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Semiflexible polymer rings whose bonds obey both angular and dihedral restrictions [M. Dolgushev 
and A. Blumen, J. Chem. Phys. 138, 204902 (2013)], are treated under exact closure constraints. 
This allows us to obtain semianalytic results for their dynamics, based on sets of Langevin equations. 
The dihedral restrictions clearly manifest themselves in the behavior of the mean-square monomer 
displacement. The determination of the equilibrium ring conformations shows that the dihedral con-
straints influence the ring curvature, leading to compact folded structures. The method for imposing 
such constraints in Gaussian systems is very general and it allows to account for heterogeneous (site-
dependent) restrictions. We show it by considering rings in which one site differs from the others. 

I. INTRODUCTION

Semiflexible polymers continue to be very interesting
subjects of study,1–15 since many biological macromolecules,
e.g., actin and DNA have high persistence lengths.16–18 A
widespread way of modeling the semiflexibility of chains
consists in fixing the angles between nearest-neighbors’ (NN)
bonds, under the additional assumption that rotations around
the axis given by each bond are free. Under these assumptions
the basic properties of linear semiflexible polymers can be ob-
tained in a straightforward way, which also explains the suc-
cess of the model.1, 2, 4, 7 Furthermore, these assumptions can
also be used to treat vastly more general, semiflexible tree-
like (loop-less) polymers (STP) with arbitrary structure.9, 19–23

The model proceeds from a coarse-grained picture of Gaus-
sian generalized structures (GGS)24 (which involves beads
and springs) into which the restrictions over bonds are
implemented.

From a chemical perspective, the bonds in a polymer can-
not rotate freely25 and one has to account for hindered bond
rotations, especially when treating macromolecules with high
persistence length.26, 27 Such hindered rotations were recently
introduced into the GGS scheme, as exemplified for linear
chains, in Ref. 28. Figure 1 illustrates the angles entering the
model: θ denotes the angle between oriented nearest-neighbor
bonds, say d1 and d2 or d2 and d3, φ is the dihedral angle
between the planes spanned by the bond pairs (d1, d2) and
(d2, d3). In Ref. 28, dihedral restrictions (DR) were imple-
mented by fixing the average values of the scalar products of
the corresponding bonds. In this way, the constraints do not
change the Gaussian character of the model, since they can
be incorporated into the covariance matrix of the multivariate
(Gaussian) distribution of bonds.

a)Electronic mail: dolgushev@physik.uni-freiburg.de

Now, STP are devoid of loops, and hence rings do not
belong to the STP class. On the other hand, many proteins
are topologically equivalent to rings,29 and the question arises
how to model them.30–33 We recall that for rings, an addi-
tional, strict closure constraint holds:33, 34 If we represent a
ring through a series of bond vectors, consecutively connected
in head-to-tail conformations, the sum of all these vectors has
to vanish (a holonomic constraint). In this way, and different
from an open chain, the bond vectors of a ring are not anymore
independent variables; a ring has less degrees of freedom.35

Remarkably, however, in the case of Gaussian bond dis-
tributions for chains, such a holonomic constraint leads to a
reduced set of independent bond variables for the ring formed
by closing the chain, variables which still remain Gaussian.
This remarkable fact is fundamental for us here. Now, un-
der freely rotating conditions one can (tediously) determine
this new bond distribution for the ring by algebraically get-
ting rid of the dependent bond variables.33 Here, we highlight
more powerful methods, such as introducing a penalty func-
tion for imperfect closure, or, even more general, determin-
ing the new distribution of bonds by employing mathematical
methods such as given in Ref. 36. Recently, these methods
have been used in treating non-Markovian diffusion-limited
reactions.37–39 There,37–39 as well as in this work, the funda-
mental approach is the Gaussian statistics of bonds.

In this paper, we put forward the penalty function method
to study semiflexible polymer rings under angular and dihe-
dral restrictions. The method gets rid of many problems in-
volved in treating loops, especially in what introducing clo-
sure conditions are concerned. Moreover, the method allows
us to obtain results to a great extent analytically, here in par-
ticular for the dynamical matrix and for its eigenvalues. Based
on these results, we investigate static and dynamical proper-
ties of semiflexible rings, focusing on their bond-bond cor-
relations, on their gyration radius, and on the monomers’
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FIG. 1. Schematic picture of three consecutively connected bonds d1, d2,
and d3. In the figure, θ denotes the angle between neighboring bonds (here,
d2 and d3), φ is the dihedral angle between the planes spanned by the pairs
(d1, d2) and (d2, d3), n21 and n23 are the normal vectors to the planes.

mean-square displacements (MSD). We recall that the gyra-
tion radius can be determined experimentally using standard
scattering methods40 and that the other quantities are experi-
mentally accessible through modern atomic-force microscopy
techniques.41–43 We evaluate these quantities for rings under
DR and compare them to those for rings in the absence of
DR. As we proceed to show, the DR influence very much the
properties of rings: While rings including DR often display
a winding structure, rings without DR do not show this fea-
ture. This fact leaves its fingerprints on the other quantities
considered here, namely, on the gyration radius and on the
monomers’ mean-square displacement.

In homogeneous semiflexible rings, the stiffness condi-
tions are identical at every site. This is distinct from nonho-
mogeneous (heterogeneous) rings, where the conditions may
differ from site to site. Here, the penalty function method al-
lows us to treat both homogeneous and heterogeneous rings
with DR, the latter exemplified by a ring in which the stiff-
ness conditions at one site differ from the rest. This difference
arises naturally when monitoring the closing (cyclization) of
a homogeneous chain, as depicted in Fig. 2. As we proceed
to show, homogeneous and nonhomogeneous rings have quite
distinct static and dynamic behaviors.

The paper is structured as follows: We start in Sec. II
by recalling how angular and dihedral restrictions are
implemented,28 and introduce the penalty function method for
the closure of rings. Based on this method we investigate in
Sec. III the dynamics of homogeneous rings. Section IV is de-
voted to the study of particular nonhomogeneous rings, where
we determine their dynamical properties based on the method
of Sec. II; here, we also point out the connection to the general
method of Ref. 36. In Sec. V, we analyze the obtained results
for both types of rings and focus on the special role of the DR.
The article ends with our conclusions, whereas mathematical
details as well as some particular limiting cases of our models
are relegated to Appendixes A–C.

II. MODELING ANGULAR AND DIHEDRAL
RESTRICTIONS

Here, we briefly summarize the ideas of Ref. 28 for mod-
eling local angular and dihedral constraints for chains and ex-
tend them to homogeneous rings.

FIG. 2. Schematic cyclization scenarios. One starts from linear chains rep-
resented by bonds {da}, from which rings consisting of N bonds {d′

a} are
constructed. The upper box (a) displays the construction of a homogeneous
semiflexible ring (bond variables {d′

a}) by formally imposing the closure con-
dition,

∑N
i=1 d′

i = 0, while the {d′
a} behave homogeneously, e.g., 〈d′

1 · d′
N 〉

= 〈d′
j · d′

j±1〉 and 〈d′
1 · d′

N−1〉 = 〈d′
2 · d′

N 〉 = 〈d′
j+1 · d′

j−1〉. The lower box
(b) shows the construction of a nonhomogeneous semiflexible ring, without
imposing any additional restrictions on the terminal bonds of the chain, see
text for details.

