
HAL Id: hal-01063789
https://hal.science/hal-01063789

Submitted on 30 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Analyzing the Topology of Commit Histories in
Decentralized Version Control Systems

Marco Biazzini, Martin Monperrus, Benoit Baudry

To cite this version:
Marco Biazzini, Martin Monperrus, Benoit Baudry. On Analyzing the Topology of Commit Histories
in Decentralized Version Control Systems. ICSME - 30th IEEE International Conference on Software
Maintenance and Evolution, Sep 2014, Victoria, Canada. pp.261-270, �10.1109/ICSME.2014.48�. �hal-
01063789�

https://hal.science/hal-01063789
https://hal.archives-ouvertes.fr

On Analyzing the Topology of Commit Histories in

Decentralized Version Control Systems

Marco Biazzini

INRIA — Bretagne Atlantique

marco.biazzini@inria.fr

Martin Monperrus

Université de Lille

martin.monperrus@univ–lille1.fr

Benoit Baudry

INRIA — Bretagne Atlantique

benoit.baudry@inria.fr

Abstract—Empirical analysis of software repositories usually
deals with linear histories derived from centralized versioning
systems. Decentralized version control systems allow a much
richer structure of commit histories, which presents features that
are typical of complex graph models. In this paper we bring some
evidences of how the very structure of these commit histories
carries relevant information about the distributed development
process. By means of a novel data structure that we formally de-
fine, we analyze the topological characteristics of commit graphs
of a sample of GIT projects. Our findings point out the existence
of common recurrent structural patterns which identically occur
in different projects and can be consider building blocks of
distributed collaborative development.

I. INTRODUCTION

Centralized version control systems (CVCS) such as CVS
or SVN have a rather sequential history. There is a linear
history of committed change sets (or commits), stored on a
central server. Branching makes up for some parallelism, but
its capability to improve successful collaboration has been
thoroughly questioned [1].

On the contrary, the history of Decentralized Version
Control Systems (DVCSs) such as Mercurial or GIT is much
richer. In decentralized version control systems, each developer
has the full commit history of the codebase locally available.
This allows for a much more flexible way to handle different
concurrent branches. The extreme ease of branch manipulation
and combination results in software histories that are much
more complex than what is typically found in a traditional
centralized systems software.

Bird and colleagues have shown that the analysis of
DVCS presents several issues for traditional repository mining
techniques and metrics [2], In DVCSs, there are concurrent
branches that start from a common ancestor, run in parallel,
split, merge together or with other branches, then are finally
merged in a commit which gives a “current stable version” of
the software product. Such a canopy of development lines de-
mands to redefine concepts such as “developer collaboration”,
“current state of the code”, “amount of contribution”, which
are fairly easy to establish for CVCSs.

In this paper, we propose to use graph concepts and metrics
to characterize DVCSs such as GIT. We consider commit
histories of DVCSs as directed acyclic graphs (DAGs) and
talk about software development using a general graph char-
acterization (topology, patterns, metrics, etc.). The structure
of commit history DAGs is given by the way developers
use branches. Their topology reflects the way the software is
modified, improved, fixed, in one word, evolved.

Thus there is information hidden in the very structure of
the commit history graph, which is relevant to understand key
characteristics of the development process typical of DVCSs.
In this paper we show that the topology of commit graphs
presents recognizable patterns, whose recurrence is due to
the nature of the underlying development process itself. Such
patterns are not purposely designed by developers, who rather
pursuit goals related to the state of their codebase. They thus
emerge from the topologically rich structure of DVCSs and
characterize the way the codebase evolves over time.

To sum up, this paper makes the following contributions:

– The definition of a novel data structure, the repository
Metagraph, that captures all the relevant information
about the DVCSs repositories.

– A classification of the elements of a DVCS commit
history, based on their topological relevance in their
history graph.

– An analysis of topological properties of the commit
history of several open source GIT–based project
repositories.

We thus propose a novel way to analyze DVCS–based
software project and discuss the evidences that signal its
potential in leading to novel insights about the process of
collaborative development.

The rest of the paper is organized as follows. Section II
presents and formally defines our contribution. Section III
describes the settings of our experiments. Section IV discusses
our findings and motivates their relevance. Section V presents
related work and Section VI draws our conclusion.

II. TOPOLOGICAL ANALYSIS OF COMMIT GRAPHS

The commit history of a decentralized repository can be
modeled by a directed acyclic graph whose nodes are commits
and edges are parent/child relations between them.

As the history of a project evolves, parallel branches are
created and joined in a distributed process of incremental
manipulation of the code base. In general (as backed up by
statistics we present in the following), the majority of commits
belongs to single branches, while fewer are those where the
creation or the join of the branches themselves occur.

For the purpose of understanding the global structure of the
commit history, i.e. the topology of the commit graph, these
latter commits are much more relevant than the former.

c1

c2

c3

c4

c5

c6

c7c11

c8

c9

c10

c12

c13

[c2 - c5]

c1

c6

c10c13

[c7 - c9][c11 - c12]

Fig. 1. Example of commit history to Metagraph transformation

We propose to classify, from the standpoint of their topo-
logical interest, the commits populating a history graph as
follows:

– Terminal. Commits having no parent or no child.

– Sequential. Commits having exactly one parent and
one child.

– Structural. Non-terminal commits whose union set of
parents and children has more than 2 elements.

These categories are devised so that (i) they capture the
whole set of commits in a GIT history and (ii) a given commit
can belong to one and only one of them. To bridge these
definitions with the standard GIT terminology, terminal com-
mits are either first commits or HEADs; sequential commits are
non-merging and non-branching ones, excluding first commits
and HEADs; structural commits are merging and/or branching
commits, which are not HEADs.

