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Abstract. Histology image analysis is widely used in cancer studies since it
preserves the tissue structure. In this paper, we propose a framework to grade
metastatic liver histology images based on the spatial organization inter and intra
regions. After detecting the presence of metastases, we first decompose the image
into regions corresponding to the tissue types (sane, cancerous, vessels and gaps).
A sample of each type is further decomposed into the contained biological objects
(nuclei, stroma, gaps). The spatial relations between all the pairs of regions and
objects are measured using a Force Histogram Decomposition. A specimen is de-
scribed using a Bag of Words model aggregating the features measured on all its
randomly acquired images. The grading is made using a Naive Bayes Classifier.
Experiments on a 23 mice dataset with CT26 intrasplenic tumors highlight the
relevance of the spatial relations with a correct grading rate of 78.95%.

1 Introduction

Histology images are becoming more and more used in computer science. This partic-
ular modality of imaging preserves the underlying tissue architecture through its prepa-
ration process, making the use of histology images the gold standard in diagnosing
a considerable number of diseases, especially cancers [5]. The automated quantitative
analysis of histology images can help to understand the reasons behind a diagnosis, as
well as to reduce the inter and intra expert variations and to bring a better understanding
of the growth of a disease.

Depending on the objects of interest, histology images are acquired on specimens
stained by one or several dyes that highlight their particular features and give contrast
to the tissue. The best solution for histopathologists is to analyze whole slide images,
however it is very costly thus limiting their introduction and diffusion in research. Al-
ternative solutions are used, either relying on analyzing regions of interest [13], or using
images taken randomly over all the slide [7].

Biologists, using histology images in cancer studies, are interested in analyzing both
primary tumors and secondary metastases. In this paper, we propose a framework to
grade cancer development in metastatic liver histology images. This work investigates
the relevance of the spatial relations to recognize the advancement of cancer. The spa-
tial relations are measured at two scales, between tissue types and between biological
objects inside each type of tissue.



The most common framework for automatic analysis of multi-stained histology im-
ages follows three steps. First a segmentation of biological objects is performed, then
these objects can be quantified, usually based on first-order measures [7], and biological
object-based features can be extracted [17]. These methods are usually used for detec-
tion rather than grading, the latter being a more complex issue. Other methods focusing
on texture analysis are applied to grade histology images for several cancers, such as
lymphoma [15] and carcinoma [6].

Our description focuses on the encoding of the pairwise spatial relations which are
already used in histology images analysis, usually between pairs of elements after a
segmentation process. The spatial information is extracted using second order statis-
tics, the most common being Ripley’s K function, the Pair Correlation Function and
Besag’s L function, see [8]. They are used in various biomedical applications such as
the description of tumors in breast [12] or brain [9]. These functions aims at represent-
ing the distribution of distances between pairs of point objects but are not able to handle
regions as we need.

Other methods of spatial relations measurement are proposed in computer vision.
They can be split into quantitative and qualitative approaches. Qualitative approaches
correspond to symbolic relations such as positioning [2]. Since we are interested in
a measure between possibly unconnected subset of pixels, we cannot use a symbolic
representation. Fuzzy quantitative approaches are commonly used in multiple applica-
tion domains, such as medical imaging [1]. In this study, we use and extend the Force
Histogram Decomposition (FHD) method [4] to accurately describe the spatial organi-
zation of objects.

2 Materials

CT26 tumor intrasplenic implantation CT26 is an undifferentiated murine colon adeno-
carcinoma cell line syngeneic to the BALB/c mice strain. CT26 tumor was very tumori-
genic in vivo and often produces pulmonary and hepatic metastases in mice. To develop
a reproducible model of hepatic metastasis, tumor cells have been implanted into the
spleens of mice. From this site of injection, tumor cells access to the liver via the blood
vessels and proliferate to form secondary tumor. Using the model described by Wai
[19], Female BALB/c mice, 6 to 7 weeks old were acclimated for 1 week while sepa-
rated in groups of five. All animal studies were carried out according to the Institutional
Animal Care and Use Committee of Paris Descartes. Splenectomy were performed 5
min after intrasplenic injection of 5x104 cells in culture media.

Histological analyses At 7, 11, 13 and 17 days after implantation, liver were removed,
frozen, cut and stained with the same protocol for all animals. Each slice of liver was
counterstained with Hematoxylin and Eosin. From this biological material, 246 histol-
ogy images were digitized (Leica DM6000B) into 90 images from healthy liver and 156
from metastatic tumor model: day 7 (5 mice) and days 11, 13, and 17 (3 mice each).
The mean number of images per mouse is 10, these images were taken randomly from
all over a single slide. The resolution of the images is 2592 × 1944 pixels.