Consider locally three oriented bonds, say d1, d2, and d3,
which are consecutively connected head-to-tail, as schemat-
ically shown in Fig. 1. Here, θ denotes the angle between
NN bonds, say d2 and d3. Furthermore, φ denotes the di-
hedral angle between the planes spanned by consecutive
NN bond pairs, say (d1, d2) and (d2, d3), see Fig. 1. Then
φ = 0 is related to a flat, zigzag bond configuration.25 Setting
n21 ≡ d2 × d1 and n23 ≡ d2 × d3, n21 and n23 are orthogonal
to the respective planes and φ is the angle between n21 and
n23.

Now, semiflexibility is modeled by imposing constraints
on the average scalar products of the bonds. First, we con-
strain the mean-square length of each bond, by setting

〈da · da〉 = l2. (1)

Second, we restrict the average angle between NN bonds, say
da and db,

〈da · db〉 = l2q̃1, (2)

where the stiffness parameter q̃1 is related to 〈cos θ〉. Third,
we constrain the next-nearest-neighbor (NNN) bonds, say da

and dc,

〈da · dc〉 = l2q̃2, (3)
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where q̃2 = q̃2
1 + p̃(1 − q̃2

1 ) with p̃ related to 〈cos φ〉.28 In this
way, through Eqs. (1)–(3), we account both for the angular
and for the dihedral restrictions, which depend now on the
stiffness parameters q̃1 and q̃2. We note that the parameters q̃1

and q̃2 are introduced in an averaged way, so that they may
reflect different distributions of the angular restrictions and
are not related to fixed values of the angles θ and φ, see, e.g.,
Ref. 25.

Furthermore, as has been shown in Ref. 28 the potential
energy of the chain under the local constraints of Eqs. (1)–(3)
has the form

V ({da}) = K

2

∑
a,b

W̃abda · db, (4)

where K = 3kBT/l2 denotes the spring constant, kB is the
Boltzmann constant, T is the temperature, and the sum runs
over all bonds. Moreover, the matrix W̃ = (W̃ab) is sparse and
it has the following form:28

W̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α′ β ′ γ 0 . . . 0 0 0

β ′ α′′ β γ 0 . . . 0 0

γ β α β γ 0 . . . 0

0 γ β
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . β γ 0

0 . . . 0 γ β α β γ

0 0 . . . 0 γ β α′′ β ′

0 0 0 . . . 0 γ β ′ α′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Thus, for a chain consisting of consecutively numbered bonds
d1, d2, . . . , dN , the N × N matrix W̃ is a symmetric, pen-
tadiagonal matrix.28 In other words, the nonvanishing off-
diagonal elements of W̃ are related only to the NN and to the
NNN neighbors. The explicit values of α, β, γ , α′, α′′, and
β ′ are given as a function of q̃1 and q̃2 in Appendix A. One
may note the difference between the parameters α′, α′′, and
β ′ corresponding to peripheral bonds and the values α and β

for the internal bonds.28

Now, having in mind the symmetry of a homogeneous
ring (in which all bonds are internal) we infer that the corre-
sponding matrix W has the general form

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α β γ 0 . . . 0 γ β

β α β γ 0 . . . 0 γ

γ β α β γ 0 . . . 0

0 γ β
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . β γ 0

0 . . . 0 γ β α β γ

γ 0 . . . 0 γ β α β

β γ 0 . . . 0 γ β α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

as can also be obtained from the maximum entropy
principle.44, 45

The knowledge of the matrix W together with the fact that for
rings the closure condition

N∑
i=1

di = 0 (7)

holds, leads to the distribution of the {da}, which can be for-
mally expressed as

P ({da}) = 1

Z
exp

(
− 3

2l2

∑
a,b

Wabda · db

)
δ(d1 + · · · + dN ),

(8)

where δ(x) denotes the Dirac delta-function. Moreover, re-
calling the realization of δ(x) in the limit of small ε through
the function e−x2/ε2

/
√

ε2π we insert the latter into Eq. (8),
obtaining

P ({da})

= 1

Z′ exp

[
− 3

2l2

(∑
a,b

Wabda · db+ 1

ε2
(d1 + · · · + dN )2

)]
,

(9)

where 0 < ε � 1. Equation (9) reads thus

P ({da}) = 1

Z′ exp

(
− 3

2l2

∑
a,b

Ŵabda · db

)
, (10)

where the matrix Ŵ = {Ŵab} is given by

Ŵ = W + 1

ε2
L (11)

with (L)ij = 1. As we proceed to show, it turns out to be very
convenient to work first with Eq. (11) and to take later the
limit ε → 0+, by which the results become independent of ε.
To be more specific: The term proportional to 1/ε2 in Eq. (9)
acts as an energetic penalty for chains that did not yet com-
pletely close to a ring. In this way, we avoid to use Eq. (7)
in a direct manner, which necessitates expressing one bond as
a linear combination of the others (see Ref. 33); this is alge-
braically very cumbersome and breaks the symmetry of the
problem.

III. HOMOGENEOUS RINGS

A. Relation of the stiffness parameters q1 and q2
to the elements of W

Here, we consider homogeneous rings whose bonds {da}
follow the distribution Eq. (10). We note, furthermore, that
letting ε be small (ε > 0), but having ε 	= 0, keeps the set of
vectors {da} independent. Due to this fact the average values
of da · db can be obtained by integrating them with respect to
the Gaussian form Eq. (10) and are given through28

〈da · db〉 = l2(Ŵ−1)ab. (12)

The task consists now in determining the inverse of Ŵ,
which can be found through the diagonalization of Ŵ = W
+ (1/ε2)L. First, we note that due to its symmetry, the
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periodically symmetric matrix W, Eq. (6), can be readily di-
agonalized by means of the discrete Fourier transform46

Cjk = 1√
N

exp

(
i
2πkj

N

)
. (13)

The ensuing eigenvalues of W are

λk = α + 2β cos

(
2πk

N

)
+ 2γ cos

(
4πk

N

)
, (14)

where k runs from 1 to N. Furthermore, given that
∑

j Cjk

= √
NδkN , the matrix C also diagonalizes L, leading to the

eigenvalues (0, . . . , 0, N). Thus, the eigenvalues of Ŵ are
λ̂i = λi for i = 1, . . . , (N − 1) and λ̂N = λN + N/ε2. In this
way, we obtain C−1ŴC = �̂, where �̂ = Diag(̂λ1, . . . , λ̂N )
is a diagonal matrix. Then, based on �̂, we get

Ŵ−1 = C�̂−1C−1. (15)

Hence, inserting Eq. (13) into Eq. (15) we obtain

(Ŵ−1)ab = 1

N (λN + N/ε2)

+ 1

N

N−1∑
k=1

cos[2πk(a − b)/N ]

α + 2β cos
(

2πk
N

) + 2γ cos
(

4πk
N

) . (16)

Finally, using Eq. (12) and taking the limit ε → 0 we are led
to

〈da · db〉 = l2

N

N−1∑
k=1

cos[2πk(a − b)/N ]

α + 2β cos
(

2πk
N

) + 2γ cos
(

4πk
N

) . (17)

Now, the parameters α, β, and γ are connected to the
local constraints, Eqs. (1)–(3). To see this we recall Eq. (1),
which reads now explicitly, say for the ath bond (a = 1, . . . ,
N)

l2 = 〈da · da〉 = l2

N

N−1∑
k=1

1

α + 2β cos
(

2πk
N

) + 2γ cos
(

4πk
N

) .

