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Abstract

In this article, we address the issue of conducting a sensitivity analysis of

complex models with both static and dynamic uncertain inputs. While sev-

eral approaches have been proposed to compute the sensitivity indices of the

static inputs (i.e. parameters), the ones of the dynamic inputs (i.e. stochas-

tic fields) have been rarely addressed. For this purpose, we first treat each

dynamic as a Gaussian process. Then, the truncated Karhunen-Loève ex-

pansion of each dynamic input is performed. Such an expansion allows to

generate independent Gaussian processes from a finite number of indepen-

dent random variables. Given that a dynamic input is represented by a finite

number of random variables, its variance-based sensitivity index is defined by

the sensitivity index of this group of variables. Besides, an efficient sampling-

based strategy is described to estimate the first-order indices of all the input

factors by only using two input samples. The approach is applied to a build-
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ing energy model, in order to assess the impact of the uncertainties of the

material properties (static inputs) and the weather data (dynamic inputs)

on the energy performance of a real low energy consumption house.

Keywords: Global sensitivity analysis, dynamic and static inputs,

Karhunen-Loève expansion, building energy model

1. Introduction

Nowadays, one important feature when designing high-performance build-

ings is to reduce the energy consumption, for both economical and environ-

mental purposes. Thus, the need for a better control and optimization of the

energy consumption of buildings and houses arises since last three decades. In

this framework, softwares for thermal building performance simulation have

been developed and are constantly updating due to the evolution of construc-

tion techniques and materials. This leads to complex, high-dimensional and

multi-physics models, presenting uncertain inputs due to measurements, ex-

pert judgements or simply ignorance. Thus, the problem of the reliability of

these models arises. Sensitivity Analysis (SA) can help evaluating the impact

of this lack of knowledge onto the model responses. SA aims at determining

the most influential input factors onto the model responses. Numerous stud-

ies, in many different application fields (see for example [1, 2, 3, 4, 5, 6, 7]),

have focused on the sensitivity analysis of models with static inputs (i.e.

parameters). Global SA is generally preferred because the input factors are

varied simultaneously in a large uncertainty range and can reveal possible

interactions between the inputs. Global SA are often based on the analy-

sis of the model response variance and are known as ANOVA (ANalysis Of
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VAriance) methods [8, 9].

Regarding building energy modeling, existent surveys have only analysed

the influence of static inputs onto building models, such as the effects of the

materials thermophysical properties [10]. However, some phenomena previ-

ously neglected for energy-consuming building may become preponderant in

the consumption of low energy buildings1, as the consideration of weather

data variability, not only the temperature but also the solar radiation, the

relative humidity, the wind speed, etc. Indeed, it is expected that meteorolog-

ical inputs play a crucial role in designing high-performance buildings. There

are very few studies that try to assess the influence of the weather inputs

because they are time-dependent (dynamic inputs). This can be explained

by the fact that considering coherent long-term ”typical” weather data is not

obvious. As stated in [11], if the weather data, usually on an hourly basis

are available, there is no need to simulate them. However, when the hourly

data are lacking, there is a real need to simulate weather sequences. Even if

they are available, sometimes it might only represent a few years of record

which is anecdotal and cannot represent long-term typical weather. The only

1The term ”low energy consumption building” refers to standard for energy efficiency in

buildings. This eco-label is assigned to buildings satisfying some standards, mainly related

to the annual total primary energy consumption of the building. In France, the average

annual requirement for heating, cooling, ventilation, hot water and lighting must be lower

than 50 kWh/m2 (in primary energy) for new buildings and lower than 80 KWh/m2 for

renovations. These limits are set by the French Ministry for Ecology, Energy, Sustainable

Development and Territorial Development, according to the European Commission policy

(see http://www.europarl.europa.eu/committees/en/home.html). The values can differ

from one European country to the other, depending on their climate.
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way to represent the full spectrum of weather conditions is to collect data

from many years of hourly weather data. Very few weather sites have reliable

contiguous weather data available for extremely long periods of time. Thus,

an alternative is to simulate hourly weather data using a model. But, it is

not straightforward to generate time series that satisfy the desired random

field distribution.

