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DIRAC-WEYL-FOCK EQUATION ALONG A CHRONOLOGICAL

FIELD

JONOT JEAN LOUIS

Abstract. We will quantify the (p, q)-tensors of the universe using the ∇γ -
quantification process. This method can be generalised for all the states of the

physical system. We will give some results on the notion of space-time which
permits travel through parts of the universe where a chronological field exists.
This foliation leads to a generalisation of the Schrödinger equation and the
Dirac-Weyl-Fock equation.

1. The quantification principle

I)The superposition principle
Each physical system in the universe Ω is associated with a fibre bundle

ζ = (E,Ω, p,H)

which is endowed with a connexion ∇ and a Hilbert fibre. The state of the system
is defined by a local section of the fibre Γ (ζ). Any linear superposition of the states

s =
∑

i cisi , with ci belonging to C∞ (Ω,C) and
∑

i |ci|
2
6 1 is an accessible state

if {si (ω)} form a Hilbert’s basis of Eω for each ω event of the universe Ω.
II)Measuring physical quantities
a) The evolution of a physical system on an open set U ⊂ Ω, is the datum of a

Hermitian section iΦ of the fibre bundle E∗ ⊗ E on U .
b) Let s (ω) be the state of the system in ω ∈ Ω where we perform the measure-

ment, the only possible results are the observable iΦ (ω) eigenvalues λα (ω).

c) We note
∧

Pα (ω) : Eω → Eω, the projection on the eigenspace associated with
the eigenvalue λα (ω). The probability of finding the eigenvalue λα (ω) during a

measurement iΦ (ω) is pα =
‖sα(ω)‖2

ω

‖s(ω)‖2
ω

, where sα (ω) =
∧

Pα (ω) (s (ω)).

d) After a measurement in ω giving λα (ω), the new system state is sα (ω).
III)The evolution equation
If s is the state of a system, as long as the system is not subject to any obser-

vation, s is solution of the evolution equation

Φ (s) = −iλs, (1.1)

λ is an eigenfunction of iΦ defined locally on U , Φ is the evolution system operator.

2. ∇γ-quantification

In what follows, (E, π,Ω, F ) is a real or complex vector bundle of a finite dimen-
sion, of fibre bundle F , for which the basis in the universe Ω which is a C∞-manifold

Key words and phrases. Chronological field, Lie derivative, Dirac section, connection.
Thanks to Guy Cherbit.
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2 JONOT JEAN LOUIS

of dimension 4. We note ΛnΩ = ∧nT ∗Ω, the fibre bundle of n-differential forms on
Ω. The (p, q)-tensor space, p times covariant and q times contravariant, is written

T p,qΩ = (⊗pT ∗Ω)⊗ (⊗qTΩ) , (2.1)

and the total space E of the fibre bundle is the space of the states, which is endowed
with a connection

∇ : Γ (E) → Γ
(

Λ1Ω⊗ E
)

. (2.2)

Definition 1. 1) A section γ of the fibre bundle L
(

Λ1Ω⊗ E,E
)

is a Dirac section
of states E.

2)We define section ∇γ of End (E) by

∇γs = γ (∇s) , s ∈ Γ (E) . (2.3)

Dirac’s endomorphisms are defined by

γd (s) = γ (d⊗ s) , d ∈ Λ1Ω et s ∈ Γ (E) . (2.4)

The commutator of a finite family of Dirac’s endomorphisms
{

γd
µ}

is
[

γd
1

, γd
2

, · · · , γd
n
]

=
∑

s∈Perm{1,2,··· ,n}

ε (s) γd
s(1)

◦γd
s(2)

◦ · · ·◦γd
s(n−1)

◦γd
s(n)

, (2.5)

et the anticommutator or Poisson bracket is defined by,
{

γd
1

, γd
2

, · · · , γd
n
}

=
∑

s∈Perm{1,2,··· ,n}

γd
s(1)

◦ γd
s(2)

◦ · · · ◦ γd
s(n−1)

◦ γd
s(n)

. (2.6)

The commutator defines a section of L (ΛnΩ⊗ E,E). We define the n-rank
extension of a section γ, by section γn ∈ Γ (L (Λn (Ω)⊗ E,E)) where

γn
((

d1 ∧ d2 ∧ · · · ∧ dn
)

⊗ s
)

=
[

γd
1

, γd
2

, · · · , γd
n
]