(18)

It is worth to notice that the rhs of Eq. (18) is (as it should
be) independent of the bond number a. Second, we view 〈da ·
da+1〉 and 〈da · da+2〉 in the spirit of Eqs. (2) and (3), namely,
as reflecting the angular (NN) and the dihedral (NNN) restric-
tions. Hence, based on Eq. (17), it follows:

l2q1 = 〈da · da+1〉 = 〈dN · d1〉

= l2

N

N−1∑
k=1

cos (2πk/N )

α + 2β cos
(

2πk
N

) + 2γ cos
(

4πk
N

) (19)

and

l2q2 = 〈da · da+2〉 = 〈dN−1 · d1〉 = 〈dN · d2〉

= l2

N

N−1∑
k=1

cos (4πk/N )

α + 2β cos
(

2πk
N

) + 2γ cos
(

4πk
N

) . (20)

Here, again the rhs of Eqs. (19) and (20) are independent of
the bond number a. The parameters q1 and q2 for the homoge-
neous ring can now be expressed in terms of α, β, and γ (and
also of q̃1, q̃2, and N), say by taking the quotients of the rhs

of Eqs. (19) and (18) or (20) and (18), respectively. Also the
reverse is true: The set of Eqs. (18)–(20) allows to determine
α, β, and γ as functions of l2, q1, and q2. The way of doing
so is exemplified in the supplementary material.47

B. Dynamics

In order to determine the dynamical properties of homo-
geneous rings, we invoke the corresponding Langevin equa-
tions (LE). Denoting the positions of the ring’s monomers by
{ri = (xi, yi, zi)}, the LE, e.g., for the y-component of the jth
monomer reads24, 48, 49

ζ
∂

∂t
yj (t) + ∂

∂yj

V ({ri}) = fj (t). (21)

Here, V ({ri}) is the potential energy written as function of the
set of all {ri} and fj is the y-component of the usual fluctuating
Gaussian force acting on the jth bead, for which 〈fj(t)〉 = 0 and
〈fj(t)fk(t′)〉 = 2kBTζ δjkδ(t − t′) hold.

In order to determine the potential as a function of the ri ,
we have to reformulate the distribution P ({da}), Eq. (10), as
a function of the bead variables {ri}. The transformation from
bond to bead variables is given by the transposed matrix GT

of the incidence matrix G = (Gia)21, 50

da =
N∑

k=1

(GT )akrk, (22)

where G reads

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0 1

1 −1 0 . . . 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

Distinct from linear chains and from general treelike struc-
tures, for rings G is a square N × N matrix, since for rings the
number of beads is equal to the number of bonds. Substitution
of Eq. (22) into Eq. (10) leads to

P ({ri}) = 1

Z′ exp

(
− 3

2l2

∑
k,n

(GŴGT )knrk · rn

)
. (24)

Multiplying G of Eq. (23) with L/ε2 of Eq. (11) leads to
a matrix of zeros. Hence, from Eq. (11) we have GŴGT

= GWGT . Thus, the distribution P reads

P ({ri}) = 1

Z′ exp

(
− 3

2l2

∑
k,n

(GWGT )knrk · rn

)
. (25)

Associating Eq. (25) with the Boltzmann distribution, we
hence infer the existence of an effective potential for the ring
of the form

V ({ri}) = K

2

∑
k,n

(GWGT )knrk · rn, (26)
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from which the (dynamically irrelevant) penalty term has dis-
appeared. Introducing now the matrix Ã = (Ãij ) through

Ã = GWGT , (27)

and inserting Eq. (26) into Eq. (21) gives

ζ
∂

∂t
yj (t) + K

N∑
k=1

Ãjkyk(t) = fj (t). (28)

The solution of the set of Eq. (28) requires the diagonal-
ization of the matrix Ã, which can be performed analytically:
Based on Eqs. (6) and (23) it is a simple matter to check that
W commutes both with G and with GT . (One can also show
that the matrices G and GT can be diagonalized using C of
Eq. (13), leading to the eigenvalues [exp (−i2πk/N) − 1] and
[exp (i2πk/N) − 1] where k = 1, . . . , N, respectively.)

Hence, introducing the (Rouse) Laplacian matrix
A ≡ GGT for the flexible ring,51–54

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 −1

−1 2 −1 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 −1 2 −1

−1 0 . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (29)

one can remark, based on Eq. (23), that because of the form
of G and since W is a periodically symmetric matrix, see
Eq. (6), GT and W commute, i.e., WGT = GT W. Thus, from
Eq. (27) follows

Ã = AW. (30)

Moreover, the matrix W can also be written in terms of A. As
can be readily verified by comparing Eqs. (6) and (29), one
has

W = (α + 2β + 2γ )1 − (β + 4γ )A + γ A2. (31)

Together with Eq. (30) this leads to

Ã = (α + 2β + 2γ )A − (β + 4γ )A2 + γ A3. (32)

Thus, the matrices W, A, and Ã share the same eigenvectors,
which are given by Eq. (13). Indeed, comparing Eq. (29) with
Eq. (6), one immediately realizes that A is a particular case
of W with α = 2, β = −1, and γ = 0. Hence, from Eq. (14)
follow the well-known33, 51–54 eigenvalues {ξ k} of A,

ξk = 4 sin2

(
πk

N

)
, (33)

most of which are doubly degenerate, given that ξ k = ξN−k.
Based on Eqs. (30) and (32), the full set of eigenvalues of Ã
reads then

ϕk = ξkλk = (α + 2β + 2γ )ξk − (β + 4γ )ξ 2
k + γ ξ 3

k ,

for k = 1, . . . , N. (34)

Given that both ξ k and λk are positive for k = 1, . . . , (N − 1)
and that only the eigenvalue ϕN vanishes, ϕN = ξNλN = 0, the
matrix Ã is non-negative definite.

We remark that in the limit of γ → 0 we obtain for Ã and
for ϕk the known results for semiflexible rings without DR33

(in line with the formalism of Bixon and Zwanzig1); the limit
of both γ → 0 and β → 0 leads to flexible rings,51, 52 in the
sense of the Rouse model,48 see Appendix C for details.

Furthermore, we note that the Laplacian A = (Aij ) is a

discrete version of a second derivative,48 ∑
k Ankyk → ∂2yn

∂n2 .
Thus, the matrix Ã is related to a linear combination of
second, fourth, and sixth order differential operators, whose
Fourier transforms are the second, the fourth, and the sixth
powers of the wave number, respectively. A continuum pic-
ture emerges in the limit of N large, N 
 1. In this limit, by
expanding ξ k of Eq. (33) up to sixth order in k and inserting it
into Eq. (34) yields

ϕk ≈ A1

(
2πk

N

)2

+ A2

(
2πk

N

)4

+ A3

(
2πk

N

)6

, (35)

where

A1 = α + 2β + 2γ, (36)

A2 = −(α + 14β + 50γ )/12, (37)

and

A3 = (α + 62β + 602γ )/360. (38)

We note that Eq. (35) is valid for k � N/2 and that the coef-
ficients {Ai} are uniquely determined through the parameters
(α, β, γ ). The regions of k where ϕk ∼ ks (s = 2, 4, 6) are
discussed in Appendix B, see Eqs. (B1)–(B3).

