester
2012.8 Hence, it is crucial to understand how the transition from school to
employment or unemployment is achieved, in the current economic context.
The data set contains information on 16 040 young people having graduated
in 1998 and monitored during 94 months after having left school. The labor-
market statuses have nine categories, labeled as follows: permanent-labor
contract, fixed-term contract, apprenticeship contract, public temporary-
labor contract, on-call contract, unemployed, inactive, military service, ed-
ucation. The following stylized facts are highlighted by a first descriptive
analysis of the data as shown in Figure 11:

• permanent-labor contracts represent more than 20% of all statuses after
one year and their ratio continues to increase until 50% after three years
and almost 75% after seven years;

• the ratio of fixed-terms contracts is more than 20% after one year on
the labor market, but it is decreasing to 15% after three years and then
seems to converge to 8%;

• almost 30% of the young graduates are unemployed after one year. This
ratio is decreasing and becomes constant, 10%, after the fourth year.

The dissimilarities between sequences were computed using optimal match-
ing (OM). Also known as “edit distance” or “Levenshtein distance”, optimal
matching was first introduced in biology by [31] and used for aligning and
comparing sequences. In social sciences, the first applications are due to [32].
The underlying idea of optimal matching is to transform one sequence into
another using three possible operations: insertion, deletion and substitution.
A cost is associated to each of the three operations. The dissimilarity between

7available thanks to Génération 1998 á 7 ans - 2005, [producer] CEREQ, [diffusion]
Centre Maurice Halbwachs (CMH)

8All computations were performed with the free statistical software environment R
(http://cran.r-project.org/, [25]). The graphical illustrations were carried out using
the TraMineR package [63].
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Figure 11: Labor market structure

sequences is then computed as the cost associated to the smallest number
of operations which allows to transform the sequences into each other. The
method seems simple and relatively intuitive, but the choice of the costs is a
delicate operation in social sciences. This topic is subject to lively debates in
the literature [4, 5] mostly because of the difficulties to establish an explicit
and sound theoretical frame.

In our application, all career paths have the same length, the status of the
graduate students being observed during 94 months. Hence, we suppose that
there are no insertions or deletions and that only the substitution costs have
to be defined for OM metrics. Among optimal-matching dissimilarities, we
selected three dissimilarities: the OM with substitution costs computed from
the transition matrix between statuses as proposed in [64], the Hamming
dissimilarity (HAM, no insertion or deletion costs and a substitution cost
equal to 1) and the Dynamic Hamming dissimilarity (DHD as described in
[65]).

In order to identify the role of the different dissimilarities in extracting
typologies, we considered several samples drawn at random from the data.
For each of the experiments below, 50 samples containing 1 000 input se-
quences each were considered. In order to assess the quality of the maps, two
indexes were computed: the quantization error for quantifying the quality of
the clustering and the topographic error for quantifying the quality of the
mapping, [66]. These quality criteria all depend on the dissimilarities used
to train the map but the results are made comparable by using normalized
dissimilarities.
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Metric OM HAM DHD
α-Mean 0.43111 0.28459 0.28429
α-Std 0.02912 0.01464 0.01523

Metric OM HAM DHD Optimally-tuned α
Quantization error 92.93672 121.67305 121.05520 114.84431
Topographic error 0.07390 0.08806 0.08124 0.05268

Table 3: Preliminary results for three OM metrics (average over 50 random subsamples):
Optimally-tuned α (top table) and Quality criteria for the SOM clustering (bottom table).

The results are listed in Table 3. According to the mean values of the
α’s, the three dissimilarities contributed to extracting typologies. The Ham-
ming and the dynamical Hamming dissimilarities have similar weights, while
the OM with cost-matrix defined from the transition matrix has the largest
weight. The mean quantization error computed on the maps trained with
the three dissimilarities optimally combined is larger than the quantization
error computed on the map trained with the OM metric only. On the other
hand, the topographic error is improved in the mixed case. In this case, the
joint use of the three dissimilarities provides a trade-off between the quality
of the clustering and the quality of the mapping. The results confirm the
difficulty to define adequate costs in optimal matching and the fact that the
metric has to be chosen according to the aim of the study: building typologies
(clustering) or visualizing data (mapping).

Finally, multiple rSOM was trained on the entire data set. The final
map is illustrated in Figure 12. Several typologies emerge from the map: a
fast access to permanent contracts (clear blue), a transition through fixed-
term contracts before obtaining stable ones (dark and then clear blue), a
holding on precarious jobs (dark blue), a public temporary contract (dark
green) or an on-call (pink) contract ending at the end by a stable one, a long
period of inactivity (yellow) or unemployment (red) with a gradual return
to employment. The mapping also shows a progressive transition between
trajectories of exclusion on the west and quick integration on the east. A
more detailed study of this data set is available in [67].
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Figure 12: Final map obtained with the OM dissimilarities

5. Conclusion

An on-line version of relational SOM is introduced in this paper. It
combines the standard advantage of the stochastic version of SOM (better
organization) with relational SOM, which is able to handle data described
by dissimilarities. This approach is extended to the case where several dis-
similarities are available for the initial data set. Online multiple relational
SOM handles several dissimilarities by combining them in an optimal fashion.
The algorithm shows good performances, compared to alternative methods,
in projecting data described by numerical variables, by categorical variables
or by relations and is helpful to understand which dissimilarity is the most
relevant when several ones are available. However, in its multiple dissimilar-
ity version, the main drawback of the proposed relational SOM algorithm is
related to the computation time: a sparse version should be investigated to
allow us to handle very large data sets.
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Appendix A. Pseudo-euclidean framework and justification of

Equation 2

The proof below can be derived directly from Theorem 1 of [20]. It is
given in details here, for the sake of clarity.