(s) , (2.7)

and we extend γn by C∞ (Ω,R)-linearity on Λn (Ω)⊗ E.
Any connection ∇ has an extension d∇n : Γ (Λn (Ω)⊗ E) → Γ

(

Λn+1 (Ω)⊗ E
)

with, d∇0 = ∇, Λ0 (Ω)⊗E = E and d∇n (ψ ⊗ s) = dψ⊗s+(−1)n ψ∧∇s, ψ ∈ Λn (Ω).
The Dirac-Einstein equation on the n-rank is written

γn (∇n−1s) = λs, ∇n−1 = d∇n−1 ◦ · · · ◦ d
∇
0 . (2.8)

Definition 2. An n-order evolution equation of fibre bundle states E on an open
set U ⊂ Ω, is an equation in the form 2.8. We note E (∇, γ, λ, n) this equation.

For a ”local frame” on E (U), the associated matrices γd are Dirac’s matrices.
If the evolution equation of a quantum system is Φ = γn ◦ ∇n−1 if (E, π,Ω, F ) is
a real vector bundle and iΦ = γn ◦∇n−1 if (E, π,Ω, F ) is a complex vector bundle,
the quantification principle becomes the quantification ∇γ-principle on n-rank.

Example 1. The equation E (∇, γ, λ, 1) is an evolution equation which allows the
Dirac equation to be generalised in the curved spaces [1] when we set it out, λ = mc

~
.

The fibre bundle E is one of the two fibre bundles E = Ω × C4 or E = TCΩ and
the Dirac endomorphisms γµ = γ (dµ) in the dual basis {dµ} of {∂µ}, solve the
anticommutation relation

{γµ, γν} = 2gµνI4, (2.9)

with (gµν) which is the matrix of the Lorentzian metric g on Ω in basis {∂µ}.
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Definition 3. A relativistic quantum equation is an equation which links connection
∇ to the Dirac section γ. This type of relation will be recorded as R (∇, γ).

For the fields, the relativist equation R (∇, γ) was established in the equation 4.7
and 4.11. The evolution equation E (∇, γ, λ, 1) was proven in 3.26. To generalise
this equation across all the states of the universe, it is necessary to determine a
tensor that plays an analogue role to the Ricci tensor for connection ∇ defined on
the fibre bundle of states E.

3. Representing fibre bundles in charts

In the following,
(

x1, x2, x3, x4
)

is a chart on an open set U of the universe Ω,

on which the fibre bundles TΩ and E are trivial. Let
{

∂µ = ∂
∂xµ , 1 6 µ 6 4

}

be the
vector fields on U linearly independent associates and {dν = dxν , 1 6 ν 6 4} be the
dual basis. On E (U) there is a ”local frame”, written {eα, 1 6 α 6 n = dimE}.

3.0.1. Local writing of the Dirac-Einstein equation E (∇, γ, λ, 1). Let s = sαeα then

∇s = ∇ (sαeα) = dsα⊗eα+s
α∇eα = dsα⊗eα+s

αΓβαjd
j⊗eβ. On U the connection

is written

∇eα = Γβανd
ν ⊗ eβ, (3.1)

with C∞ functions Γβαν defined on U with complex or real values, Γβαν are the
Christoffel symbols associated with connexion ∇. We have, dsα = ∂νs

αdν and
∇s = ∂νs

αdν ⊗ eα + sαΓβανd
ν ⊗ eβ =

(

∂νs
β + sαΓβαν

)

dν ⊗ eβ . The Dirac section γ
of E can be represented

γ (dν ⊗ eβ) = γνσβ eσ, (3.2)

and if γν = γ (dν) then (γν)
α
β = γναβ .

∇γs = γ
((

∂νs
β + sαΓβαν

)

dν ⊗ eβ
)

=
(

∂νs
β + sαΓβαν

)

γ (dν ⊗ eβ)

∇γs = γνσβ
(

∂νs
β + sαΓβαν

)

eσ. The Dirac-Einstein equation E (∇, γ, λ, 1) is
written locally,

γνσβ
(

∂νs
β + sαΓβαν

)

= −iλsσ for all σ, 1 6 σ 6 n. (3.3)

The Dirac matrices γµ, 1 6 µ 6 4, are square n-order matrices whose coefficients
are applications C∞ on U , with real or complex values. We note that

(Dνs)
β
= ∂νs

β + sαΓβαν , (3.4)

Dν is the local section of End (E) defined by, Dν = Lν +Γν , where Γν is the local

section of End (E) for which the matrix, in the ”local frame”, is (Γν)
β
α = Γβαν and

Lν is the Lie derivative along the field ∂ν = ∂
∂xν defined by, Lν s = (∂νs

α) eα.