C. Mean-square displacement

We turn now to the determination of the MSD �n(t)
of the ring monomers. The MSD, say, of the nth monomer
(n = 1. . . N), is given through48

�n(t) ≡ 〈[rn(t) − rn(0)]2〉. (39)

The MSD is calculated then by making use the normal mode
expansion48

rn(t) =
N∑

j=1

Cnj Qj (t). (40)

Here, the elements Cnj of the matrix C are given by Eq. (13)
and for them |Cnj|2 = 1/N holds. Moreover, we recall that
C diagonalizes Ã, C−1ÃC = Diag(ϕ1 . . . ϕN ). Thus, under
the transformation given by Eq. (40) the Langevin equation
simplifies to

ζ
∂

∂t
Qαk(t) + KϕkQαk(t) = f̂αk(t), (41)

where α is the spatial coordinate, the {ϕk} are the eigen-
values of Ã, Eq. (34), and f̂αk(t) = ∑

i(C
−1)kifαi(t). Hence,

〈f̂αk(t)f̂βm(t ′)〉 = 2kBT ζδkmδαβδ(t − t ′) and 〈f̂k(t)〉 = 0, so
that, from Eq. (41) the following relations hold:24, 48

〈(QαN (t)−QαN (0))(QβN (t)−QβN (0))〉=δαβ

2kBT

Nζ
t (42)
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and

〈Qαk(t)Qβm(0)〉=δαβδkm〈Q2
βm〉e−t/τm (k,m=1, . . . , N−1),

(43)

where 〈Q2
βm〉 = kBT /(Kϕm) and τm = ζ /(Kϕm) = τ 0/ϕm. In-

serting Eq. (40) into (39) and using Eqs. (42) and (43), we
obtain

�(t) ≡ �n(t) = 2l2

Nτ0
t + 2l2

N

N−1∑
k=1

1 − exp(−ϕkt/τ0)

ϕk

. (44)

Thus, the MSD for homogeneous rings is independent on n.
Moreover, it depends only on the eigenvalues {ϕk}, Eq. (34),
but not on the eigenvectors of Ã.

From Eqs. (B6) to (B10) of Appendix B �(t)
shows several distinct behaviors: At very short times,
t � min (τ 0/ϕk), the monomers perform a diffusive mo-
tion, unhindered by their neighbors, �(t)  2l2(t/τ 0). Next
in line, the monomers start to feel the dihedral restric-
tions, which are related to hindered rotations, leading
then to �(t)  (2l2/5π)�(1/6)A−1/6

3 (t/τ0)5/6, with A3 as in
Eq. (38). Then the �(t) enters the bending regime, �(t)
 (2l2/3π)�(1/4)A−1/4

2 (t/τ0)3/4, with A2 as in Eq. (37). We
note that the above mentioned regimes involve the local
scales, evident since the �(t)-forms do not depend on N. The
last subdiffusive regime (known from the Rouse model24, 48)
always exists for very long rings and disappears for short, stiff
ones. Here, the MSD follows �(t)  (2l2/

√
π )A−1/2

1 (t/τ0)1/2

as in A1 from Eq. (36). Finally, at very long times, (t/τ 0)

 N2, the monomers follow the global motion of their ring
and �(t)  (2l2/N)(t/τ 0), which is again a diffusive regime.
The time boundaries, in which the subdiffusive regimes �(t)
∼ tμ (μ < 1) are valid, depend on the values of the coeffi-
cients {Ai}, see Appendix B. While the subdiffusive ranges
with μ = 1/2 and 3/4 are well-known from the literature for
flexible and for semiflexible chains,6, 13, 48 the μ = 5/6 range
is a hallmark of the dihedral restrictions.

IV. NONHOMOGENEOUS RINGS

In this section, we extend the model of Secs. II and III
to nonhomogeneous semiflexible rings. Such rings arise natu-
rally when considering a semiflexible chain whose endpoints
coalesce without putting any restriction on their neighboring
bonds. The ensuing ring has then a site at which the orien-
tational restrictions do not hold, breaking thus the cyclical
symmetry.

The starting point is again the linear chain28 discussed
in Sec. II. Closing such a chain into a ring and following the
procedure of Sec. II, the bonds {da} of the nonhomogeneous
ring obey now (in spirit of Eq. (10)) the distribution

P̃ ({da}) = 1

Z̃
exp

(
− 3

2l2

∑
a,b

̂̃Wabda · db

)
. (45)

Since no new conditions are imposed on the bonds neighbor-

ing the closure site, the matrix ̂̃W in Eq. (45) reads

̂̃W = W̃ + 1

ε2
L, (46)

where W̃ is given by Eq. (5) and L and ε are as in Eq. (11).
Given that we work with a penalty function, the bonds {da}
represent still an independent set of variables. So that using
the distribution P̃ of Eq. (45) while keeping ε > 0, the average
values of da · db are given through

〈da · db〉 = l2( ̂̃W−1
)ab. (47)

In Appendix B, we show that in the limit ε → 0+ one has

( ̂̃W−1
)ab = (W̃−1)ab −

∑
k(W̃−1)ak

∑
n(W̃−1)nb∑

n,k(W̃−1)nk

. (48)

We note that Eq. (48) can also be obtained by consider-
ing general Gaussian distributions under strict (holonomic)
constraints,36 fact recently used in the treatment of non-
Markovian diffusion-limited reactions.37–39 Given that the
{(W̃−1)ab} are known in closed form,28 the conditions on the
local bond orientations represented through 〈da · db〉 can be
expressed as function of the parameters q̃1 and q̃2 of the chain,
see Appendix B. Here, we remark, however, that for nonho-
mogeneous rings, in contrast to Eqs. (18)–(20), the circular
symmetry does not hold anymore, 〈da+k · db+k〉 	= 〈da · db〉.

The procedure for analyzing the dynamics of the non-
homogeneous ring follows now closely the procedure for the
homogeneous ring described in Sec. III B. Thus, we obtain
the dynamical matrix Â of the nonhomogeneous ring us-
ing the transformation Eq. (22) and performing the steps of
Eqs. (24)–(26). The resulting dynamical matrix again takes
the form

Â = GW̃GT , (49)

where G is given by Eq. (23). Similar to Eq. (32), the matrix
Â can be represented through the matrix A of the flexible ring,
Eq. (29), but with an additional matrix term which accounts
for the ring’s inhomogeneity. Namely, one has

Â = Ã + �, (50)

where the matrix Ã has the functional form given by Eq. (32)
and the matrix � = (�ij ) has the following elements:

�11 = 2(α′ − α + β), (51)

�12 = �21 = �1N = �N1 = β ′−2β + γ −α′ + α, (52)

�13 = �31 = �1,N−1 = �N−1,1 = β − β ′ − γ, (53)

�22 = �NN = 2β − 2β ′ + α + α′′ − 2α, (54)

�23 = �32 = �N,N−1 = �N−1,N = β ′−β−α′′ + α, (55)

�2,N−1 = �N−1,2 = �N,3 = �3,N = γ, (56)

�2,N = �N,2 = β − 2γ, (57)

�33 = �N−1,N−1 = α′′ − α. (58)
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All other elements of � vanish. The parameters of Eqs. (51)–
(58) as function of q̃1 and q̃2 are given in Eqs. (A1)–(A6) in
Appendix A.