The aim of this study is to assess the impact of uncertain inputs, such

as the weather data and the thermophysical properties of materials, onto

the heat consumption of an actual high-energy performance house. This

problem is challenging because it implies to perform the sensitivity analysis of

a time consuming computer model with uncertain static and spatio/temporal

inputs. Such an issue is rarely addressed in the literature (for instance,

in [12]). The uncertain static inputs are treated as independent random

variables defined by their marginal distribution while the dynamic inputs

are treated as Gaussian processes (GP) defined by a temporal mean and a

covariance function. In a Monte Carlo approach, sampling the independent

static inputs can be achieved with a space filling sampler such as the Latin

Hypercube sampling [13] or a LPτ sequence [14]. It is more challenging to

generate Gaussian processes and especially to assess their influence.

A GP can be represented as a series expansion involving a complete set

of deterministic functions with corresponding random coefficients [15, 16], as

the truncated Karhunen-Loève (KL) expansion [17, 18]. KL series expan-

sion is based on the eigen-decomposition of the covariance function, involv-

ing orthogonal deterministic basis functions and the orthogonal uncorrelated

random coefficients. This allows the optimal encapsulation of the informa-
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tion contained in the GP into a set of discrete independent random variables.

The GP can then be represented by a linear combination of the deterministic

functions depending on time whose coefficients are independent random vari-

ables. For sensitivity analysis purposes, the influence of the dynamic inputs

onto the model response is then given by the one of these random coefficients

of the Karhunen-Loève decomposition, which is the originality of the present

paper.

The paper is organized as follows. In Section 2, SA for static inputs is

briefly recalled and then extended to inputs depending on time. The proce-

dure to carry out a SA of model with uncertain static and dynamic inputs is

provided. In section 3, the proposed approach is applied to a building energy

model to quantify the impact of each weather data input and each thermo-

physical material properties on the energy performance of a real low-energy

consumption house.

2. Sensitivity analysis

2.1. Model with static inputs

First, let us recall that variance-based sensitivity index is computed when

the model is only function of static inputs. Consider the following model:

y(θ) = g(ωs(θ)) (1)

where y = {y1, . . . , ym} is the set of m model responses of interest, g the

model function which is known, ωs = {ωs
1
, . . . , ωs

Ns
} the set of Ns uncertain

static inputs, θ 2 Ω where Ω is the space of random events. The stochastic

variable θ represents the elementary event of a probability space. It is used
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to indicate the randomness of the input and the output. In the following,

we assume that random variables ωs
i are independent and defined by their

marginal distribution.

The effect of the uncertain inputs ωs
i onto yj can be assessed by its first-order

sensitivity index given by:

S
j
i =

V (E(yj|ωs
i ))

V (yj)
(2)

where V (E(yj|ωs
i )) is the variance of the conditional expectation of yj when

ωs
i is set and V (yj) is the total variance of the output yj. The first order

sensitivity index Si represents the amount of variance of yj due to ωs
i alone.

The value of Sj
i lies between 0 and 1. The closer to 1 its value is, the more

input ωs
i contributes to the total variance of the output. In particular, when

NsX
1=1

S
j
i ⇠ 1 the relationship between yj and the inputs ωs is additive. Then,

S
j
i can be used to rank the inputs by order of importance. Sensitivity indices

of higher order can also be computed to assess the influence of the input

interactions but it is not presented here, see [1] for more details.

The definition of the variance-based sensitivity index of one single input

variable Eq.(2) is easily extended to the sensitivity index of the group of

input variables ωs

u
⇢ {ωs

1
, . . . , ωs

Ns
} (also called the closed-order effect),

Sj
u
=

V (E(yj|ωs

u
))

V (yj)
(3)

2.2. Estimating the sensitivity indices with two LHS samples

Some models may be complex with a high number of inputs so that

analytical calculations of the previous sensitivity index become time con-

suming or even impossible. It is therefore necessary to estimate them. For

6



this purpose, several approaches have been proposed in the literature (e.g.