γνσβ (Dνs)
β
= −iλsσ for all σ,1 6 σ 6 n. (3.5)

The previous equation is written

γνDν (s) = −iλs, (3.6)

and the evolution equation operator is,

Φ = γνDν . (3.7)

We have an evolution equation in the sense of the∇γ-quantification if iΦ is a section
that is locally Hermitian.

Definition 4. Φ is the operator of the evolution equation of first order states.
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The application to the fields is immediate if we set out E = TCΩ, the evolution
equation of the fields is represented as follows in the ”local frame”

γνDνX = −iλX , (3.8)

λ ∈ SpecU (iΦ) and Dν = Lν +Γν . The eigenvalues are proportional to the mass of
the particles 6.2.

The quantification principle for the fields is as follows:
”If no measurement is made in chart U , the field X evolves according to the equa-

tion ΦX = −iλX, where λ ∈ SpecU (iΦ). The field X is a specific field of the evo-
lution operator Φ. If a measurement in ω ∈ U ⊂ Ω is a = a (ω), then a is an eigen-

value of iΦ (ω). The field takes the value Xa (ω) where Xa (ω) =
∧

Pa (ω) (X (ω)),
∧

Pa (ω) is the projection on the eigenspace associated with the eigenvalue a. The
probability of finding the value a during the measurement is

pa =
‖Xa (ω)‖

2
ω

‖X (ω)‖
2
ω

, (3.9)

and the field evolution equation is ΦX = −iλX for a λ ∈ SpecU (iΦ), proving
λ (ω) = a and a field X (ω) = Xa (ω).”

We have therefore set in the event ω, new conditions for the system’s evolution.
We have disrupted the field evolution X by carrying out a measurement in this
field.

3.0.2. Quantifying metrics. From a connection ∇ on the fields, we can spread the
endomorphism ∇X individually to the tensors with two conditions on ∇X , ∇X

commuted with the contractions, i.e., ∇X (c (S)) = c (∇X (S)) and ∇X (S ⊗ T ) =
∇X (S)⊗ T + S ⊗∇X (T ).

The connection on the (2, 0)-tensors is defined from the initial connection ∇on
the fields by setting out, ∇

(

d1 ⊗ d2
)

= ∇
(

d1
)

⊗ d2 + d1⊗∇
(

d2
)

and if we restrict
ourselves to the defined sections on a chart U of the universe, in the basis {∂µ},
the dualisation isomorphism, Θ (dµ) = ∂µ allows us to define the dual connection,
written again ∇X (d), by

∇X (d) = Θ−1∇XΘ(d) . (3.10)

We can extend this connection over the entire universe Ω, by taking a cover made
locally finite by the charts {U} and a partition of unity

{

ϕU
}

subordinated to this

cover, ϕU∇U is the connection sought, it is the dual connection on U . In particular,

∇∂β (dσ) = Γσ∗βµd
µ = Θ−1∇∂βΘ(dσ) (3.11)

∇∂β (dσ) = Θ−1∇∂β (∂σ) = Θ−1
(

Γµσβ∂µ

)

= Γµσβd
µ and Γσ∗βµ = Γµσβ , (3.12)

∇∂β (dσ ⊗ dτ ) = ∇ (dσ ⊗ dτ ) (∂β) =
(

Γστργδd
ρ ⊗ dγ ⊗ dδ

)

(∂β) (3.13)

∇∂β (dσ ⊗ dτ ) = Γστργδd
ρ (∂β) d

γ ⊗ dδ = Γστβγδd
γ ⊗ dδ. (3.14)

∇∂β (dσ ⊗ dτ ) = Γσ∗βθd
θ ⊗ dτ + Γτ∗βθd

σ ⊗ dθ = Γθβσd
θ ⊗ dτ + Γθβτd

σ ⊗ dθ, (3.15)

∇∂β (dσ ⊗ dτ ) =
(

Γγβσδ
τ
ν + Γνβτδ

σ
γ

)

dγ ⊗ dν , (3.16)
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and,

Γστβγν = Γγβσδ
τ
ν + Γνβτδ

σ
γ , (3.17)