Also as in Sec. III C, we focus here on the MSD of ring
monomers. Proceeding similarly to Eqs. (39)–(44), we obtain
the MSD of the nth monomer of the nonhomogeneous ring,

�̂n(t) = 2l2

Nτ0
t + 2l2

N−1∑
k=1

Ĉ2
nk

1 − exp(−ϕ̂kt/τ0)

ϕ̂k

. (59)

In Eq. (59), the Ĉnk are the elements of a matrix Ĉ = (Ĉnk)
which diagonalizes Â. We denote the eigenvalues of Â by
{ϕ̂k}, with ϕ̂N = 0. The eigenvector corresponding to ϕ̂N is
(1 . . . 1)/

√
N , as can be easily checked using Eqs. (50)–(58).

Here we remark, however, that in contrast to Eq. (44), in the
nonhomogeneous case the MSD depends on the monomer’s
position in the ring. Therefore, we introduce the structural av-
erage of MSD as55, 56

〈�̂(t)〉 ≡ 1

N

N∑
n=1

�̂n(t). (60)

Using that the eigenvectors which build up the matrix Ĉ
are orthonormal, i.e.,

∑N
n=1 Ĉ2

nk = 1, we obtain (due to the
fluctuation-dissipation theorem, akin to Refs. 55 and 56)

〈�̂(t)〉 = 2l2

Nτ0
t + 2l2

N

N−1∑
k=1

1 − exp(−ϕ̂kt/τ0)

ϕ̂k

. (61)

Equation (61) has the same functional form as Eq. (44), the
difference residing in the eigenvalues {ϕ̂k}. The difference be-

tween 〈�̂(t)〉, Eq. (61), of nonhomogeneous rings and �(t),
Eq. (44), of homogeneous ones is discussed in Sec. V.

V. RESULTS AND DISCUSSION

In this section, we discuss the statics and dynamics of the
rings modeled in Secs. III and IV. First, we focus on the ho-
mogeneous rings and discuss the role of dihedral restrictions.
Then we compare nonhomogeneous rings with homogeneous
ones.

A. Influence of dihedral restrictions on statics
and on dynamics of homogeneous semiflexible rings

In this subsection, we study the role of DR by compar-
ing the static and dynamical behaviors of homogeneous rings
with DR of Sec. III with those of rings without DR, i.e., rings
with freely rotating bonds. The latter model is a traditional
approach to semiflexible rings,5, 33, 57 in which the semiflexi-
bility is modeled through a single parameter q1 related to the
angular restrictions. Thus, the traditional model is a particular
case of Sec. III in which the constraints of Eq. (20) are relaxed
by setting γ = 0, see Appendix C.

We start by investigating of the local properties of homo-
geneous rings, by considering their equilibrium bond-bond
orientations 〈d1 · dj 〉, calculated based on Eq. (17) for rings
with DR and on Eq. (C1) for those without DR. Here, we take
the number of bonds (or beads) to be N = 16.

In parts (a)–(d) of Fig. 3, we plot in black the nor-
malized bond-bond correlations of rings with DR for differ-
ent stiffness parameter sets (q1, q2): (0.8, 0.6), (0.6, −0.2),

(a) (b)

(c) (d)

FIG. 3. Bond-bond correlations of homogeneous rings composed of N = 16 segments under DR (black squares), for different sets of stiffness parameters
(q1, q2): (0.8, 0.6) (a), (0.6, −0.2) (b), (0.4, −0.6) (c), and (0, 0.8) (d). The results are compared with those for rings without DR for the same q1 (green
triangles), see text for details. The lines are guides for the eye.
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FIG. 4. Configurations of N = 16 bonds of homogeneous rings under DR,
corresponding to the different stiffness parameters sets (a)–(d) of Fig. 3.

(0.4, −0.6), and (0, 0.8). For rings without DR the values of
the single stiffness parameter q1 are chosen to be the same as
the q1 for the rings with DR and their correlation functions are
displayed in green in Fig. 3. Now, Fig. 3 evidences the sym-
metry of all curves around the site j = 9. However, while the
correlation functions of rings with DR display in parts (a)–
(d) one, two, three, and eight local minima, respectively, for
rings without DR the curves have always only one minimum.
The most significant difference between the orientational cor-
relation functions is given in part (d) of Fig. 3, where for the
rings with DR it shows strong oscillations, whereas for rings
without DR it practically disappears at long distances.

In order to have a closer look at the results of Fig. 3, we
display in Fig. 4 randomly chosen conformations of rings with
DR taken from the bonds’ distributions calculated for stiffness
parameter sets (q1, q2) which are the same as in parts (a)–
(d) of Fig. 3, respectively. Interestingly, in part (d) the bonds
look like a zigzag chain embedded in a cylindrical surface.
(In fact, the bond-bond orientation function of a fully sym-
metric zigzag ring is close to that of Fig. 3(d).) Thus, by fix-
ing the orientations between the NN and the NNN bonds, we
may influence the distances between sites and hence render
the structures more or less compact. In particular, by letting
q2 be negative, we create an incentive for antiparallel orien-
tations of the NNN bonds. Whether and to which extent this
happens depends on a subtle interplay between the q1 and the
q2 parameters, in particular the tendency to an antiparallel ori-
entation of NNN bonds is stronger when q2 gets close to the
value −1. What is evident, however, is that such a tendency
leads to an increase of the local density so that the rings get
more compact, fact reflected in their radii of gyration as we
proceed to show.

In Table I, we list the 〈R2
g〉/l2 of rings with and without

DR, calculated using Eq. (B13) of Appendix B 3 based on
the {〈da · db〉} of Fig. 3. In case A, the gyration radii for rings
with and without DR are close to each other (as also holds
for Fig. 3), whereas in all other cases they differ significantly.
Rings without DR are controlled through the single parameter

TABLE I. Gyration radii of semiflexible rings with N = 16 for the models
(a)–(d) of Fig. 3 and of the fully flexible N = 16 ring. For the latter q1 = q2

= −1/15, see Refs. 33 and 59 and also the text for details.