[4, 19, 20, 5, 21], among others). In the present work, the sampling-based

method proposed in [22] is employed for two reasons. Firstly, it only requires

two Latin Hypercube (LH) samples [13] to estimate all the first-order sensi-

tivity indices. Secondly, it can cope with group of random inputs which is the

key of our methodology to estimate the influence of dynamic inputs. Note

that, although Quasi Monte Carlo sampling technique is known to have a

better coverage of the input space [14, 23], LHS is preferred here because we

have to deal with a very high number of inputs (thousands) and the sampling

design proposed in [22] (similar to rLHS [24]) is suited to LHS.

Let us consider an LH sample Ω1 of the static inputs of size Ns ⇥ d and

denote by Y1 = g(Ω1) the associated model response vector (a vector of size

Ns ⇥m). We denote by R1 the rank matrix associated with Ω1. We recall

that R1 = [r1, . . . , rd] is deduced from Ω1 by column-wisely replacing the

smallest value of Ω1 by 1 and the highest value by Ns. As a consequence, an

element of ri (i = 1, . . . , d) is an integer within [[1, Ns]].

Then, a second input LH sample Ω2 is generated from Ω1 by arbitrarily

defining an independent rank matrix R2 of size Ns ⇥ d and setting,

Ω2 = Ω1 ◦R2.

Note that, the new Ω2 is also an LH sample and this column-wise permuta-

tion trick is equivalent to the replicated LH sampling [24]. After running the

model with this new sample, a second model response vector Y2 = g(Ω2)

is obtained. The model responses Y1 = [y1

1
, . . . ,y1

d] and Y2 = [y2

1
, . . . ,y2

d]

allow to estimate the first-order sensitivity index of each static input as fol-
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lows,

Ŝ
j
i =

(N − 1)−1
PNs

k=1
(yrikj − µ̂

j
1
)(y2kj − µ̂

j
2
)

σ̂
j
1
σ̂
j
2

(4)

where, yrikj is k-th element of the response vector obtained after reordering

the y1

j (j = 1, . . . ,m) accordingly with ri, that is,

yri = y1

j (ri). (5)

The empirical mean of the two response vectors y1

j and y2

j are respectively

µ̂
j
1
and µ̂

j
2
while σ̂

j
1
and σ̂

j
2
are their respective standard deviation.

We note that (5) is nothing but a reordering of the response vector y1

j

such that compared to y2

j the values of each input variable have been varied

except the sample of ωs
i that has been fixed. Finally, if the sensitivity indices

of groups of input variables are investigated (say K groups), then R2 is a

matrix of size Ns⇥K and the second sample Ω2 is deduced by column-wisely

permuting the values of Ω1 such that the values of the variables in the same

group are reordering identically. Equation (4) then estimates closed-order

effect of the i-th group.

2.3. Model with static and dynamic inputs

Consider the following model presenting uncertain static and dynamic

inputs:

y(t, θ) = g(ωd(t, θ),ωs(θ), t) (6)

where y of components {y1, . . . , ym} is the vector of m model responses,

t 2 D ⇢ R the time variable, ωd of components {ωd
1
, . . . , ωd

Nd
} the set of

Nd uncertain dynamic inputs (random fields) depending on time t. As pre-

viously, ωs of components {ωs
1
, . . . , ωs

Ns
} is the set of Ns uncertain static
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inputs (random variables). It can be worth noting that in another context,

t can also represent the space variable instead of the time. In this case, the

following still holds.

As previously, we assume that random variables ωs
i are independent and

defined by their marginal distribution. We further assume that the ran-

dom fields, indexed on a bounded domain D, are Gaussian processes, that

is, ωd
i ⇠ GP(ω̄i

d(t), Ci(t1, t2)), i = 1, . . . , Nd, where ω̄i
d(t) and Ci(t1, t2) are

respectively the mean and covariance function. The covariance function is

symmetric, positive definite and depends on two different time instants, t1

and t2, taken here in the form, Ci(t1, t2) = σ2

i e
ηi|t2−t1|ni .