δτν and δσγ are Kronecker symbols.
There is a natural way to describe Dirac’s endomorphisms on (2, 0)-tensors, if γ

is a Dirac section of field fibre budles, it’s also a section of dual fibre bundle

γ ∈ Γ (TΩ⊗ T ∗Ω⊗ TΩ) ≈ Γ (TΩ⊗ TΩ⊗ T ∗Ω) (3.18)

and,

γ ∈ Γ
(

L
(

Λ1Ω,End (TΩ)
))

≈ Γ
(

L
(

Λ1Ω,End
(

Λ1Ω
)))

. (3.19)

We have
(

γd
)∗

(ζ) = ζ ◦ γd, ζ et d ∈ Λ1Ω. (3.20)

Then, in order to obtain the Dirac section on the (2, 0)-tensors,we set out

[

γd
]

=
(

γd
)∗

⊗
(

γd
)∗

. (3.21)

[γµ] (dν ⊗ dτ ) = γµντρσ dρ ⊗ dσ = (γµ)∗ (dν)⊗ (γµ)∗ (dτ ),

(γµ)
∗
(dν) (∂ρ) = dν ◦ γµ (∂ρ) = dν

(

γµσρ ∂σ
)

= γµνρ and (γµ)
∗
(dν) = γµνρ dρ,

[γµ] (dν ⊗ dτ ) = γµνρ γµτσ dρ ⊗ dσ, it follows

γµντρσ = γµνρ γµτσ . (3.22)

We replace the previous results in the equation,

γµντρσ

(

∂µaντ + aαβΓ
αβ
µντ

)

= λaρσ, (3.23)

we obtain

γµνρ γµτσ
(

∂µaντ + aαβ
(

Γνµαδ
β
τ + Γτµβδ

α
ν

))

= λaρσ, (3.24)

γµνρ γµτσ
(

∂µaντ + aατΓ
ν
µα + aνβΓ

τ
µβ

)

= λaρσ (3.25)

The matrix notation of the equation is

trγµ
(

LµA+ ΓµA+AtrΓµ
)

γµ = λA, (3.26)

γµ =
(

(γµ)
ν
ρ

)

with, (γµ)
ν
ρ = γµνρ , (LµA)

ν

τ
= ∂µaντ , (A)

α
β = aαβ , (Γν)

β
α = Γβαν

and trγµ, trΓµ are the transposed matrices γµ and Γµ.

Theorem 1. If a pseudo-Riemannian metric g follows a Dirac-Einstein evolution
equation when in the entire chart U its matrix G = (gij) solves the equation

trγµ
(

LµG+ ΓµG+tr (ΓµG)
)

γµ = λG, (3.27)

where Γµ, with (Γµ)
β

α
= Γβαν , are Christoffel matrices of the connection and γµ =

γ (dµ) are Dirac matrices associated with the evolution equation. The evolution
operated is written ∆,

∆(g) (X,Y ) =tr (γµX)
(

LµG+ ΓµG+tr (ΓµG)
)

γµY, (3.28)

where X and Y are unicolumn matrices associated with fields X and Y in basis
{∂µ}.
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4. Relativistic quantum equation

We remember that the relativistic quantum equation is that which links connec-
tion ∇ to the Dirac section γ defined on the states. We start from the principle that
any physical system can be quantified by the quantification procedure mentioned
above. Einstein’s equation is performed for a connexion ∇ which is the Levi-Civita
connection of a metric g. The connection ∇ does not generally allow us to define a
metric on the universe Ω, we must therefore find a tensor which plays the role of a
metric tensor. The Dirac section γ that lets us build this tensor is the fibre bundle
E = TCΩ.

Definition 5. The Poisson tensor γαβ is defined by,

γαβ =
1

8
Trace

({

γα, γβ
})

=
1

4
Trace

(

γαγβ
)

. (4.1)

Remark 1. When γαβ is regular, γαβ plays the role of a metric tensor. The
Poisson tensor measures the anticommutativity of the Dirac endomorphisms.