A B C D

Rings with DR 5.829 1.549 1.035 3.432
Rings without DR 5.578 4.132 2.978 1.570
Fully-flexible ring 1.417

q1, related to the NN bond interactions; their 〈R2
g〉 decreases

monotonically when q1 gets smaller (i.e., with increasing
flexibility) and has as limiting value 〈R2

g〉/l2 = (N + 1)/12
≈ 1.417, which holds for fully flexible rings.58, 59 Rings with
DR include two types of restrictions (for the NN and for the
NNN bonds), which are controlled through the two parame-
ters q1 and q2. This leads to a very rich picture: For example,
the choice q1 = 0 and q2 = 0.8 (case D) does not lead to
a flexible situation, but to a somewhat parallel orientation of
the NNN bonds. Also, the smaller 〈R2

g〉 in the cases B and C is
not a sign that the rings are more flexible; in fact, their small
〈R2

g〉 is due to the tendency to an antiparallel orientation of
the NNN bonds, which renders the rings more compact. Ex-
emplarily, in case C, the 〈R2

g〉 of the semiflexible ring with DR
is even smaller than that of the fully flexible ring of the same
length N.

We turn now to the dynamics of rings, by considering the
MSD �(t) of their monomers, see Eq. (44). In Fig. 5, we plot
the �(t) for N = 1000 rings with and without DR. The stiff-
ness parameters q1 = 0.72 and q2 = 0.14 are chosen in such
a way that for the ring with DR (black line) one gets a clear
scaling of t5/6. The related MSD of the ring without DR with
stiffness parameter q1 = 0.72 (green line) shows in this time
domain a t3/4-behavior. We note that the dynamical matrix of
rings with DR contains (due to the NNN bond interactions)
a term proportional to the third power of the Laplacian ma-
trix, see Eq. (32). This term leads to the �(t) ∼ t5/6 behavior,
see Appendix B 2 for details. In the absence of DR, the pa-
rameter γ in Eq. (32) vanishes and this behavior disappears.
Both rings, being quite long, show a t1/2-behavior, but with

-4 -2 0 2 4 6 8
log

10
(t/τ

0
)

-4

-2

0

2

4

lo
g 10

[Ψ
(t

)/
l2 ]

under D R
without D R
a

DR
(t/τ0)

1/2

a
FR

(t/τ0)
1/2

~t 
3/4

~t
5/6

FIG. 5. Mean-square monomer displacement �(t) for a homogeneous ring
under DR (black solid line) and for a ring without DR (green solid line). In
both cases, the rings have N = 1000 bonds, q1 = 0.72 and for the ring under
DR q2 = 0.14. Note that the dashed lines have the slope t1/2, see text for
details.
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significantly distinct subdiffusive coefficients (aDR ≈ 0.956
for the ring under DR and aFR ≈ 2.814 for that without DR,
see Fig. 5).

We conclude that the DR influence very much the statics
and the dynamics of rings, which show, as a function of the
DR, essential differences in their qualitative and quantitative
behaviors.

B. Statics and dynamics of nonhomogeneous rings

In this subsection, we consider the static and the dynami-
cal properties of nonhomogeneous rings with DR, which were
discussed in Sec. IV.

As in Sec. V A, the static properties of nonhomogeneous
rings are studied through the 〈d1 · dj 〉 calculated based on
Eqs. (47) and (48). Fig. 6 presents the normalized bond-
bond correlations of nonhomogeneous rings consisting of
N = 16 segments (color-coded by red) compared to those
of the homogeneous rings displayed on parts (a)–(d) of
Fig. 3 (black). We consider nonhomogeneous rings which

have 〈d1 · d2〉/
√

〈d2
1〉〈d2

2〉 = q1 and 〈d1 · d3〉/
√

〈d2
1〉〈d2

3〉
= q2, (q1, q2) are as in Fig. 3. Now, Fig. 6 evidences for the
nonhomogeneous rings a loss of symmetry of the correlation
functions observed for homogeneous rings with respect
to the site j = 9. The nonhomogeneous rings first follow
qualitatively the behavior of the homogeneous rings, how-
ever, the absence of direct restrictions between the terminal
bonds of nonhomogeneous rings leads to the damping of
the correlations along the ring. As a result, the positions
of the local minima and maxima on parts (a)–(c) are shifted,
the correlations between the d1 and dN of the nonhomoge-
neous rings being significantly smaller (especially in cases
(a) and (d)) than those of the homogeneous ones.

Now, we turn to the dynamics of nonhomogeneous rings.
In Fig. 7, we compare the MSD �(t) of homogeneous rings,

(a) (b)

(c) (d)

FIG. 6. Bond-bond correlations in homogeneous rings (black squares) and in
nonhomogeneous rings (red open triangles) consisting of N = 16 segments.
The cases (a)–(d) are as in of Fig. 3 and the lines are guides for the eye, see
text for details.

(a) (b)

(c) (d)

FIG. 7. Mean-square displacements �(t) of monomers of homogeneous
rings (black solid lines) and 〈�̂(t)〉 of nonhomogeneous rings (red dashed
lines). The rings consist of N = 16 segments and the cases (a)–(d) are as in
Fig. 6, see text for details.

Eq. (44), with structural average of MSD 〈�̂(t)〉 of nonho-
mogeneous ones, Eq. (61). We note that structural averaging
of �(t) of homogeneous rings keeps Eq. (44) unchanged. The
parameters in parts (a)–(d) are chosen the same as in parts (a)–
(d) of Fig. 6. As can be inferred from the figure, for very short
and for very long times the plots for the rings coincide, show-
ing that these time regions do not depend on the eigenvalue
spectra. The particular properties of rings appear in the inter-
mediate time domain.24 Here, we see for all parts of Fig. 7
clear differences between the plots, the largest difference be-
ing in part (d). We note that for part (d), as discussed in
Sec. V A, the dihedral restrictions are most important. Com-
paring parts (b) and (c) one can observe that the difference
between the curves shifts from longer to shorter times. This
property is related to the fact that parts (b) and (c) are re-
lated to more compact rings, which reach faster the diffusive
regime, where no discrepancy between the homogeneous and
nonhomogeneous rings is noticeable.

We conclude that the presence of a single inhomogene-
ity significantly changes the static and dynamic properties of
rings, especially in cases with strong dihedral restrictions.

VI. CONCLUSIONS

In this article, we studied semiflexible ring polymers by
focusing on their creation from linear polymers through cy-
clization. For this we imposed closure constraints based on a
penalty potential, a method which is quite general and which
allows to study arbitrary Gaussian rings under different con-
ditions. Here, we used the semiflexibility model of Ref. 28
which takes both angular and dihedral restrictions into ac-
count. As we have shown, the dihedral restrictions have a
clear influence on the static and dynamical properties of rings.

Using the circular symmetry of homogeneous rings, we
obtained analytic results for their dynamical matrix and for
its eigenvalue spectrum. Based on these results we studied the
behavior of the mean-square displacement �(t) of the rings’



10

monomers in different time domains. Thus, we could observe
in the intermediate time regime three different subdiffusive
behaviors, going as �(t) ∼ tμ with μ = 1/2, 3/4, and 5/6. The
well-known 1/2-regime is related to fully flexible chains,48

the exponent 3/4 is the hallmark of semiflexible chains with
angular (bending) interactions,6, 13 while the dihedral restric-
tions lead to the exponent 5/6.