Mice cancer grading The liver slices were analyzed by an expert and graded according
to three criteria. First, the number of metastases, which was done with a macroscopic
observation. The second criterion is the number of metastases per square millimeters
and finally the area of metastases per square millimeters. The final grade of the mice is
defined accordingly to these three criteria. The dataset is composed of 9 sane mice, 3 of
grade 1, 7 of grade 2 and 4 of grade 3.

3 Methods

We use texture analysis and spatial relation measures in order to describe histology
images. The analysis of texture is performed to detect the presence of metastases inside
the tissue section while the final description only relies on the spatial relations. The
different measures of every images are then aggregated to accurately describe each
mouse.

3.1 Metastases detection

Our aim is to detect if there is metastases in each image. As shown in Figure 1, the
textures of sane tissue and metastases are quite different, both stains have different
hues and the shapes of the nuclei are more random in tumorous tissue. Thus, a texture
analysis method is carried out to detect these variations.

(a) (b)

Fig. 1. Images showing the variations in texture between sane tissue and metastases. (a) without
metastases despite being of grade 1 while (b) with metastases and of grade 3.

We use a multiresolution texture analysis method introduced in [3]. The multiresolu-
tion is achieved using a wavelet filter-bank which also gives us access to high frequency
information. All the information resulting from this decomposition is then described us-
ing the completed model of Local Binary Patterns (cLBP). A Linear Discriminant Anal-
ysis is conducted and used for classification. This detection serves as a pre-processing
to induce a semantic information into the spatial relations measurement step.

3.2 Spatial relations measurement

We seek to describe the spatial organization of the tissue at two scales: between types
of tissue and between biological objects inside each tissue type. All the spatial relations
are here represented using FHD.



Force Histogram Decomposition The FHD is an object recognition method where
the description relies on both the shapes and the spatial relations underlying the object
structure. These two information are acquired using histograms of forces [11]. The
histogram of forces computed between two objects A and B with a force ϕ along a
direction θ is defined as:

FAB(θ) =
∑
Cθ

∫
cA

∫
cB

ϕ(||ab||)dbda (1)

where Cθ is a set of θ−oriented lines spanning the image and, cA and cB are respec-
tively a single line from Cθ cutting through the objects A and B, see Figure 2.

Fig. 2. Principle of computation of histograms of forces.

In order to access the object structure, the FHD first requires to decompose the
object into several layers. Histograms of forces are then computed between every pairs
of layers for the spatial relation information, and on every layer with itself to get a shape
description. The FHD is defined as the set of all these histograms of forces. This method
presents the advantage of being invariant to both scale and position, and can easily
achieves rotation invariant using a circular dissimilarity measure. The FHD requires the
definition of a force, we choose to set a constant force in all our measures, i.e. ϕ = 1.
Thus our description does not take the distance between objects into consideration but
allows for objects overlapping. This description is also robust to the accuracy of the
decomposition method.

In this study, we are interested in reducing the amount of information contained in
each histogram of forces. Thus, we use a signature based on the Fourier series. The final
description retains only the S first amplitude values which are not considered as noise.
This signature was introduced and its efficiency was assessed in [18]. This signature
also has the advantage of ensuring that our description is rotation invariant.

Inter regions spatial relations An adaptive multi-channel wavelet representation [10]
is applied to separate the different tissue types. This method aims at separating the
image into meaningful texture sets based on a wavelet packet transform using Lemarié’s
wavelet. Each pixel of the image is classified into a layer according to both its high and
low frequencies wavelet coefficients envelopes. The Figure 3 shows the outcome of this
decomposition on a representative image of our dataset.

This method is used to separate the image into three layers: sane tissue, metastastic
tissue and the remaining image content. In the case of an image without metastases, we
only decompose two layers, the metastases layer being forced to a blank image. The
shapes of these three regions and their spatial relations are measured using the FHD.



Original image Sane tissue Metastases Vessels and gaps

Fig. 3. Representative image from our dataset decomposed into three layers.

Intra regions spatial relations We aim at describing the biological objects organiza-
tion inside each type of tissue. In order to keep this measure relevant and as disjoint as
possible from the shape of the region, we define a circular patch inside the most attrac-
tive set of connected components of this region. This set of connected component has to
be wider than the size of the patch and possess both the highest solidity and the largest
area possible. If no group of connected components fits these criteria, the one with the
largest area is chosen. The resulting three patches are shown in the first row of figure 4.

Fig. 4. Three patches extracted on a representative image and their decomposition into biological
objects. RGB channels respectively represent the nuclei, the stroma and the remaining tissue.