For the curved tensor, the standard notations are,

R∇ (X,Y ) (Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (4.2)

R∇ (∂α, ∂β) (∂σ) = ∇∂α∇∂β∂σ −∇∂β∇∂α∂σ = R
µ
σβα∂µ, (4.3)

and Ricci’s tensor is written

Ricαβ = Rνανβ . (4.4)

The scalar curve of ∇ is,

R = γαβRicαβ . (4.5)

Theorem 2. If the Poisson tensor is regular, Einstein’s relativistic equation is

Ricαβ −
1

2
Rγαβ =

8πG

c4
Tαβ, (4.6)

with Tαβ = γαβT
αβ, Tαβ is the energy-momentum equation. If the Poisson tensor

is not regular

Ricαβ −
1

2
Rγαβ =

8πG

c4
Tαβ, Ricαβ = Richkγ

hαγkβ. (4.7)

The field evolution equation is given by

ΦX = −iλX, (4.8)

and the metric evolution equation

∆g = λg. (4.9)

Proof. We contract Einstein’s relativistic equation twice and we use the fundamen-
tal equality 2.9 as if a metric g exists, we have, gαβ = γαβ. The evolution equations
have been proven above. �

Any (p, q)-tensor changes following an equation E (∇, γ, λ, 1) where ∇ is the
sole extension to T p,qΩ of the initial connection ∇ on the fields and γ is the sole
extension to T p,qΩ for the Direct section γ of the fields. The associated relativistic
quantum equation is,

Ricαβ −
1

2
Rγαβ =

8πG

c4
Tαβ. (4.10)
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The quantification order n > 1 is given by the evolution equation E (∇, γ, λ, n).
We can generalise this quantification procedure to all the Hermitian fibre bundles
and set up the evolution equations E (∇, γ, λ, n) in a chart, the only issue is gener-
alising of a Ricci tensor in any kind of fibre bundle. If this construction is possible,
we can define a relativistic equation linking connection ∇ to the Dirac section γ

of the fibre bundle for each equation of a state of the universe. The choice of the
connection ∇ is driving naturally by the Hermitian nature of the fibre bundle of
states E.

We would like to generalise Einstein’s relativistic quantum equation by intro-
ducing the cosmological constant Λ0 of this equation,

Ricαβ −
1

2
Rγαβ =

8πG

c4
Tαβ + Λ0γ

αβ. (4.11)

We revert to Einstein’s general equation when the Poisson tensor γαβ is identified
with gαβ.

Remark 2. The Dirac-Einstein equation can be defined from a Koszul connection
without adding the Lorentzian metric and the Dirac section is a solution to the
relativistic quantum equation defined by that connection.

5. Space-time foliation of parts of the universe

In all that follows, we position ourselves on a part Ω of the universe where no
measurement has been made on the metric g. We suppose that Ω is a related
Lorentzian manifold, orientated in time, i.e., there is at least one field T : Ω → TΩ
of time ∀ω ∈ Ω, g (ω) (T (ω) , T (ω)) < 0. For the Minkowski space-time

(

R4, η
)

,

ds2 = dx2 + dy2 + dz2 − dt2 and field T = ∂
∂t

to give the orientation in time.
Let Tω = RT (ω), the vector subspace of dimension 1, produced by vector T (ω) ∈

Tω (Ω). This subspace is not isotropic in the bilinear form g (ω) on Tω (Ω) and
splits Tω (Ω) into a single orthogonal sum Tω (Ω) = Tω⊕Eω , where Eω = T⊥

ω . The
restrictions g (ω) |Eω

and −g (ω) |Tω
are positively defined. Any field X : Ω → T (Ω)

breaks down into X = XE − tT , where t : Ω → R is a C∞-application, XE is a

field space, i.e., XE (ω) ∈ Eω for everything ω ∈ Ω. In particular, |XE (ω)|
2
g =

g (ω) (XE (ω) , XE (ω)) > 0 if XE (ω) 6= oTω(Ω).

Definition 6. Field X is orientated towards T -future if X = XE − tT , with t > 0
and towards T -past if t < 0.

The space part of the tangent space is EΩ = ∪ω∈Ω {ω}×Eω and the chronological
part is T Ω = ∪ω∈Ω {ω} × Tω.

Lemma 1.
EΩ = ∪ω∈Ω {ω} × Eω

↓ πE
Ω

and
T Ω = ∪ω∈Ω {ω} × Tω

↓ πT
Ω

are fibre bundles.

The chronological fibre bundle is trivial and TΩ is the Whitney sum of these two
fibre bundles, TΩ = EΩ⊕ T Ω.