Our closure method is very general and it allows, in par-
ticular, to also study nonhomogeneous rings. Here, we treated
a situation where the symmetry was broken at a single site.
As we showed, such an asymmetry shows up both in the static
and in the dynamical features of nonhomogeneous rings, es-
pecially when the DR are large. Concluding, we are led to the
conviction that the method which we employed in this work
could open new pathways for the theoretical study of arbitrary
semiflexible polymers with loops.
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APPENDIX A: MATRIX W̃ OF A LINEAR CHAIN

We recall here that for a chain the entries of W̃, Eq. (5)
of the main text, are known in closed form as a function
of stiffness parameters q̃1 and q̃2.28 Setting p̃ = (̃q2 − q̃2

1 )
/(1 − q̃2

1 ) the diagonal elements of W̃ are28

α′ = 1(
1 − q̃2

1

)
(1 − p̃2)

, (A1)

α′′ = 1 + (1 − p̃)2q̃2
1(

1 − q̃2
1

)
(1 − p̃2)

, (A2)

and

α = 1 + p̃2 + (1 − p̃)2q̃2
1(

1 − q̃2
1

)
(1 − p̃2)

. (A3)

Furthermore, the elements of W̃ related to nearest-
neighboring bonds are28

β ′ = − q̃1(
1 − q̃2

1

)
(1 + p̃)

(A4)

and

β = − q̃1(1 − p̃)(
1 − q̃2

1

)
(1 + p̃)

. (A5)

Moreover, the elements of W̃ related to next-nearest-
neighboring bonds are28

γ = − p̃(
1 − q̃2

1

)
(1 − p̃2)

. (A6)

APPENDIX B: CALCULATION DETAILS

1. Eigenvalue spectra of homogeneous rings
in the limit of large N

The eigenvalues of homogeneous rings are given by the
{ϕk} of Eq. (34). Here, we analyze their behavior at large N,
i.e., we consider Eq. (35), consisting of three terms. The ques-
tion is now at which time scales which terms dominate.

We start with the analysis of Eq. (35). First, both for
A1 
 |A2|(2πk/N)2 and for A1 
 |A3|(2πk/N)4 one can ap-
proximate ϕk well by the first term of Eq. (35). This, together
with the condition k � N/2, gives

ϕk A1

(
2πk

N

)2

for 1<k� N

2π
min

(√
A1

|A2| ,
4

√
A1

|A3| , π
)

.

(B1)

This regime exists for A1 
 max (4π2|A2|/N2, 16π4|A3|/N4).
Second, if both A2 
 A1(2πk/N)−2 and A2 
 |A3|(2πk/N)2

hold, one has

ϕk A2

(
2πk

N

)4

for
N

2π

√
A1

A2
�k� N

2π
min

(√
A2

|A3| , π
)

.

(B2)

From Eq. (B2) we deduce that the regime ϕk ∼ k4

exists only for A2 
 max(
√

A1|A3|, A1/π
2). Finally, for

A3 
 max (A1(2πk/N)−4, |A2|(2πk/N)−2)

ϕk  A3

(
2πk

N

)6

for
N

2π
max

(√
|A2|
A3

,
4

√
A1

A3

)
� k � N

2
,

(B3)

i.e., this regime exists for A3 
 max (|A2|/π2, A1/π4).

2. Mean-square monomer displacement �(t)
in the limit of large N

Here, we take Eqs. (B1)–(B3) into account and ana-
lyze the behavior of �(t), Eq. (44), for very long rings
N 
 1. First, at very short times, t � τ 0/ϕN/2, the use of
limx→0[(1 − e−x)/x] = 1 leads to �(t)  2l2(t/τ 0). On the
other hand, for very long times, t 
 τ 0/ϕ1, the first term
(2l2/N)(t/τ 0) of Eq. (44) dominates. In the intermediate time
region, the motion of a monomer is subdiffusive, with respect
to Eqs. (B1)–(B3). We recall that ϕk = ϕN−k and consider first
the regime ϕk ∼ k2, in which holds

�(t)  4l2

N

kmax∑
k=1

1 − exp(−ϕkt/τ0)

ϕk

≈ 2l2

π
√

A1

(
t

τ0

)1/2 ∫ ∞

0

1 − exp(−x2)

x2
dx. (B4)
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In Eq. (B4), we used the substitution x = (2πk/N )
√

A1t/τ0.
The integral of Eq. (B4) has as an upper limit x → ∞ imply-
ing (2πkmax/N )

√
A1t/τ0 
 1, where the kmax is the upper

limit for k from Eq. (B1). Thus, employing∫ ∞

0

1 − exp(−xa)

xa
dx = 1

a − 1
�

(
1

a

)
, (B5)

Eq. (B4) leads to

�(t)  2l2

√
π

A
−1/2
1

(
t

τ0

)1/2

for

N2

4A1π2

 t

τ0

 max

(
|A2|
A2

1

,

√
|A3|
A3

1

,
1

A1π2

)
. (B6)

Similarly, in the regime ϕk ∼ k4 we have

�(t)  4l2

N

kmax∑
k=kmin

1 − exp(−ϕkt/τ0)

ϕk

≈ 2l2

π 4
√

A2

(
t

τ0

)3/4 ∫ ∞

0

1 − exp(−x4)

x4
dx, (B7)

where we used the substitution x = (2πk/N ) 4
√

A2t/τ0.
Now, from Eq. (B2) kmin = (N/2π )

√
A1/A2 and kmax

= (N/2π ) min(
√

A2/|A3|, π ) are the lower and the upper
bounds of k. Given that x ∈ (0; ∞), the MSD of Eq. (B7)
is as follows:

�(t)  2l2

3π
�

(
1

4

)
A

−1/4
2

(
t

τ0

)3/4

for

A2

A2
1


 t

τ0

 max

(
A2

3

A3
2

,
1

A2π4

)
. (B8)

Finally, in the regime ϕk ∼ k6 we have

�(t)  4l2

N

[N/2]∑
k=kmin

1 − exp(−ϕkt/τ0)

ϕk

≈ 2l2

π 6
√

A3

(
t

τ0

)5/6 ∫ ∞

0

1 − exp(−x6)

x6
dx. (B9)

Here, the substitution x = (2πk/N ) 6
√

A3t/τ0 implies
that (2πkmin/N ) 6

√
A3t/τ0 � 1 with kmin = (N/2π ) max

(
√|A2|/A3,

4
√

A1/A3). Hence, together with Eq. (B5), we
obtain

�(t)  2l2

5π
�

(
1

6

)
A

−1/6
3

(
t

τ0

)5/6

for

min

(
A2

3

|A2|3 ,

√
A3

A3
1

)

 t

τ0

 1

A3π6
. (B10)

3. Radius of gyration

Let r1, r2, . . . , rN be the positions of the ring’s
monomers as they follow from the bonds d1, d2, etc. The gy-

ration radius 〈R2
g〉 is given by48

〈
R2

g

〉 ≡ 1

N

N∑
i=1

〈(ri − RC)2〉, (B11)

where

RC ≡ 1

N

N∑
i=1

ri (B12)

is the position of the center of mass. Recalling the findings
of Ref. 60, as a function of the bond-bond correlations 〈R2

g〉
reads 〈

R2
g

〉 = 1

N2

N−1∑
a,b=1

Bab〈da · db〉. (B13)

In Eq. (B13), the (N − 1) × (N − 1) matrix B = (Bij ) is given
by60

Bab = N min(a, b) − ab. (B14)