Terminal commits are thus the boundaries of the graph,
while structural commits are the nodes which define its struc-
ture. Sequential commits do not play any role in determining
the topology of the graph, being just enqueued in development
lines (the branches) which lead from a merge (or branch)
commit to another.

Sequential commits are clearly important from the stand-
point of the developer contribution to the codebase. They
should anyway be bypassed, when analyzing how branches
feed each other and the parallel development gets organized
in the repository, in order to get rid of topologically irrelevant
information, which would bias any metrics.

Thus, a way must be devised to meet conflicting goals:

• Avoiding the overhead and the information noise of
sequential commits while analyzing the topology of a
commit history graph, in order to be able to obtain
meaningful results

• Saving the information about the developer contribu-
tions that the sequential commits incorporate, along
with their position in the commit history, in order to
be able to relate the results of the topological analysis
with those derived by other kinds of data mining,
which focus on code metrics or process metrics.

We define in the following a data structure and a set of
properties that allow to positively solve both issues.

TABLE I. THE GIT REPOSITORIES UNDER STUDY — PART I.
THE COLUMNS REPORT THE PROJECT’S NAME, THE NUMBER OF COMMITS,

THE NUMBER OF EDGES AND NODES OF ITS Metagraph.

Project commits edges nodes

OpenLeague 43 36 25

BroadleafCommerce 4722 784 496

Fridgemagnet 67 12 10

AutoSave 124 15 12

OryzoneBoilerplateBundle 60 20 14

ketama 18 10 7

Edaha 185 11 9

Tolmey 61 29 21

Ai_Class_Octave_Functions 23 13 10

WPide 152 24 17

sexpistol 37 14 10

ace 3220 1139 693

contracted 72 10 8

gitpython 163 37 25

tcesp 81 25 18

bempp 1530 375 246

FReD 211 45 31

testlol 77 12 9

configs 40 18 14

pool 42 14 10

q4wine 966 81 54

pylibemu 59 10 8

sarah 312 19 14

ConcurrenTree 632 91 59

ProWiC 61 30 22

java 95 47 33

flour 209 45 29

Telephus 272 65 43

arkilloid 177 40 27

RLLVMCompile 87 20 15

pants 643 57 40

pelm 415 103 68

jump 49 32 23

a4a 206 68 46

PySynergy 278 23 16

caveman 211 19 14

cocoagit 756 86 57

stsh 239 37 26

zap 28 10 7

iamhanchang 600 202 123

Locke 29 10 8

ConfigServiceProvider 43 16 12

Twittia 86 14 11

MiniCart 124 15 11

A. The Repository Metagraph

We define an original data structure, based on this clas-
sification of GIT commits. This structure, called Metagraph,
encompasses a commit history, focusing on the topologically
relevant commits. The Metagraph retains all the information
from in the commit history. It aims at simplifying structural
analyses performed on the repository commit logs of a GIT

repository.

Def. — Metagraph
A Metagraph Mg of a commit history graph G = 〈V,E〉 is a
multi–graph Mg = 〈V e,Me〉, where V e is the set of nodes
which correspond to terminal and structural commits in V and
Me is a set of metaedges (see next definition). We call root
the node in V e associated to the first commit of G.

Def. — metaedge
Given a Metagraph Mg of a commit history graph G, a
metaedge is a directed edge between commits in the set of

Fig. 2. Patterns of size 4 and 5.

nodes V e of Mg.

A metaedge me between two nodes V e1 and V e2 exists in
Mg if and only if a path in G exists between the corresponding
nodes V1 and V2, which is composed uniquely by sequential
commits. The list of (sequential) commits composing this path
in V is associated (as metadata) to the metaedge.

We call V e1 (resp. V e2) first (resp. last) node of me.

TABLE II. THE GIT REPOSITORIES UNDER STUDY — PART II.
THE COLUMNS REPORT THE PROJECT’S NAME, THE NUMBER OF COMMITS,

THE NUMBER OF EDGES AND NODES OF ITS Metagraph.

Project commits edges nodes

nmrglue 132 12 9

vimclojure 346 18 13

robut 167 58 38

chrome_collector 74 43 29

satellite 161 15 11

PJsonCouch 25 10 8

mailchimp 50 15 11

gtalkjsonproxy 60 10 8

owper 140 15 12

mxn 507 201 121

crab 50 12 11

CRIOJO 273 84 57

n2n 203 75 51

migen 486 15 11

pinocchio 18 13 10

gokogiri 566 124 88

zamboni 13800 1334 865

MailCore 279 69 44

pod 149 20 15

jquery_add_more 32 23 15

blur 997 118 78

hsnews 89 16 11

easyXDM 761 176 116

spidr 635 10 8

pyrocms 14228 7176 4187

statsd 142 62 38

spark 198 21 15

ri_cal 322 18 14

asset_sync 301 109 70

bamboo 55 10 8

perl5i 792 256 164

andthekitchensink 176 18 14

connect 2515 650 410

eksamensnotater 136 65 42

MvvmCrossConference 92 10 8

Newscoop 10721 3742 2208

xyzcmd 594 18 13

tradinggame 69 25 17

CMSC858E 65 34 23

tinycon 53 32 21

cloakstream 56 23 17

iTetrinet 981 167 112

Tir 146 25 17

Figure 1 illustrates a Metagraph (right) built from a commit
history graph (left). Our definition of metaedges serves two
main purposes: (i) it simplifies the topology of a commit
history by excluding sequential commits from its structure,
while preserving the information they carry and (ii) it makes
the Metagraph a model that focuses on parallel development
events (occurrences of branching or merging in the commit
history graph G).