According to [18], the random field ωd
i , can be approximated using the trun-

cated KL series:

ωd
i (t, θ) ' ω̄i

d(t) +

MiX
ki=1

p
λkiξki(θ)fki(t) (7)

where λki and fki are the deterministic eigenvalues and eigenfunctions of the

covariance function Ci(t1, t2), ξi is a set of independent standard normal vari-

ables and Mi is the number of KL-terms. In practice, we retain the first Mi

eigenmodes that contain the 95% of the variance of the input ωd
i . The num-

ber of eigenmodes retained depends on the choice of the covariance function

and may be very different from one input to another.

The key feature for simulating random fields using KL expansion lies on

the ability to determine accurately the eigenvalues and eigenfunctions of the

covariance function. They are given from the spectral decomposition of the
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covariance function Ci(t1, t2), requiring to solve the homogeneous Fredholm

integral equation of the second kind given by:

Z
D

Ci(t1, t2)fki(t1)dt1 = λkifki(t2) (8)

For some covariance functions (first-order Markov or Wiener-Levy processes,

for example), the equation (8) can be twice differentiable with respect to

t1. The resulting differential equation can be solved analytically and eigen-

values can be obtained as well. But in most cases, solving equation (8)

requires numerical methods, such as the Galerkin one [25]. To avoid te-

dious quadratures and alleviating computational effort, an alternative is to

use a wavelet-Galerkin approach [18, 26]. In this case, the representation of

integral operators is made in wavelet basis and can be performed without nu-

merical integration. The comparison of wavelet-Galerkin method with other

available methods in solving the Fredholm integral equation can be found in

[17].

Once the eigenmodes are obtained for all the dynamic inputs ωd
i (t, θ) us-

ing KL decomposition (7), the influence of ωd
i (t, θ) is then given by the one

of the random coefficients ξki(θ) propagated to y(t, θ). In fact, once the KL

decomposition of a given dynamic input ωi(t, θ) is performed, the random-

ness of this dynamic input ωi(t, θ) lies on the independent standard normal

variables ξki(θ). Thus, the randomness of the dynamic input ωi(t, θ) is prop-

agated to the output y through the associated modes ξki. The influence of

the given dynamic input ωi(t, θ) on the output y is then represented by the

one of all the modes ξi associated to ωi(t, θ) in the KL decomposition. The
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sensitivity index of the modes grouped together represent the influence of

the dynamic input ωi(t, θ).

Consider the Mi-dimensional random coefficient ξi, grouping the Mi modes

of the input ωd
i :

ξi = {ξ1i, . . . , ξMii} (9)

Thus, SA of the model output y(t, θ) is performed through the random vec-

tors {ξ1, . . . , ξNd
,ωs}, with ξi given by (9). Consequently, the effect of the

group of factors ξi is the one of the dynamic input ωd
i and so on.

The sensitivity indices of the group of factors ξi = {ξ1i, . . . , ξMii} can be

computed as:

S
j
i =

V (E(yj|ξ1i, . . . , ξMii))

V (yj)
(10)

where V (E(yj|ξ1i, . . . , ξMii)) is the variance of the conditional expectation of

yj when ξ1i, ξ2i, . . . and ξMii are set.

The sensitivity of the static input ωs can then be computed using (2).

The proposed approach is an alternative to the Pick and Freeze method

[27, 28, 29]. However, the Pick and Freeze method is computationally de-

manding because it requires N⇥(Nd+1) model runs where Nd is the number

of input factors and N is the sample size. In our study, we employ the ran-

dom balance design trick (also used in replicated Latin Hypercube [24]) that

allows to estimate the entire set of first-order sensitivity indices with only

two samples of size N (see [22]).

The proposed approach is summed up in the next section.
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2.4. Summary of the proposed approach

The computation of the sensitivity indices for model (6) presenting un-

certain static and spatio/temporal inputs requires the following steps.

1. Generation of the static inputs

Use a random sampling scheme to generate the Ns static inputs ω
s
i with

the prescribed marginal distribution.

2. Generation of the dynamic inputs

(a) Perform a 2D wavelet transform of Ci(t1, t2), using the Fast Haar

wavelet transform algorithm to obtain the eigenvalues λki and the

eigenfunctions fki.

(b) Use a random sampling scheme to generate the independent stan-

dard normal variables ξi.