4. Bond-bond correlations for the nonhomogeneous
semiflexible ring

As it was shown in Eqs. (47) and (48), the bond-bond
correlations in the nonhomogeneous case are given by

〈da · db〉 = l2

((
W̃ + 1

ε2
L

)−1
)

ab

. (B15)

Before starting with the calculation of the inverse matrix on
the rhs of Eq. (B15), we first note that

L = e ⊗ eT (B16)

holds, where e is a vector (column matrix) whose elements
equal unity, eT its transposed, reading eT = (1, . . . , 1), and ⊗
denotes the Kronecker (outer) product. This allows to use the
Sherman-Morisson formula (see, e.g., Eq. (2.7.2) of Ref. 61)

(M + u ⊗ vT )−1 = M−1 − (M−1u) ⊗ (vT M−1)

1 + vT M−1u
. (B17)

Thus,(
W̃ + 1

ε2
e ⊗ eT

)−1

= W̃−1 − (W̃−1e) ⊗ (eT W̃−1)

ε2 + eT W̃−1e
. (B18)

Inserting Eq. (B18) into Eq. (B15) and taking the limit ε → 0
we obtain

〈da · db〉 = l2

[
(W̃−1)ab −

∑
k(W̃−1)ak

∑
n(W̃−1)nb∑

n,k(W̃−1)nk

]
. (B19)

We note that Eq. (B19) can also be obtained by consider-
ing general Gaussian distributions under strict (holonomic)
constraints,36 fact recently used in the treatment of non-
Markovian diffusion-limited reactions.37–39

We recall that the matrix W̃ = (W̃ab) describes the poten-
tial energy of a chain with stiffness parameters q̃1 and q̃2, see
Eq. (4). The elements of its inverse, W̃−1, are known28 and
given by

(W̃−1)ab = 1

2σ

(
c+b

|a−b|
+ − c−b

|a−b|
−

)
. (B20)



12

In Eq. (B20),

c± = (1 + p̃)̃q1 ± σ, (B21)

b± = [(1 − p̃)̃q1 ± σ ]/2, (B22)

and

σ =
√

(1 − p̃)2q̃2
1 + 4p̃, (B23)

where p̃ = (̃q2 − q̃2
1 )/(1 − q̃2

1 ). With Eq. (B20) the sums in
Eq. (B19) can be readily calculated using the geometric series
and the algebraic relations

1

2σ

(
c+

1 + b+
1 − b+

− c−
1 + b−
1 − b−

)
= (1 + q̃1)(1 + p̃)

(1 − q̃1)(1 − p̃)
(B24)

and

1

2σ

(
c+b+

(1 − b+)2
− c−b−

(1 − b−)2

)
= q̃1(1 + p̃2) + 2p̃

(1 − q̃1)2(1 − p̃)2
. (B25)

In Eqs. (B24) and (B25), the c±, b±, and σ are of Eqs. (B21)–
(B23). Hence, the sums in Eq. (B19) are

N∑
k=1

(W̃−1)ak = (1 + q̃1)(1 + p̃)

(1 − q̃1)(1 − p̃)

− 1

2σ

(
c+

ba
+ + bN−a+1

+
1 − b+

− c−
ba

− + bN−a+1
−

1 − b−

)
(B26)

and

N∑
k,n=1

(W̃−1)nk = N
(1 + q̃1)(1 + p̃)

(1 − q̃1)(1 − p̃)
− 2

q̃1(1 + p̃2) + 2p̃

(1 − q̃1)2(1 − p̃)2

+ 1

σ

(
c+bN+1

+
(1 − b+)2

− c−bN+1
−

(1 − b−)2

)
. (B27)

Thus, the correlations between the bonds {da} of a nonhomo-
geneous ring are determined through Eq. (B19), under the use
of Eqs. (B20), (B26), and (B27).

APPENDIX C: SPECIAL CASES: THE HOMOGENEOUS
RING UNDER FREELY ROTATING AND UNDER FULLY
FLEXIBLE CONDITIONS

In this appendix, we show that the model of Sec. III re-
produces, both in the limit of vanishing DR, i.e., of freely
rotating bonds as well as in the limit of fully flexible rings,
results known from the literature.

1. Freely rotating limit

The freely rotating limit is obtained by setting γ = 0 in
Eq. (6). Then from Eq. (17) one has

〈da · db〉 = l2

N

N−1∑
k=1

cos[2πk(a − b)/N ]

α + 2β cos
(

2πk
N

) . (C1)

Furthermore, by also using Eq. (19),

q1 =
N−1∑
k=1

xk

x − xk

/N−1∑
k=1

1

x − xk

, (C2)

where we have set x ≡ −α/(2β) and

xk = cos

(
2πk

N

)
. (C3)

In Ref. 33, it was shown that the x defined as in Eq. (C2)
obeys

x − q1

N − 1

1

σ (x)

dσ (x)

dx
− 1 = 0, (C4)

where one has

σ (x) = N (TN (x) − 1)

x − 1
, (C5)

TN(x) being the Chebyshev polynomial of the first kind of
degree N. For x > 1, considering a discrete wormlike ring,
Berg57 has obtained an equation similar to Eq. (C4), but with
different numerical coefficients.33, 57 The continuous version
of Eq. (C4) leads to the result of Ref. 5 As we proceed to
show, Eqs. (C2) and (C4) are equivalent, thus they lead to the
same x.

Now, the roots of the numerator of Eq. (C5),
N(TN(x) − 1), are the xk of Eq. (C3) with k = 1, . . . , N, see
Ref. 62. Hence,

σ (x) = NC

N−1∏
k=1

(x − xk), (C6)

where C is some constant and

1

σ (x)

dσ (x)

dx
=

N−1∑
k=1

1

x − xk

. (C7)

Substituting Eq. (C7) into Eq. (C4), Eq. (C2) follows.
The eigenvalue spectra of the rings with freely rotat-

ing bonds {ϕFR
k } are straightforwardly obtained from {ϕk} of

Eq. (34), by setting γ = 0

ϕFR
k = (α + 2β)ξk − βξ 2

k . (C8)

Using Eqs. (18)–(20) and (33) and that x ≡ −α/(2β) we obtain

ϕFR
k = N − 1

N

[
8

x − q1
sin4

(
πk

N

)
+ 4(x − 1)

x − q1
sin2

(
πk

N

)]
,

(C9)

where x is as in Eq. (C2) and k runs from 1 to N. Given that
Eqs. (C2) and (C4) have the same solution for x, Eq. (C9)
leads to the eigenvalues given by Eq. (71) of Ref. 33

2. Fully flexible limit

The fully flexible limit is obtained by neglecting all the
constraints arising from the NN and the NNN bonds, Eqs. (19)
and (20), i.e., by taking β = 0 and γ = 0. From Eq. (18) it
follows that

α = N − 1

N
. (C10)
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Using that

N−1∑
k=1

cos

(
2πk

N

)
= −1, (C11)

Eq. (17) gives

〈di · dj 〉
l2

=
{

1 for i = j

−1/(N − 1) for i 	= j,
(C12)

in line with previous works.34, 59
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