Proof. All that is required is to prove that
EΩ
↓ πE
Ω

is a fibre bundle. Let U be

an inter-related open set of Ω on which TU is trivial. There are vector fields A,
B, C and D defined on the linearly independent U . We can split each field into
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its space and chronological parts A = AE + aT , B = BE + bT , C = CE + cT

and D = DE + dT where a, b, c and d are functions of class C∞ on U . We look
for orthogonal fields in T for the bilinear form g which are linearly independent.
We set out Γ = αA + βB + γC + δD, the condition g (Γ, T ) = 0 is equivalent to
αa + βb + γc+ δd = 0. If X = −bA + aB − dC + cD, Y = cA − dB − aC + bD,
Z = −dA − cB + bC + aD then for all ω ∈ U , Vect (X (ω) , Y (ω) , Z (ω)) = Eω =

RT (ω)⊥ since

det









−b c −d a

a −d −c b

−d −a b c

c b a d









=
(

a2 + b2 + c2 + d2
)2

= 0 ⇐⇒ a = b = c = d = 0.

π−1
E (U) = ∪ω∈UEω

ψ
→ U × R3

↓ πE ↓ Pr1

U
IdU→ U

, with ψ (v) = (ω, x, y, z) and

v = xX (ω) + yY (ω) + zZ (ω) is the isomorphism of the local triviality. �

We note that on the space fibre bundle
EΩ = ∪ω∈Ω {ω} × Eω

↓ πE
Ω

, on each fibre bundle Eω we have a positive bilinear

form, written gR, defined by gR (X,Y ) = g (X,Y ) and the Lorentz matrix g, can

be used to define a local Riemannian metric gR as follows, if |X |
2
= |XE |

2
− t2 then

|X |2R = |XE |
2 + t2 with, |X |2 = g (X,X) and |X |2R = gR (X,X).

Theorem 3. The Pfaff system ω → τ (ω) = Eω can be fully integrated, for each
ω ∈ Ω, the interrelated component of the integral associated with this system is a
related manifold known as a space leaf in ω which is written Eω.

Proof. We use the principle of Einstein summation notation. Let ϕ : U → R4, be
a chart of Ω. We set out {∂i} the associated ”local frame”, if X ∈ Γ∞ (TΩ) then
in local coordinates X = ai∂i ∈ TuΩ, where a

i : U → R is a C∞-application. If
Y = bi∂i then [X,Y ] = ci∂i with, c

i = aj
(

∂jb
i
)

− bj
(

∂ja
i
)

.

We note T = ti∂i, the chronological field. It must be proven that if g (X,T ) = 0
and g (Y, T ) = 0 on U , then g ([X,Y ] , T ) = 0 on U .

We have g (X,T ) = aitjgij = 0, as well as bitjgij = 0 with, g (∂i, ∂j) =
gij . Then, we calculate g ([X,Y ] , T ) = citjgij =

(

ak
(

∂kb
j
)

− bk
(

∂ka
j
))

tjgij =

aktjgij
(

∂kb
j
)

− bktjgij
(

∂ka
j
)

, the conditions aitjgij = 0 and bitjgij = 0 imply

∂k
(

aitjgij
)

= 0 and ∂k
(

bitjgij
)

= 0. We deduce g ([X,Y ] , T ) = −akbi∂k
(

tjgij
)

+

bkai∂k
(

tjgij
)

= 0.
Therefore, τ can be fully integrated. If Eω is the related component of the

integral τ containing ω, Eω is a sub-manifold of dimension 3 of Ω. Furthermore,
∪ω∈ΩEω = Ω. �

Conclusion 1. The space-time parts Ω of the universe are related manifolds of
dimension 4, endowed with a Lorentzian metric g and a chronology defined by a
local field T , such that g (T, T ) = −1. Each chronology can be used to foliate Ω
into two orthogonal foliations for metric g. One is the space foliation, written E,
whose leaves are related sub-manifolds without edges, of dimension 3 of Ω, known
as space leaves, the other is the chronological foliation written T , whose leaves are
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related sub-manifolds without edges, of dimension 1 of Ω, known as chronological
leaves. These chronological leaves can only be S1 or R. Each field X is broken
down individually, under the form X = XE − tT , where XE (ω) ∈ Tω (E) = Eω,
t ∈ C∞ (Ω) and E is the single foliation leaf of E containing ω.