(c) Generate the Nd dynamic inputs ωd
i using (7).

3. Computation of the sensitivity indices

(a) Simulate the model with the generated dynamic and static inputs,

ωd and ωs, to obtain the model response y(t, θ) (eq. 6).

(b) Compute the sensitivity indices of {ξ1, . . . , ξNd
,ωs}, according to

(2) and (10).

In the next section, the proposed approach is applied to a building energy

model.
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3. Application to a building energy model

3.1. Building energy model

The building energy model studied in this work represents a real building

located on an experimental platform, introduced by the National Institute

of Solar Energy and located in Chambéry, in France. This place presents

a temperate continental climate with alpine influence. The building is a

single-detached house with low energy consumption (figure 1). The house

has double-glazed on each facade except at the north one where it is triple-

glazed. The thickness of the wall is 50 cm, made of 15 cm of perpend, 20

cm of insulating material and again 15 cm of perpend. The house contains

hundreds of sensors to quantify its thermal behavior. Details about the house

can be found in [30] and in the table provided in the appendix.

The building is divided into several thermal zones, but only the living rooms

at the ground and the first floors are studied. The solar gains are maximized

in winter and minimized in summer thanks to the glazed surfaces distribution

and solar shading. The goal of the study is to quantify and characterize the

capacity of the building to exploit environmental energy gain, taking into ac-

count uncertainties of material properties and natural variability of weather

data.

The outputs of interest are energy needs at the ground and at the first floors

(m = 2) in order to maintain thermal comfort in these rooms. These outputs

are the most important ones for the designer to assess the building perfor-

mance. Very often, the technical choices made during the design stage aim at

decreasing the energy need. The model involves 57 uncertain input factors,

among them, 51 are static inputs and 6 are dynamic inputs.
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The 51 uncertain static inputs (Ns = 51) represent the thermophysical prop-

erties of the material as its density, the thermal conductivity, the transmis-

sivity at each facade, the albedo, the airtightness at the different floors, ...

They are listed in Appendix A. All the static inputs follow a Gaussian

distribution with standard deviation equal to 5% of the mean value, except

for the airtightness. In fact, the airtightness is one of the most uncertain

static inputs in the building thermal behavior. Anormal distribution with

standard deviation equal to 25% of the mean value is assumed for this pa-

rameter. The six uncertain dynamic inputs (Nd = 6) represent the weather

data as the outdoor air temperature, the direction and speed of wind, the

direct and diffuse radiation and the relative humidity.

A previous study [31], not presented here, has focused on the statistical

analysis of the weather data. One month of january representative of typical

winter from 20 years of observations has been used, since the heat consump-

tion is the highest and the most costly, during this period of time, at this

place. Moreover, considering only one season allows to respect stationarity

of data. From the study in [31], the statistical characteristics of a given

input, the covariance function and the hourly mean, on one day, has been

determined.

From the hourly mean ω̄d
i and the covariance function Ci(t1, t2), the sam-

ple generation of the dynamic inputs ωd can be carried out, as explained

in Section 2, using the Fast Haar wavelet algorithm to solve the Fredholm

integral (8). To do so, the Matlab software has been used. This leads here

to 512 modes for each of the six inputs, that is Mi = 512, 8i = {1, . . . , 6}.
The figures 4 to 9 show, for each dynamic input, the cumulative distribution
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function of the 24 time steps (hours) for every day of january. The left figure

shows the cumulative distribution function randomly chosen over the 1000

samples. The right figure shows the cumulative distribution function from

the source file used to extract the statistical characteristics of the dynamic

inputs.

The 51 uncertain static inputs are generated using Latin Hypercube sam-

pling, according to their prescribed distribution (Gaussian distribution with

mean value and standard deviation given in Appendix A). Here, 2 sets

of 1000 samples are used to estimate the sensitivity indices (2) and (10),

according to the estimator provided in [32]. Then, the model is simulated

with the generated static and dynamic inputs, using the dedicated software

EnergyPlus [33]. Each simulation lasts 1 minute. The computational time

for 2000 simulations is approximatively 32 hours, but with a quad core it can

be reduced to 8 hours.