Our analysis of Metagraphs extracted from GIT reposito-
ries is based on the following properties:

Def. — Metagraph’s layer
For any vi ∈ V e, let dist(vi) : V e → N be a function that
maps each node of Mg to its maximum distance from the root
of Mg, measured in number of metaedges.
A layer Ln in a Metagraph Me is defined as
Ln ⊆ V e ∈ Me : li ∈ Ln ⇐⇒ dist(li) = n.

Layer Ln is thus the set of all nodes having the same
maximum distance n from the root. We call n the index of the
layer. By construction, roots are the only nodes belonging to
L0.

Supposing the example in Figure 1 represents a complete
Metagraph, we have L0 = c1, L1 = c6 and L2 = c10, c13.
The set of layers of a Metagraph is a convenient partitioning
of its nodes, which groups commits according to their distance
from the first commit, measured in terms of number of parallel
development events, as captured by the metaedges.

Def. — Width of a layer.
The width of a layer Ln is equal to its cardinality |Ln|.

Def. — Density of a layer.
We call density of a layer Ln the number of metaedges whose
last node is in Lm,m ≥ n.

The density of a layer Ln is thus the number of metaedges
terminating either in Ln or in a layer which is farther from
the root. By definition, the density of L0 = 0.

Let cn be a cut of Mg partitioning its nodes in two sets:
V e1 = vi : dist(vi) < n and V e2 = vj : dist(vj) ≥ n. Then,
the density of Ln is the number of metaedges crossing cn.

Def. — Diameter of a Metagraph.
The diameter of a Metagraph is equal to the length of the
longest path in the Metagraph. By construction, it is equal to
the greatest layer index of the Metagraph.

B. Development Patterns

Since the Metagraph captures the structural properties of a
commit graph, we now look for evidence of the presence (or

lack thereof) of recurrent development patterns in repository
metagraphs.

A way to spot such patterns is to find recurring subgraphs
in a Metagraph over different projects. Since any subgraph
of a Metagraph can only be composed by merging and/or
branching commits of the project history, the fact that the
same subgraph occurs several times in a project Metagraph
would denote the emergence of the same collaborative pattern
at different moments of the project history.

Moreover, the fact that the same subgraph repeatedly
occurs in Metagraphs which model the history of different
projects would point out emergent patterns characterizing
collaborative development itself, rather than the collaboration
habits of a specific community of developers.

The problem of finding all isomorphic subgraphs of a given
graph is in general NP-complete [3]. Even limiting the size of
the subgraphs to target, the feasibility of such a task heavily
depends on the structural complexity of the Metagraph. Several
efficient algorithms exist, though, to find single subgraphs
within larger graphs. By restricting the number of targets and
narrow down the search to each one of them, we can find all
occurrences of specific patterns of a given size (number of
nodes).

A way to choose target patterns is needed. We are interested
in enlightening the very structure of the Metagraphs. Terminal
nodes are the ever-changing boundaries of the Metagraphs and
thus not really relevant for our purposes. We can focus on
structural nodes and on the metaedges that start from or arrive
to structural nodes.

Let us therefore consider the subgraph Sg = 〈V s,Ms〉 of
a Metagraph Mg, composed by the set V s of all structural
nodes of Mg, along with the set Ms of all metaedges of Mg
whose first and last nodes are both in V s. Recalling that, by
construction, any metaedge in Ms must either start form or end
to a node in V s, it is easy to see that all subgraphs of Sg are
either isomorphic to simple polygons or to polygons composed
by adjacent polygons of smaller size. Figure 3 exemplifies our
point by showing two isomorphic graphs.

Thus the quest for patterns becomes the search for all
polygon subgraphs in Sg. Finding simple polygons is enough,
because it is easy to spot out composed polygons, by tracking
common nodes among simple (smaller) polygons. Such a task
is accomplished by finding induced subgraphs in Mg, which
are isomorphic to simple polygons.

We thus propose the following definition.

Def. — Pattern
We call pattern any induced subgraph of a Metagraph, which
is isomorphic to a polygon graph.

As metaedges are always directed, there are several differ-
ent (i.e., non–isomorphic) patterns of any given size s, s > 3.
Thus the relevance of a pattern may not be given only by its
size, but also by its very topology. Since we are interested
in characterizing the way collaborative development shapes
commit histories, we propose a simple way to discriminate
between patterns of incremental development and patterns of
code integration. Clearly both aspects are always present in any

pattern, but their relative relevance may differ, as we exemplify
in the following.

Fig. 3. Isomorphic simple acyclic digraphs of degree 2.

Fig. 4. Patterns of size 10 showing a different slenderness.

Being our patterns simple acyclic digraphs of degree 2,
each pattern is composed of two or more walks. The lengths
of these walks fall in the interval]0, 1, . . . , N [, where N is the
size of the pattern. Considering the topology of a pattern, the
presence (resp. absence) of few longer walks indicates a greater
(resp. smaller) relevance of incremental developing w.r.t. code
integration. Figure 4 intuitively shows how three identically
sized patterns can be different from this standpoint.

In order to classify patterns of different size w.r.t. the
kind of collaboration they entail, and, more generally, to
compare them w.r.t. this criterion, we propose to compute their
slenderness, defined as follows:

Def. — Pattern’s slenderness
The slenderness of a pattern is a real number in [0 . . . 1[,
computed as the number of vertexes that are internal to its
walks, divided by the size of the pattern.

Intuitively, a higher (resp. lower) slenderness denotes a
pattern where incremental development (resp. code integration)
dominates over its counterpart. For instance, the patterns in
Figure 4 have a slenderness of 8/10 = 0.8 (left), 6/10 = 0.6
(top right) and 0/10 = 0 (bottom right), which well denotes
the fact that the first pattern is strongly incremental, while
the second balance increments and integration (with a slight
dominance of the first) and the third pattern is all about
integration.