Once the patches are defined, we apply a color deconvolution [14] to separate the
hematoxylin from the eosin. This operation allows access to the cells’ nuclei, the stroma
and the remaining objects. The outcome of the color deconvolution is rather noisy and
the FHD requires binary layers, therefore, every stain channel is thresholded using the
Otsu method with three classes, the background, the noise and the dye. The resulting
layers for the three previous patches are displayed in the second row of Figure 4. As
for the inter regions spatial relations, we apply the FHD to describe the shapes of each
object and the spatial relations between them.



3.3 Mice signature and classification

Since each mouse is represented by several images, we have to aggregate their de-
scriptors in the classification process. Thus we use a Bag of Words model [16] with
a coding-pooling scheme. This method requires the computation of a visual codebook
composed of prototype descriptors, called visual words. A mouse is then described by
counting the occurrences of each visual words within its images. The visual codebook
is generated using a k-means algorithm on the training data to group the descriptors.
The description computed on a single image correspond to a single word.

The coding-pooling scheme consists in dividing the mapping in two steps. Each
descriptor is first mapped to the closest one in the visual codebook, a binary signature,
where a 1 corresponds to the closest visual word, is then obtained. The second step
aggregates these signatures into a single description by adding up all the mapped visual
words. This method is more complicated to implement than the simple Bag of Words
but allows to keep a small signature size. The final classification is made using a Naive
Bayes Classifier on the outcome of the coding pooling scheme.

4 Experimental results

4.1 Metastases detection

This step requires to set both the base parameters of the cLBP and the depth of the
wavelet decomposition. We chose a LBP radius of 1 with a number of neighbors of 8
and a depth of 4. This step provides good results, see Table 1, especially in terms of false
positive with using only one mouse per grade as training data. Almost all the images
presenting metastases are correctly detected. We prefer to have a very good sensitiv-
ity rather than a good specificity so that the grading method does not miss metastases
related spatial relations.

Table 1. Confusion matrix obtained on our dataset. It shows a specificity of 76.2%, a sensitivity
of 98.3% and a recognition rate of 87.1%.

O
ut

pu
t

Healthy 93 2
Metastases 29 116

Healthy Metastases
Target

Specificity Sensitivity Recognition Rate

76.2% 98.3% 87.1%

4.2 Grading of cancer

In this step, we have to set several parameters. The first parameter is the number of
directions of the computed histograms of forces. We chose to use 180 directions, thus
giving an angular resolution of one degree. The Fourier series signature length (S) is set
to several values (4, 8, 16 and 32) in order to measure the influence of this parameter.



The next parameter is the size of the patch (r), its effects are also studied by using
four different values (50, 100, 200 and 400 pixels). Our last parameter is the size of the
visual codebook (C), we conducted our experiments using 8, 16 and 32 different visual
words in our codebook.

The results of our grading method, with the same training data as the metastases
detection, for the different sets of parameters are summarized in Table 2. It achieves
good results and is rather robust to the choice of the parameters with the exception of the
patch radius. This shows that the intra-regions spatial relations hold useful information
for the cancer grading but they require enough materials in order to accurately describe
the tissue. The size of the visual codebook seems to have little influence on the grade
recognition. However, the length of the Fourier series signature has to be chosen wisely
since a length of 8 appears to bring a loss of more than 20% in recognition.

Table 2. Tables showing the cancer grade recognition rates (%) of our method according to the
size of the intra-region patch (r), the length of the Fourier series signature (S) and the size of the
visual codebook (C).

S 32
C 8
r 50 100 200 400

% 52.6 57.9 63.2 79.0

S 4 8 16 32
C 8
r 400

% 79.0 57.9 79.0 79.0

S 32
C 8 16 32
r 400

% 79.0 73.7 73.7

5 Conclusion

In this paper, we proposed a framework to grade cancerous histology images. After a
metastases detection using texture features, the method aims at describing the spatial
relations between and inside the different types of tissue. We first decompose each
image into several layers corresponding to the three types of tissue: sane, metastatic, and
others such as blood vessels and gaps. Then, to access the biological organization inside
each type of tissue, we further decompose a representative circular patch per tissue into
its three types of biological objects: nuclei, stroma and gaps. The spatial organization
at both scales are then described using an extended Force Histograms Decomposition.

Our work shows correct grading recognition of 79.0% despite our dataset being
composed of random images taken from a single whole slide per mice. Thus, it could
provides a better description in the case of whole slide images. This work does not
take into consideration a description of the pairwise spatial relations between biological
objects which seems to hold additional information. In the future, we aim at integrat-
ing this statistical information. We are also interested in studying the relevance of this
method for grading other types of cancer.
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