3.2. Results

Figure 2 shows the dispersion of the ideal heat consumption, at the ground

and first floors. The consumption mean value is 9.25⇥ 108 J with a variance

of 9.44⇥1015 at the ground floor and 9.32⇥108 J with a variance of 4.90⇥1015

at the first floor. The heat consumption is almost the same at the ground

and first floors but with a slight prevalence of the first floor. The two thermal

zones under study have the same surface but there is more glass surface at

the ground floor, especially at south facade. Thus, it may be assumed that

the solar gain is more important at this floor, during winter.

Figure 3 shows the sensitivity indices at each floor. At the ground floor,

the direct solar radiation has the highest sensitivity index (0.48), explaining
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almost 50% of the heat consumption dispersion. Then, the temperature and

the airtightness follow (0.30 and 0.13, respectively). However, for the first

floor, the airtightness and the outdoor temperature have almost the same

sensitivity index (0.42 and 0.38, respectively), followed by the direct solar

radiation (0.21). The airtightness is more influent at the first floor since the

direct solar radiation is less influent at this floor. On the other hand, the

sensitivity indices of the other parameter can be neglected showing that they

are not influential. It is worth noting that these inputs are not influential in

the studied model. This conclusion can be different for other models, in the

way these variables are taken into account for the calculation of the energy

balance. For example, humidity is not relevant here because the ideal heating

device considered does not account for the impact of the humidity onto the

consumption.

To sum up, at each floor, only 3 inputs among the 57 are influent. Among

these 3 inputs, only one static input is influent here (airthightness) and 2 dy-

namic ones (outdoor air temperature and direct solar radiation), in a different

proportion according to the given floor. It can be noticed that the total sen-

sitivity indices are 0.92 for the consumption at the ground floor and 1 for

the consumption at the first floor, showing insignificant interaction between

inputs.

To conclude, the results highlight the capacity of the passive house to

exploit the solar gains during winter, especially at the ground floor. In fact,

the solar radiation has a greater impact on a high-insulated passive building

than on an energy-consuming one. This is relevant to minimize the heat

consumption during winter in this kind of low energy house.
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4. Conclusion

In this paper, a method to perform sensitivity analysis of complex models

presenting uncertain static and spatio/temporal inputs has been provided.

While assessing the influence of a static input of computer models is common,

it is an issue to estimate the influence of a dynamic input. For this purpose,

the latter is treated as a random process and its eigen-decomposition is per-

formed. This is achieved with the Karhunen-Loève transformation. Then,

the influence of the random process of interest is given through the one of

its eigenmode variables. Finally, the influence of the random process can be

quantified using the well-known Sobol’ sensitivity indices for group of vari-

ables. Subsequently, a sampling-based strategy has been used to compute

the closed-order effect of the group of variables with only two samples.

This approach has been applied to a building energy model. The latter is

defined by a set of 51 uncertain parameters and 6 stochastic weather inputs.

It was found that only four input factors were relevant for predicting the

energy needs of the passive house. In this case, sensitivity analysis can be

seen as a tool to help designing strategies to reduce the energy consumption

of passive houses.
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Figure 1: INCAS passive house
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Figure 2: Data dispersion for the heat consumption at the ground and first floors. The

central mark in red is the median and the edges of the blue box are the 25th and 75th

percentiles.
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Figure 3: Sensitivity indices for the heat consumption at the ground floor and first floor
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Figure 4: Cumulative distribution function for the outdoor air temperature - left: gener-

ated samples, right : source file
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Figure 5: Cumulative distribution function for the direct solar radiation - left: generated

samples, right : source file
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Figure 6: Cumulative distribution function for the diffuse solar radiation - left: generated

samples, right : source file
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Figure 7: Cumulative distribution function for the relative humidity - left: generated

samples, right : source file
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Figure 8: Cumulative distribution function for the wind speed - left: generated samples,

right : source file
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Figure 9: Cumulative distribution function for the wind direction - left: generated samples,

right : source file

Appendix A. List of uncertain static inputs
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Building Components Physical Quantity Distribution Characteristics

Glass Wool (35) Conductivity [W.m−1.K−1] N (0.035, 0.00175)