The notion of a local change of coordinates between two space-times defined by
chronological fields T and S is the datum of a section θ, defined on an interrelated
open set U ⊆ Ω of the fibre bundle Hom (TΩ) = Λ1 (Ω)⊗ TΩ such that θ ⊗ T = S

and g (θ ⊗X, θ ⊗ Y ) = g (X,Y ) on U ⊆ Ω for the whole field X , Y of Ω. We
remember that for a field X of Ω defined on U , θ ⊗ X (ω) = θ (ω) (X (ω)) and
the application ω → θ (ω) : TωΩ → TωΩ with, θ (ω) is an g (ω)-isometry. We can
observe that this space-time change is an evolution operator.

Theorem 4. For any T and S chronological fields, there is a local change in coor-
dinates.

Proof. We take an open set U on which TΩ is trivial, we give ourselves four linearly
independent fields A, B, C and D. We can build 3 fields X1, Y 1 and Z1 such as

Vect
(

X1, Y 1, Z1
)

= (RT )
⊥
, by the Gram-Schmidt process, we can build 3 fields

X1, Y1, Z1 that form an orthonormal basis of (RT )
⊥
for the Riemannian metric gR

which is the restriction of g to (RT )⊥. We write θ1, the application which sends
X1 on A, Y1 on B, Z1 on C and T on D. In an identical way, we build θ2 the
application which sends X2 on A, Y2 on B, Z2 on C and S on D, the application
θ = θ−1

2 ◦ θ1answers the question as the construction processes are C∞. �

6. Schrödinger-Dirac equation

In relativistic quantum mechanics, the state of a free electron is represented by
a wave function Ψ (t, x) with Ψ (t, •) ∈ L2

(

R3,C4
)

for any t. This function is the
solution of the free Dirac equation i∂tΨ = H0Ψ, with

H0 = i

3
∑

k=1

αk∂k + β (6.1)

, the units chosen are ~ = c = 1 and the electron’s mass is me = 1. α1, α2, α3 and

β are complex square order 4 matrices represented by blocks, β =

(

I O

O −I

)

and

αk =

(

O σk
σk O

)

, k = 1, 2, 3 and the matrices σk are Pauli matrices of order

2, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

and σ3 =

(

1 0
0 −1

)

which prove αkαl +

αlαk = 2δklI4 and αkβ + βαk = O4. These relations ensure that H2
0 = −∆+ Id is

a symmetric operator [3].
The Dirac equation is a natural generalisation. We focus on a real vector bundle

ζ =
(

E,Ω, π,R4
)

on the universe Ω, endowed with a connection ∇.
A generalised wave function Ψ is a section of the complexified fibre bundle of

ζ, written ζC =
(

EC,Ω, πC,C
4
)

. The complexified connection associated with ∇ is
∇ (r + is) = ∇ (r)+ i∇ (s) for all sections r and s if ζ, ∇ is an application of Γ (EC)
with values in Γ

(

Λ1Ω⊗ EC

)

.
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If E = Ω × C4, Ψ is a 4-scalar, we are in the ”QRD” representation and if
E = TΩ, Ψ is a 4-vector, we are in the ”TRD” representation of the Dirac equation
([1],[2]).

In a map
(

x1, x2, x3, x4
)

of the open set U of the space-time Ω, on which the
fibre bundle TΩ is trivial, the Dirac-Einstein evolution equation,

γνDν (Ψ) = −i
mc

~
Ψ, (6.2)

where m is the mass of the wave particle Ψ.
The operator Φ = γνDν , must be a Hermitian operator for the Hermitian prod-

uct on TCΩ which can be defined by the metric g. The eigenvalues of iΦ are in
the form mc

~
, where m covers all the particle masses in the universe, especially, the

particle masses which exist in the space-time associated with the chronological field
T .

In the hypthesis of the existence of a chronological field T , we can define a
Schrödinger-Dirac equation, the waves become fields Ψ of space-time Ω and the
Schrödinger equation HΨ = −i∂TΨ is generalised by an equation of the form

HΨ = −iLTΨ = −i [T,Ψ] , (6.3)

LT is an extension of the Lie deriviative ∂T to the fields of Ω. The Hamiltonian H
becomes an operator on complex fields, i.e., a section on Ω with values in Λ1

C
Ω⊗TCΩ.

Remark 3. LTΨ measures the lack of commutativity of a field Ψ compared to a
chronological field T .

Theorem 5. The Hamiltonien H is written,

H =
~

mc
LT ◦ Φ+ i∂T (log (m)) IdTCΩ , (6.4)

where Φ = γνDν is the Dirac-Einstein operator at rank 1. In particular, if the mass
does not evolve along the chronological field T , the Hamiltonian is written,

H =
~

mc
LT ◦ Φ. (6.5)

Proof. LT ◦ Φ (Ψ) = [T,Φ (Ψ)] =
[

T,−imc
~
Ψ
]

= −imc
~

[T,Ψ] + ∂T
(

−imc
~

)

Ψ
= mc

~
HΨ− i c

~
∂T (m)Ψ.