The results presented in the following show that recurring
patterns indeed characterize commit histories of a sample of
GIT–based projects.

We underline that such patterns would not be detectable
on “raw” commit history graphs, because sequential commits

TABLE III. THE PATTERNS WE CONSIDER.

Name Size How many

tri 3 1

tetra* 4 3

penta* 5 3

exa* 6 8

epta* 7 9

octa* 8 20

enna* 9 28

deca* 10 53

“overwhelm” their structure destroying relevant topology prop-
erties. Thanks to the transformation to Metagraphs, the very
structure of commit graphs can be successfully mined from a
topological standpoint.

III. EXPERIMENTAL DESIGN

We present an experiment that aims at identifying develop-
ment patterns in a sample of GIT repositories, collected from
GITHUB. For each repository, we build a Metagraph modeling
its commit history. We then detect patterns in the topology of
the Metagraphs and analyze their characteristics.

A. Experimental Data

The experimental data comes from GITHUB, an Inter-
net hosting service for open source software. According to
FLOSSmole [4] (Free Libre Open Source Software) statistics,
GITHUB had 191765 repositories publicly available in May
2012. In order to obtain a statistically representative sample of
GITHUB hosted projects, we order these projects according to
the number of watchers. To discard outliers and less significant
entries, we decide to cut off the extrema of the range, i.e.
projects whose number of watchers is less than 2 or more
than 1000. Then we select 1% of the projects in each of three
subsets:

• Projects that had from 2 to 9 watchers (total: 30236;
sampled: 303)

• Projects that had from 10 to 99 watchers (total: 3554;
sampled: 36)

• Projects that had from 100 to 999 watchers (total: 286;
sampled: 3)

This way, we obtain a set of 342 GIT repositories. We then
discard those having a too poor structure, which we define as
less than 10 metaedges in their Metagraph. We finally obtain
a set of 87 projects, listed in Tables I and II.

B. Patterns and Metagraph Properties

As explained above, we define patterns as polygonal in-
duced subgraphs of our Metagraphs. We limit our analysis to
patterns from size 3 to size 10, because small patterns are
trivial and large patterns are too costly to compute. There
are 125 non–isomorphic patterns within this size range. For
instance, there is only one pattern of size 3, which corresponds
to a triangle. Figure 2 shows all patterns of size 4 and 5.

To ease the references to each pattern in the following, we
use some arbitrary nicknames, composed by the greek name of
numbers from three to ten and by a numerical index. Table III
summarizes the information about the “families” of patterns

Fig. 5. Metagraph of the ace project. Root at the bottom; other red nodes
are branches’ heads.

we consider. The third column reports the number of existing
non–isomorphic instances of each pattern.

It is important to recall that any pattern can only occur in
a Metagraph of a commit history where two or more parallel
lines of development exist, since patterns are composed by
structural nodes, which by themselves imply the existence of
more than one branch. Thus, whenever a pattern is found in
a Metagraph, it is implied that those nodes whose in–degree
and out–degree is equal to 1 within the pattern are actually
linked to other nodes of the Metagraph, which are not part of
the same pattern.

We define two sets of patterns, named increment and
integration. All patterns having a slenderness greater or equal
to 0.5 are assigned to the first set, while the others fall into
the second.

In the following, we use the expression category to refer
to any of the families and sets of patterns we just defined.

C. Implementation

In order to perform our analysis, we developed a toolset
called GitWorks, as a pure Java application. GitWorks uses
JGit1 to extract information from GIT repositories, then build

1http://eclipse.org/jgit/

 2

 3

 5

 20

 30

 50

 200

 300

 500

 3849

 1

 10

 100

 1000

an
dt

he
ki

tc
he

ns
in

k
ar

ki
llo

id
ba

m
bo

o

C
on

fig
S

er
vi

ce
P

ro
vi

de
r

co
nt

ra
ct

ed
cr

ab
Fr

id
ge

m
ag

ne
t

gt
al

kj
so

np
ro

xy
hs

ne
w

s
ke

ta
m

a
Lo

ck
e

m
ai

lc
hi

m
p

m
ig

en

M
vv

m
C

ro
ss

C
on

fe
re

nc
e

nm
rg

lu
e

O
ry

zo
ne

B
oi

le
rp

la
te

B
un

dl
e

pi
no

cc
hi

o
P

Js
on

C
ou

ch po
d

po
ol

py
lib

em
u

sa
ra

h
sa

te
lli

te
sp

ar
k

sp
id

r
tin

yc
on

Tw
itt

ia
ca

ve
m

an
E

da
ha

ow
pe

r
pa

nt
s

P
yS

yn
er

gy
ri -c

al
st

sh
te

st
lo

l
xy

zc
m

d
za

p

A
i -C

la
ss

-O
ct

av
e -F

un
ct

io
ns

A
ut

oS
av

e
se

xp
is

to
l

tra
di

ng
ga

m
e

W
P

id
e

a4
a

C
M

S
C

85
8E

co
nf

ig
s

gi
tp

yt
ho

n
ja

va
M

in
iC

ar
t

R
LL

V
M

C
om

pi
le

tc
es

p Ti
r

cl
oa

ks
tre

am
P

ro
W

iC
vi

m
cl

oj
ur

e
q4

w
in

e
ro

bu
t

To
lm

ey

jq
ue

ry
-a

dd
-m

or
e

bl
ur

ch
ro

m
e -c

ol
le

ct
or

FR
eD

ju
m

p
M

ai
lC

or
e

C
on

cu
rr

en
Tr

ee
st

at
sd

ek
sa

m
en

sn
ot

at
er

go
ko

gi
ri

O
pe

nL
ea

gu
e

pe
lm

flo
ur

n2
n

as
se

t -s
yn

c
C

R
IO

JO
co

co
ag

it
Te

le
ph

us
ia

m
ha

nc
ha

ng
iT

et
rin

et
ea

sy
X

D
M

co
nn

ec
t

m
xn

be
m

pp
pe

rl5
i

za
m

bo
ni

ac
e

B
ro

ad
le

af
C

om
m

er
ce

N
ew

sc
oo

p
py

ro
cm

s

nu
m

. o
f o

cc
ur

re
nc

es

increment
integration

Fig. 6. Occurrences of increment and integration patterns.