Outdoor wall insulation Density [kg.m−3] N (12, 0.6)

Glass Wool (32) Conductivity [W.m−1.K−1] N (0.032, 0.0016)

Outdoor wall insulation of

the attic

Density [kg.m−3] N (12, 0.6)

Glass Wool (35) Conductivity [W.m−1.K−1] N (0.035, 0.00175)

Insulation between First

floor - Attic

Density [kg.m−3] N (12, 0.6)

Extruded Polystyrene Foam Conductivity [W.m−1.K−1] N (0.03, 0.0015)

Insulation Crawlspace-

Ground floor

Density [kg.m−3] N (35, 1.75)

Extruded Polystyrene Foam Conductivity [W.m−1.K−1] N (0.029, 0.00145)

Insulation of the Attic walls Density [kg.m−3] N (35, 1.75)

Concrete blocks Conductivity [W.m−1.K−1] N (1, 0.05)

Wall Density [kg.m−3] N (1100, 55)

Concrete Floor Conductivity [W.m−1.K−1] N (2.75, 0.1375)

Ground Floor Density [kg.m−3] N (2400, 120)

Slab (16 cm) Conductivity [W.m−1.K−1] N (2.5, 0.125)

Floor of the Ground Floor Density [kg.m−3] N (2400, 120)

Hollow-core slab Conductivity [W.m−1.K−1] N (1.23, 0.0615)

Floor of the First Floor Density [kg.m−3] N (1300, 65)

Concrete Floor Conductivity [W.m−1.K−1] N (2.75, 0.1375)

Floor of the First Floor Density [kg.m−3] N (2400, 120)

Slab (4 cm) Conductivity [W.m−1.K−1] N (2.5, 0.125)

Floor of the First Floor Density [kg.m−3] N (2400, 120)
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Building Components Physical Quantity Distribution Characteristics

Floor Tile Conductivity [W.m−1.K−1] N (0.41, 0.0205)

Floor of the Ground Floor Density [kg.m−3] N (1200, 60)

Coating Conductivity [W.m−1.K−1] N (1, 0.05)

Outdoor walls Density [kg.m−3] N (1450, 72.5)

Plaster Conductivity [W.m−1.K−1] N (0.43, 0.0215)

Indoor walls Density [kg.m−3] N (1200, 60)

Dropped Ceiling Conductivity [W.m−1.K−1] N (0.35, 0.0175)

The First Floor and Ground

Floor ceilings

Density [kg.m−3] N (36.9, 1.845)

Roof Tile Conductivity [W.m−1.K−1] N (2.2, 0.11)

Roof Density [kg.m−3] N (2700, 135)

Air Conductivity [W.m−1.K−1] N (0.025, 0.00125)

(in the dropped ceiling) Density [kg.m−3] N (1.23, 0.0615)

Gravel Conductivity [W.m−1.K−1] N (2, 0.1)

Surrounding Soil Density [kg.m−3] N (1600, 80)

Ground Temperature Ground Temperature [◦C] N (7, 1, 5)

South Window Conductivity [W.m−1.K−1] N (1.1, 0.055)

Transmittance [-] N (0.6, 0.03)

East Window Conductivity [W.m−1.K−1] N (1.1, 0.055)

Transmittance [-] N (0.6, 0.03)

West Window Conductivity [W.m−1.K−1] N (1.1, 0.055)

Transmittance [-] N (0.6, 0.03)

North Window Conductivity [W.m−1.K−1] N (0.7, 0.035)

(triple glazed window) Transmittance [-] N (0.45, 0.0225)
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Building Components Physical Quantity Distribution Characteristics

Albedo Albedo [-] U(0.27, 0.33)
Orientation Degrees from true North

[Degree]

N (−15, 1.5)

Infiltration Rate

Crawlspace Infiltration Rate [Vol/h] N (2, 0.5)

Attic Infiltration Rate [Vol/h] N (2, 0.5)

First Floor Infiltration Rate [Vol/h] N (0.115, 0.29)

Ground Floor Infiltration Rate [Vol/h] N (0.115, 0.29)

Table A.1: List of uncertain inputs
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