HΨ = ~

mc

(

LT ◦ Φ (Ψ) + i c
~
∂T (m)Ψ

)

=
(

~

mc
LT ◦ Φ + i∂T (log (m)) IdTCΩ

)

(Ψ).
�

Remark 4. ∂T (log (m)) = ∂T (m)
m

represents the logarithmic derivative along the
chronological field T of the mass m of the particle.

Remark 5. The Hamiltonian is dependent on the choice of chronological field T ,
therefore of the ”local frame” as opposed to the evolution operator Φ = γνDν

which is only dependent on the Dirac section of the complexified fibre bundle of the
fields and the chosen connection ∇ on this fibre bundle, therefore is only dependent
on the connection ∇.

Let X , Y and Z of the local sections for which the family {X,Y, Z} is an or-

thogonal basis of (RT )
⊥
. We set out ∂0 = T , ∂1 = X , ∂2 = Y and ∂3 = Z. In the

”local frame” {∂0, ∂1, ∂2, ∂3},
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Theorem 6.

H =
~

mc

(

γν,0Dν + γν (L0 Lν +Γν,0 + Γν L0)
)

+ i∂T (log (m)) Id , (6.6)

with Lν Ψ = (∂νΨ
σ) ∂σ for Ψ = Ψσ∂σ, γ

ν
,0 and Γν,0 are endomorphisms whose

matrices in the canonical basis are respectively
(

∂0γ
νσ
β

)

and
(

∂0Γ
β
αν

)

.

Proof. [T,Φ (Ψ)] = ∂0

(

γνσβ
(

∂νΨ
β + ΓβανΨ

α
)

)

∂σ

∂0

(

γνσβ
(

∂νΨ
β + ΓβανΨ

α
)

)

= ∂0γ
νσ
β

(

∂νΨ
β + ΓβανΨ

α
)

+ γνσβ
(

∂0∂νΨ
β +

(

∂0Γ
β
αν

)

Ψα + Γβαν∂0Ψ
α
)

=
(

γν,0
)σ

β
(DνΨ)

β
+ (γν)

σ
β ((L0 ◦Lν +Γν,0 + Γν L0) (Ψ))

β

=
((

γν,0Dν + γν (L0 Lν +Γν,0 + Γν L0)
)

(Ψ)
)σ
. Therefore,

H = ~

mc

(

γν,0Dν + γν (L0 Lν +Γν,0 + Γν L0)
)

+ i∂T (log (m)) Id.
We set out Lν Ψ = (∂νΨ

σ) ∂σ, γ
ν
,0 and Γν,0 are endomorphisms whose matrices

in the canonical basis, are respectively,
(

∂0γ
νσ
β

)

and
(

∂0Γ
β
αν

)

. �

7. Conclusion

Taking position on a related part Ω of the universe where no measurement has
been made on the metric g and where there exists at least one chronological field
T . Any particle is described by a section Ψ of TCΩ. On the fibre bundle TCΩ there
is also a connection ∇ and a Dirac section γ. The connection ∇ is not necessarily
the Levi-Civita connection if we are on the entire universe.

The field Ψ solves the Dirac-Einstein field equation given by 3.7, with λ = mc
~
,

where m is the mass of the particle associated with field Ψ. The general Dirac-
Weyl-Fock equation, known as the Schrödinger-Dirac equation is given in 6.3, LT
is the Lie derivative along the chronological field extended to the fields.

The Hamiltonian of the Dirac-Weyl-Fock equation is given in the equation 6.3
where Φ is the evolution operator of the Dirac-Einstein equation at rank 1. We
can entirely describe the evolution of a particle with a connection of the universe,
known as a fundamental connection ∇. The Dirac section γ is the solution of the
relativistic quantum equation 4.11 where Λ = Λ0 is the cosmological constant and
γαβ is the Poisson tensor defined in 4.1.

The masses of particles are quantified, they are proportional to the eigenvalues
of the operator Φ of the Einstein-Dirac field evolution equation. If we want to study
the change along the chronological field, we simply need to take the Lie derivative
of the field evolution equation, along this chronological field.
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