Metagraphs and extract several features from the collected
data. GitWorks is freely available on GITHUB

2.

In order to extract the occurrences of patterns in the
Metagraph, we use the Grochow–Kellis subgraph detection al-
gorithm, based on symmetry breaking [5]. The implementation
of the algorithm has been provided by the authors.

D. Research Questions

R.Q. 1 — Can we find significant recurring structures in
DVCS histories?
Our purpose is to see whether there are patterns in commit
histories which repeatedly occur. For smaller patterns (e.g.,
of size 3 and 4), such a phenomenon can be an explicit
choice of developers, which implies that such patterns are
found useful for their collaborative job. For larger patterns,
repeating occurrences can be considered emergent features of
the topology of the repository. We want to study their relation
with the structure of the commit history and with the activity
of the developers.

R.Q. 2 — Does the structure of DVCS evolve over time?
If structural patterns can be detected, we want to understand
how they change along the history of a project, i.e. whether
some collaboration patterns are more frequent at the beginning
of a project or in its maturity. This may be relevant for a
further analysis of each repository. If a commit history is
morphologically characterized by specific patterns at specific
stages of its evolution, it may be worth investigating for
information about the way developer collaboration change over
time.

R.Q. 3 — Is the occurrence of patterns correlated with
increased concurrent development activities?

2https://github.com/marbiaz/GitWorks

Whenever patterns appear, they may signal a particular in-
crease of activity in the project. Patterns that tend to ap-
pear whenever activity increases or decreases may then be
correlated to the strengthening of the project in terms of
development or code base.

R.Q. 4 — Are there structural similarities among DVCS
histories?
We aim at finding evidences of the existence (or the lack
thereof) of same subgraphs in unrelated projects. Such a
finding would indicate that there are “universal” patterns of
development collaboration. This could then highlight common
problems or strong points of different development communi-
ties.

IV. EXPERIMENTAL RESULTS

In this section, we present the outcomes of our analysis and
discuss their relevance. We first present our results related to
the properties of the Metagraphs and the detection of patterns.
Then we discuss their meaning and propose our answers to
the research questions.

A. Metagraph Properties

The Metagraphs that model the commit graphs of our
sample are indeed quite diverse, from very simple parallel
organization to very complex structures. Figure 5 depicts a
topologically rich Metagraph.

In order to spot relevant characteristics, we analyzed basic
Metagraph features (listed in Tables I and II) and layer–related
properties.

Table IV shows the linear correlation between each couple
of Metagraph features, plus the number of authors per repos-
itory, measured over the whole ensemble of repositories.

TABLE IV. METAGRAPH FEATURES CORRELATIONS.

nodes edges commits

edges 0.99978 — —

commits 0.86953 0.86000 —

authors 0.91235 0.91190 0.77873

Interestingly, Metagraph features are more correlated to
the dimension of the developer community (number of au-
thors) than to their total amount of contributions (number of
commits).

Metagraph’s layers present high variability in terms of
time range: from few seconds to hundreds of days elapse
between two consecutive layers. We thus measured, in each
Metagraph the time range spanned by layers and we tested
the correlation of their minimum, median and maximum value
with the properties of their respective Metagraphs, defined in
Section II-A.

Table V shows the resulting Spearmans’ correlation val-
ues. It only reports values that have been found statistically
significant, with p− values << 0.01.

TABLE V. LAYER PROPERTIES CORRELATIONS. THE SUFFIX tr STANDS

FOR LAYER’S TIME RANGE.

diameter mintr medtr max width

mintr -0.800941 — — —

medtr -0.58116 0.41084 — —

max width 0.54177 -0.424114 n.s. —

max density 0.69206 -0.59806 -0.3154 0.69646

Among the reported values, we see a fairly high correlation
between diameter and layer maximum density. It indicates
that the two sizes of the Metagraphs are positively correlated:
the more the layers in a Metagraphs, the more they tend to
be dense. Thus incremental development and synchronization
practices follow a similar trend.

The inverse correlation between diameter and minimum
layer time range is also noteworthy. The more the layers, the
shorter is the time span they tend to cover

B. Patterns

We first detect, in each repository Metagraph, all patterns
from size 3 to size 10. Figure 6 shows, for each Metagraph, the
number of patterns belonging to the increment and integration
categories.

The Metagraphs are sorted according to the number of
increment patterns. It is visible a trend that somehow backs
up the correlation values in Table V. Integration patterns tend
to be more as the number of increment patterns grows, but the
trend seems to be stable only for larger repositories (which
happen to be on the right side of the plot).

We also notice that integration patterns are found in smaller
repositories where increment patterns are not. This outcome is
due to the fact most of pattern of size s < 5 fall into the
integration category.

In order to investigate if and how the properties of the
Metagraph are associated with occurrences of patterns, we ana-
lyze the relations between patterns and the structural properties
of the Metagraph (diameter, layer width and density).

Figure 8 shows the occurrences of patterns in one of the
largest Metagraphs of our sample. The same figure also gives
a synopsis of layer densities and widths. All patterns, but
tri and to some extent tetra*, seem to be particularly
sensitive to layer properties, thus clustering more where layers
are denser.