As explained in [22, 3], if δ is a symmetric dissimilarity matrix, then, there
exists two Euclidean spaces E and F , with positive definite scalar products,
and a mapping φ : x ∈ G → (φ|E(x), φ|F(x)) ∈ E ⊗ F such that

δ(xi, xj) = ‖φ|E(xi)− φ|E(xj)‖
2
E − ‖φ|F(xi)− φ|F(xj)‖

2
F . (A.1)

Hence, supposing that pu can be written as pu =
∑

i βui(φ|E(xi), φ|F(xi))
(which, in the text of the article is written

∑
i βuixi for the sake of simplicity),
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then the right hand side of Equation (2) can be re-written as:

∆iβu −
1

2
βT
u∆βu =

∑

l

βulδ(xl, xi)−
1

2

∑

ll′

βulβul′δ(xl, xl′) (A.2)

=

[
∑

l

βul‖φ|E(xi)− φ|E(xl)‖
2
E

−
1

2

∑

ll′

βulβul′‖φ|E(xl)− φ|E(xl′)‖
2
E

]
−

[
∑

l

βul‖φ|F(xi)− φ|F(xl)‖
2
E

−
1

2

∑

ll′

βulβul′‖φ|F(xl)− φ|F(xl′)‖
2
F .

]

But, using that
∑

l βul = 1, we obtain

[
∑

l

βul‖φ|E(xi)− φ|E(xl)‖
2
E −

1

2

∑

ll′

βulβul′‖φ|E(xl)− φ|E(xl′)‖
2
E

]
=

‖φ|E(xi)‖
2
E − 2

∑

l

βul〈φ|E(xi), φ|E(xl)〉E +
∑

l

βul‖φ|E(xl)‖
2
E +

−
1

2

∑

l

βul‖φ|E(xl)‖
2
E −

1

2

∑

l

βul‖φ|E(xl)‖
2
E +

∑

l

∑

l′

βulβul′〈φ|E(xl), φ|E(xl′)〉E =

‖φ|E(xi)−
∑

l

βulφ|E(xl)‖
2
E ,

which, injected into Equation (A.2), gives

∆iβu −
1

2
βT
u∆βu = ‖φ|E(xi)−

∑

l

βulφ|E(xl)‖
2
E −

‖φ|F(xi)−
∑

l

βulφ|F(xl)‖
2
F

which is the distance, in E ⊗ F , induced by the pseudo-norm defined in
Equation (A.1), between (φE(xi), φF(xi)) and pu.�
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Appendix B. Proof that
∑

l
βt

ul
= 1 at any step t of the algorithm

We prove here that
∑

l β
t
ul = 1, ∀ t ≥ 0. Noting that the property is

verified for t = 0, let us suppose that for a given t, we have
∑

l β
t
ul = 1.

Then,

βt+1
ul =

{
βt
ul + µ(t)H t(d(f t(xi), u))(1− βt

ul) if i = l
βt
ul − µ(t)H t(d(f t(xi), u))β

t
ul otherwise.

and thus, using
∑

l β
t
ul = 1, we have

∑

l

βt+1
ul =

∑

l

βt
ul + µ(t)H t(d(f t(xi), u))− µ(t)H t(d(f t(xi), u))

t∑

ul

βt
ul

= 1 + µ(t)H t(d(f t(xi), u))− µ(t)H t(d(f t(xi), u)) = 1.�

Appendix C. Equivalence between relational SOM, kernel SOM

and standard SOM

This appendix shows that

1. if (xi) take values in a Euclidean space and if the dissimilarity δ is the
Euclidean distance in this space, then the on-line version of relational
SOM as presented in Algorithm 1 is exactly equivalent to the on-line
version of the standard SOM in this space;

2. if the dissimilarity δ is computed from a kernel K by Equation (3),
then the on-line version of relational SOM is exactly equivalent to the
on-line version of the kernel SOM, as described in [12].

Let us first prove the first part of the assertion: if the prototypes are
initialized in the convex hull of (xi) then, they can all be written p0u =∑

i β
0
uixi. As already demonstrated in Appendix A, the assignment step of

the on-line relational SOM minimizes ∆iβu−
1
2
βT
u∆βu which is equal to the

squared distance between xi and pu in the Euclidean space and proves that
the assignment step is identical to the one of the standard SOM.

Then, on-line relational SOM updates the βt
ui by

βt
u = βt−1

u + µ(t)H t(d(f t(xi), u))
(
1i − βt−1

u

)
.

Multiplying each βt
ul by xl gives

xlβ
t
ul =

{
xlβ

t−1
ul (1− µ(t)H t(d(f t(xi), u))) if l 6= i

xiβ
t−1
ui + µ(t)H t(d(f t(xi), u))

(
xi − βt−1

ui

)
if l = i

,
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and, by summing over l, leads to

∑

l

βt
ulxl =

∑

l

βt−1
ul xl + µ(t)H t(d(f t(xi), u))

(
xi −

∑

l

βt−1
ul xl

)

with ptul =
∑

l xlβ
t−1
ul the representation step in the on-line relational SOM

is thus
ptu = pt−1

u + µ(t)H t(d(f t(xi), u))
(
xi − pt−1

u

)
,

which is in the convex hull of (xi) as long as pt−1
u already is, as shown in

Appendix B. This is also the representation step of the standard on-line
SOM.

Then, the equivalence between kernel SOM and relational SOM follows
straightforwardly since kernel SOM is equivalent to standard SOM in the
RKHS induced by the kernel and that the square distance in this space is
given by Equation (3).�
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