 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

in
cr

em
en

t

in
te

gr
at

io
n tri

te
tra

*

pe
nt

a*

ex
a*

ep
ta

*

oc
ta

*

en
na

*

de
ca

*

no
rm

al
iz

ed
 ti

m
e

pattern

Fig. 7. Distribution of timestamps of structural commits per pattern.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1488 0 200 400 600 800 1000 1200

 1

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

cd
f(

 p
at

te
rn

 la
ye

r
)

la
ye

r
si

ze

layers

tri tetra* penta* exa* epta* octa* enna* deca* y = x

Fig. 8. Cumulative distribution of patterns in the Newscoop metagraph.
The cdf values of pattern occurrences, grouped per size, are given on the left
axis, while the right axis gives the values of the layer width (orange vertical
bars) and density (yellow vertical bars). The black line traces the slope of a
linearly uniform distribution across the Metagraph’s layers.

Patterns occur at different moments of projects histories.
Figure 7 shows the distribution of timestamps of Metagraphs
vertexes belonging to patterns for each category we defined.
Data are aggregated over all the Metagraphs, thus we normal-
ize the timestamps in the interval [0..1], by simply computing
the relative displacement of every commit timestamp w.r.t. the
minimum and maximum timestamp in each Metagraph. The
boxplots are standard interquartile plus whiskers to cover 95%
of data points. Outliers are not shown, to improve legibility.

For instance, the boxplot related to the tetra* category
shows that, considering the whole ensemble of repository in
our sample, these patterns occur anywhere after 10% of the
age of a repository is elapsed, half of them is found in the last
20% of repository lifetime (check the position of the median)
and they get closer to each other in time as projects grow

old (check the different size of the two halves of box and
whiskers).

We see how patterns of higher size tend to occur later than
smaller ones. The skew towards the top is somehow biased
by the fact that we compare project of different age and size,
thus, in our case, the normalization of outcomes of smaller
project tends to give high values. Nonetheless, it is true that
larger patterns are definitely more numerous in the second half
of projects’ life.

The first two boxplots show that increment patterns tend
to occur substantially later than integration pattern.

Table VI presents the results of a comparative analysis
of the number of authors and commits among metaedges
which belong to patterns and which do not. In order to
summarize a large amount of data, we present these results
as dominance scores of the main aggregates. Each triplet
reports the number of projects where a given aggregate (i.e.,
minimum, median or maximum) measured in a pattern is
〈less_than-equal_to-greater_than〉 the same ag-
gregate measured in metaedges non belonging to a pattern.
For instance, the first case on the left tells that the mini-
mum number of distinct authors in metaedges belonging to
increment patterns is greater than the minimum of metaedges
non belonging to any patterns in 40 projects out of 59. Only
projects where the considered patterns appear are taken into
account, thus the triplets sum up to less than 87.

We see that pattern metaedges consistently dominate the
others w.r.t. the minimum and the median number of distinct
authors, while they usually carry less sequential commits.

TABLE VI. DOMINANCE COUNTS FOR AUTHORS AND COMMITS IN

PATTERNS.

Patterns Authors Commits

min med max min med max

increment 1–18–40 10–33–16 34–19–6 21–35–3 57–1–1 56–1–2

integration 1–24–46 7–34–30 41–20–10 26–44–1 65–4–2 63–2–6

tri 1–24–46 9–33–29 40–19–12 26–44–1 64–5–2 63–2–6

tetra* 1–16–38 9–30–16 31–18–6 18–35–2 54–1–0 53–0–2

penta* 0–9–26 7–15–13 24–9–2 9–26–0 32–2–1 33–0–2

exa* 0–7–25 4–17–11 19–8–5 8–23–1 30–1–1 31–1–0

epta* 0–5–16 2–11–8 15–4–2 5–16–0 21–0–0 21–0–0

octa* 0–4–13 2–7–8 12–3–2 4–13–0 16–1–0 17–0–0

enna* 0–4–15 2–6–11 14–4–1 4–15–0 17–0–2 18–0–1

deca* 0–2–13 2–4–9 12–2–1 2–13–0 14–0–1 15–0–0

C. Discussion

As said, the definition of Metagraphs as models of commit
graphs allows a novel kind of topological analysis of reposi-
tories.

Several properties of the Metagraphs offer interesting
standpoints for further analysis of single projects. The results
we present aggregate measures of diverse repositories and are
not meant to offer a precise description of any of them. They
rather point out interesting features which shall be further
investigated both at the aggregate level and project by project,
in order to reveal their specific importance.

In the following, we discuss our results by recalling and
answering our research questions.

R.Q. 1 — Can we find significant recurring structures in
DVCS histories?

Answer — The patterns we discover are the very evidence
of concurrent development in a GIT repository. As Figure 8
shows, in general patterns, and most of all smaller ones (size 3
to 5), are distributed across Metagraph layers. This means that
they are not related to a particular “development stage” of the
software (which may be identified at given sets of subsequent
layers), but rather to the parallel development process itself.

Nonetheless, most patterns are found where the “footprint”
of the Metagraph (the layer width and density) increase. This
dependence on the topology of the Metagraph is stronger as the
patterns get larger. But we could find no evident commonality
among the “footprints” of the various Metagraphs.

These findings are common to several of the largest Meta-
graphs, the exception occurring mostly among the smaller
projects. So far, we can say that, while smaller patterns are
usually independent from a given topology and common to
more repositories, others are strongly related to the structure
of the Metagraphs and seem to occur in repositories having
similar structures, in terms of diameter, layer width and
density.

This outcome somehow supports the hypothesis about the
intentionality of patterns: smaller patterns are direct product of
developer decisions (they decide to involve one, two or three
branches in some operation), while larger patterns emerges
where the topology of the Metagraphs can support them.

A further analysis of each project, which combine the
characterization of the Metagraph topology and its patterns
with information about developer activity history and state of
the software (bug tracks, release issues, etc.) could potentially
achieve interesting novel insights on the collaborative devel-
opment process.

R.Q. 2 — Does the structure of DVCS evolve over time?
Answer — Figure 7 shows that patterns mostly appear later
in time, if not “in space”. We find an interesting distinction
between the timing of codebase evolution and the changes
in its commit topology, at least as described in terms of
Metagraph layers. The number of layers appears to grow faster
as the project get older, which may mean that authors get more
confident about merging and branching practices, or simply
that more authors join a project.

We cannot attempt a generalization of this trend, because
of the limited size of our sample and because of what we can
consider an “internal bias” of several large repositories. We
found that many of them have been automatically converted
to GIT from a pre–existing CVCS. They thus initially exhibit a
mostly linear topology which, e.g. for long–lasting successful
projects, can encompass a significant portion of their total age.

Wherever the topology starts becoming complex and the
Metagraphs denser, we see that layers do not subscribe to any
regularity w.r.t. the pace of collaboration. We find layers whose
time span is of few seconds and others which encompass
several months. This fact may suggest that automatic merging
is used in the first case. But, depending on the number of
separate branches belonging to the layers, it may simply reveal
highly synchronous development activity.

Thus, if we can see that larger patterns do tend to occur
later in time w.r.t. smaller ones, we cannot answer so far an

interesting question: whether is there a feed–back loop between
the structural complexity of a commit history (the Metagraph
getting longer and denser) and the behavior of the developers
(the fact that they branch and merge within shorter time).

We think that deepening this kind of analysis may reveal
specific practices of integration and development which may
affect the quality of the code, either positively or negatively.

R.Q. 3 — Is the occurrence of patterns correlated with
increased concurrent development activities?
Answer — We found some apparently conflicting evidences
in our outcomes, summarized in Table VI.

On the one hand, we see that pattern metaedges present a
higher concentration of authors w.r.t. most of other metaedges.
On the other hand, they do not seem to carry a particularly high
number of internal commits. Based on the first observation,
we can say that patterns do identify portions of the commit
history where authors collaboration becomes more evident. At
the same time, quite clearly higher collaboration does not entail
a higher number of commits per branch.

Our hypothesis — which will need a more thorough anal-
ysis of the single projects to be confirmed — is that commits
that brings most novelties to a codebase are made by fewer
authors, who work in branches which do not directly end up
in patterns, but merge with other “local integration” branches,
which then lead the modifications to the main integration
structures.

Thus, metaedges which comprise higher numbers of au-
thors do not include higher numbers of commits. This is an
interesting finding that open a novel perspective on how to
determine the strength and the extent of author collaboration
in a distributed project. By combining the analysis of author
presence in metaedges with, for instance, code–based analysis
about authors modifying the same files or components, it
is possible to deepen the comprehension of collaboration
practices in developer communities.

R.Q. 4 — Are there structural similarities among DVCS
histories?
Answer — We can positively answer this question and from
two diverse perspectives.

First, as Table IV shows, the structural properties of commit
histories are more correlated with the size of the developer
community than with the number of commits they produce.
Thus it is reasonable to think that projects whose community
size is close would exhibit structures of similar richness, at
least from the standpoint of aggregate measuring.

Then, we find the same patterns in otherwise very diverse
software repositories. Figure 6 shows that increment patterns
tend to occur more, but repositories with a richer structure
tend to have anyway a higher number of occurrences of
both categories. The occurrence of same patterns in unrelated
software repositories suggests that development practices of
different teams produce similar topologies in the repositories.
Common patterns across repositories may reveal common
vantage points or flaws in the way the software is developed,
which may impact the quality of the software product itself.

Patterns that rarely occur in our repository sample are inter-
esting as well. Their occurrence may be related to a particular

necessity or may happen only in specific topologies. If further
analysis found that they present some drawback, it would
be interesting to understand which structural configuration let
them emerge, in order to devise better practices.

D. Threats to validity

The reasons behind the detection of patterns in commit
histories may be questioned, given the absence of evidences
that support their relevance. In this paper, our main effort is
giving some empirical evidence of the fact that these common
sub–structures occur in complex development histories, though
they may be hidden in a standard commit graph topology.

We present results which concern patterns of maximum
size equal to 10. It is certainly feasible and interesting to
scale up, though the computation of all possible polygons of
a given size gets exponentially harder as the size increases.
Anyway, the main purpose of the present work is to show
relevant characteristics that, to some extent, are common to
pattern of different size and are mainly due to their topological
properties.

Our repository sample is of limited size, thus some of our
results may not generalize on larger ensembles. It has then been
chosen with no known bias towards any specific topological
structure. Due to the novelty of the analysis, though, it is
possible that we are not aware of specific features of the
Metagraph topology, which somehow affect the emergence of
the patterns.

Finally, the toolset we used to perform the computations
has been developed by us and manually tested. We cannot
exclude the presence of unnoticed bugs which could affect the
correctness of our results. The subgraph detection algorithm
has been provided by its author and has not been thoroughly
tested by us.

V. RELATED WORK

The works which use graph–based techniques to analyze
repositories focus either on characterizing the sourcecode, or
on finding patterns in the social networks of developers.

In the first group, Posnett et alii propose models derived
from ecological inference to analyze code at different hierar-
chical levels (files, packages, modules) [6]. They show that
properties inferred at a given level may not hold at a different
one or often be mistakenly considered to hold in general.

Demeyer et alii [7] propose metrics to detect refactoring.
Valverde e Solé [8] show how large scale software architectures
can be modeled by dynamic logarithmic networks.

These and similar works focus on the content of contribu-
tions, rather than on the topology of commit histories.

In the second group, Posnett et alii propose graph–based
models to infer developer focus [9], showing correlation with
bug occurrences and issue solving performance.

Bhattacharya et alii [10] combine the analysis of code
organization and developer networks. They characterize both
in terms of graph metrics and they show how it is possible to
predict several indicators of software quality by using these
metrics.

In [11] the authors analyze how different social organiza-
tions of developers impact the quality of the development in
open source communities.

Several relevant works target open source software devel-
opment [12], [13]. A recent paper [14] analyze the social
structure of developer networks on a large sample of GITHUB

projects.

These works apply complex network theory to the analysis
of interactions among developers and to the characterization
of their contribution to projects.

A thorough analysis of GITHUB–based software develop-
ment, with a deep comparative analysis of centralized and
decentralized versioning systems is given in [15].

Though recent publications pay more and more attention
to GIT–based repositories and their distributed development
paradigm [1], [16], to the best of our knowledge no study
focuses on the characterization of the topology of commit
histories.

VI. CONCLUSION

Decentralized version control systems produce structurally
rich commit graphs. The commit history of projects that
use these systems is thus a highly non–linear graph, whose
topology can be analyzed by means of techniques, which are
typical of complex graph analysis.

As for many other domains, rich and complex commit
histories incorporate recurring substructures that reveal similar-
ities among otherwise unrelated projects. They characterize the
development process from a purely topological standpoint. We
discuss in this paper the reasons why the analysis of commit
graph topology is relevant and the challenges of such a task.

We define the Metagraph, a novel data structure that makes
it possible to perform a topological analysis of commit history
graphs, in order to detect recurrent subgraphs hidden in their
structure. We define and analyze several topological properties
of the Metagraphs and we identify a class of subgraphs that
we call patterns, which may be consider building blocks of
the very topology of Metagraphs.

We find empirical evidences of the recurring presence of
several patterns in a sample of open source GIT repositories
available on GITHUB. We analyze the characteristics of these
patterns and their relations with the properties of the repository
Metagraphs. Our results support the conclusion that commit
histories of otherwise unrelated projects are characterized by
rich topologies, which exhibit similar properties and feature
common patterns.

These findings open several different research directions.
We plan to dig further the relation between patterns and prop-
erties of commit graphs, such as number of commits, authors
and size of commit changesets. We think it is possible to devise
novel models to characterize developer collaboration, which
are based on common contributions to the same metaedges or
patterns of a given Metagraph.

The novel kind of analysis we propose is not an alterna-
tive, but rather a complement to all existing techniques. By
focusing entirely on topological features, it can guide to new

insights on the emergent properties of distributed collaborative
development.

VII. ACKNOWLEDGMENTS

The authors thank Joshua Grochow, who kindly provided
the sourcecode of his algorithm, and Nataliia Bielova for their
help and fruitful discussions.

This work is partially supported by the EU FP7-ICT-2011-
9 No. 600654 DIVERSIFY project and by the rgion Bretagne
SoftLive project.

REFERENCES

[1] E. Shihab, C. Bird, and T. Zimmermann, “The effect of branching
strategies on software quality,” in Proceedings of the ACM-IEEE

international symposium on Empirical software engineering and mea-

surement. ACM, 2012, pp. 301–310.

[2] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German,
and P. Devanbu, “The promises and perils of mining git,” in Mining

Software Repositories, 2009. MSR’09. 6th IEEE International Working

Conference on. IEEE, 2009, pp. 1–10.

[3] I. Wegener, Complexity Theory: Exploring the Limits of Efficient Algo-

rithms. Springer, 2005.

[4] J. Howison, M. Conklin, and K. Crowston, “Flossmole: A collaborative
repository for floss research data and analyses,” International Journal

of Information Technology and Web Engineering, vol. 1, pp. 17–26,
07/2006 2006.

[5] J. A. Grochow and M. Kellis, “Network motif discovery using subgraph
enumeration and symmetry-breaking,” in Research in Computational

Molecular Biology (RECOMB07), ser. Lecture Notes in Computer
Science, vol. 4453. Springer-Verlag, 2007, pp. 92–106.

[6] D. Posnett, V. Filkov, and P. T. Devanbu, “Ecological inference in
empirical software engineering,” in ASE, 2011, pp. 362–371.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics,” in ACM SIGPLAN Notices, vol. 35/10. ACM, 2000,
pp. 166–177.

[8] S. Valverde and R. Sole, “Logarithmic growth dynamics in software
networks,” EPL (Europhysics Letters), vol. 72, p. 858, 2005.

[9] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual ecological
measures of focus in software development,” in Proceedings of the 2013

International Conference on Software Engineering. IEEE Press, 2013,
pp. 452–461.

[10] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-
based analysis and prediction for software evolution,” in Proceedings

of ICSE ’12, ser. ICSE ’12, 2012, pp. 419–429.

[11] S. Valverde and R. V. Solé, “Self-organization versus hierarchy in open-
source social networks,” Phys. Rev. E, vol. 76, p. 046118, Oct 2007.

[12] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: the apache server,” in Proceedings of the

22nd international conference on Software engineering, ser. ICSE00.
New York, NY, USA: ACM, 2000, pp. 263–272.

[13] C. Rodriguez-Bustos and J. Aponte, “How distributed version control
systems impact open source software projects,” in Mining Software

Repositories (MSR), 2012 9th IEEE Working Conference on. IEEE,
2012, pp. 36–39.

[14] F. Thung, T. Bissyande, D. Lo, and L. Jiang, “Network structure of
social coding in github,” in Software Maintenance and Reengineering

(CSMR), 2013 17th European Conference on, March 2013, pp. 323–
326.

[15] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?” in ICSE’14, 2014 (to appear).

[16] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported

Cooperative Work. ACM, 2012, pp. 1277–1286.

